• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 63
  • 6
  • 5
  • 4
  • 4
  • 2
  • 2
  • 1
  • Tagged with
  • 112
  • 112
  • 112
  • 77
  • 77
  • 38
  • 36
  • 32
  • 29
  • 25
  • 24
  • 21
  • 20
  • 20
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Analyse des performances d'un réseau de capteurs exploitant le standard IEEE 802.15.4 / Performance Analysis of Wirless Sensor Networks Exploiting the Standard IEEE 802.15.4

Abdeddaim, Mohamed Nazim 05 October 2012 (has links)
Les réseaux de capteurs suscitent un engouement croissant du fait du grand nombre d'applications mais également des défis inhérents à ce genre de réseaux. Le standard IEEE 802.15.4 a été proposé afin de standardiser les couches physique et MAC. Dans ce travail nous avons dans un premier temps proposé une variante multi-canal pour le standard 802.15.4 permettant de résoudre le problème de collisions de supertrames. Pour cela nous proposons de construire un réseau en arbre avec la particularité que chaque cellule du réseau utilise un canal différent permettant ainsi une réduction conséquente des interférences et augmente la capacité du réseau. Nous avons également introduit un nouveau mécanisme de construction de topologie, d'allocation de canal et d'ordonnancement de supertrames nécessaire au bon fonctionnement d'une telle solution. Dans un deuxième temps nous avons analysé l'impact des différents paramètres de la méthode d'accès du standard. Nous avons mis en exergue les faiblesses de la méthode d'accès dont les performances baissent drastiquement pour des réseaux trop importants. Partant de ce constat, nous avons proposé des mécanismes d'auto-adaptation pour la méthode d'accès du standard. Ces derniers permettent d'adapter dynamiquement la taille des fenêtres de contention en fonction des conditions de trafic observées sur le canal. Le calcul des valeurs optimales est exécuté par chaque coordinateur pour résoudre le problème de surdité. Ces mécanismes sont distribués et convergent rapidement même en cas de trafic en rafales. / An increasing interest has been observed in Wirless Sensor Network that can be explained by wide range of WSN applications as well as by the challenges involving the constraints of this type of networks. The IEEE 802.15.4 standard has been proposed with the objective of standardizing the physical and MAC layers. In this work, we have firstly proposed an alternative multichannel scheme for the IEEE 802.15.4 standard. It is able to solve the problem of superframe collisions based on a cluster-tree topology approach in which each cluster uses a different channel allowing the reduction of the interference and increased network capacity. We have also difined a novel mechanism for topology construction, channel allocation, and superframe scheduling. Secondly, we have analyzed the impact of different parameters on the medium access control. We have shown the weakness of the medium access method proposed in the standard. For instance, we have observed a decrease in performance when the standard is applied in large networks. Motivated by the analysis and its results we have then proposed auto-adaptive mechanisms for the medium access control. They allow to dynamically adapt the size of the contention window according to the observed traffic conditions. Each coordinator computes the optimal values to avoid deafness. The proposed mechanisms rapidly converge even in the case of bursty traffic.
82

Performance of Multi-Channel Medium Access Control Protocol incorporating Opportunistic Cooperative Diversity over Rayleigh Fading Channel

Ahmed, Sabbir January 2006 (has links)
This thesis paper proposes a Medium Access Control (MAC) protocol for wireless networks, termed as CD-MMAC that utilizes multiple channels and incorporates opportunistic cooperative diversity dynamically to improve its performance. The IEEE 802.11b standard protocol allows the use of multiple channels available at the physical layer but its MAC protocol is designed only for a single channel. The proposed protocol utilizes multiple channels by using single interface and incorporates opportunistic cooperative diversity by using cross-layer MAC. The new protocol leverages the multi-rate capability of IEEE 802.11b and allows wireless nodes far away from destination node to transmit at a higher rate by using intermediate nodes as a relays. The protocol improves network throughput and packet delivery ratio significantly and reduces packet delay. The performance improvement is further evaluated by simulation and analysis. / sabbir@linuxmail.org
83

Improving medium access for dynamic wireless sensor networks / Améliorations de l'accès au medium dans les réseaux dynamiques de capteurs sans fils

Papadopoulos, Georgios 28 September 2015 (has links)
L’Internet des objets amène des contraintes uniques et une immense variété d’applications. Ceci oblige à être capable d’établir des communications efficaces en énergie (et néanmoins à faible délai) au sein de réseaux fortement dynamiques. Nous nous sommes concentrés sur l'amélioration du contrôle d'accès au medium (MAC), afin d’optimiser la gestion des communications sans fils,principale source de consommation d'énergie dans ces réseaux. Cette thèse discute de l’auto adaptation de solutions MAC asynchrones et montre qu’une coopération localisée entre objets communicants permet de maintenir un partage efficace de la ressource de communication face à une forte dynamique (trafic, mobilité, pannes). Outre une réflexion menée sur les outils de simulation et d'expérimentation, nous avons conduit des campagnes d'évaluations complètes de nos contributions qui traitent tant des changements de trafic que de la mobilité dans les réseaux très denses. / The Internet of Things brings unique constraints and a huge variety of applications. This forces to be able to establish energy efficient communications (and never the less low-delay) within highly dynamic networks. We focused on improving the medium access control (MAC) to optimize the management of wireless communications, the main source of energy consumption in these networks. This thesis discusses the self-adaptation of asynchronous MAC solutions and shows that a localized cooperation between communicating objects can maintain an efficient sharing of the communication resource in highly dynamic networks (traffic, mobility, failures). In addition to a reasoning on the tools of simulation and experimentation, we conducted comprehensive evaluation campaigns of our contributions that address traffic changes and mobility in dense networks.
84

Intelligent medium access control for the future wireless networks

Ghaboosi, K. (Kaveh) 19 October 2009 (has links)
Abstract Medium access control (MAC) in wireless ad hoc networks has received considerable attention for almost a couple of decades; however, there are still open problems which deserve thorough study in order to facilitate migration to the next generation broadband wireless communication systems. In ad hoc networks, a detected frame collision can be due to the so-called unreachability problem, where the destination station is situated either in the transmission or interference range of an emitting station and is unable to receive connection establishment frames from any of its neighboring stations. Unreachability might also be due to the inability of a radio station to respond to any connection establishment request, though when the unreachable station receives the connection establishment requests, however, it is prohibited from responding to the requests due to being situated in the interference range of the emitting neighbor. To investigate the impact of this problem, we have to be equipped with a proper analytical framework; therefore, as the first part of this thesis, a scalable framework called Parallel Space – Time Markov chain (PSTMC) is proposed, through which a finite load non-saturated ad hoc network can be easily modeled. At the first step, a single-hop ad hoc network is considered and the accuracy of the model is evaluated using extensive numerical results. Subsequently, the proposed framework is further extended to model multi-hop ad hoc networks. Several discussions are also given on how the framework can be deployed for an arbitrary network topology. One of the main key features of the PSTMC model is its remarkable scalability in modeling complex network configurations. In fact, it is shown that multi-hop ad hoc networks have bounded complexity in being modeled by the PSTMC framework due to its spectacular specifications. These features lead us to a powerful tool by which an arbitrary network topology can be studied. In addition, the proposed models clearly facilitate demonstrating the impact of the unreachability problem on the performance of multi-hop networks. The introduced framework shows how the unreachability problem degrades the achieved throughput and channel capacity by the contending radio stations depending on the deployed network topology. In the remainder of the thesis the unreachability problem in mobile ad hoc networks is tackled and a new MAC protocol to enhance the performance of the network is proposed. This MAC scheme is equipped with smart decision-making algorithms as well as adaptive management mechanisms to reduce the impact of the unreachability problem in single channel scenarios. Subsequently, the problem of concurrent radio resource management and contention resolution in multi-channel cognitive ad hoc networks is considered. In particular, a multi-channel technique for traffic distribution among a set of data channels without centralized control, which is enabled by a probabilistic channel selection algorithm as well as a multi-channel binary exponential backoff mechanism, is proposed. It is shown through simulations that the suggested scheme outperforms the existing MAC protocols in multi-channel environments as well as cognitive networks coexisting with primary users. A mathematical model is also introduced to study the performance of the multi-channel MAC protocol in a single-hop non-saturated wireless network.
85

Energy efficiency improvements for wireless sensor networks by using cross-layer analysis

Karvonen, H. (Heikki) 02 March 2015 (has links)
Abstract This thesis proposes cross-layer approaches which enable to improve energy efficiency of wireless sensor networks and wireless body area networks (WSN & WBAN). The focus is on the physical (PHY) and medium access control (MAC) layers of communication protocol stack and exploiting their interdependencies. In the analysis of the PHY and MAC layers, their relevant characteristics are taken into account, and cross-layer models are developed to study the effect of these layers on energy efficiency. In addition, cross-layer analysis is applied at the network level by addressing hierarchical networks' energy efficiency. The objective is to improve energy efficiency by taking into account that substantial modifications to current standards and techniques are not required to take advantage of the proposed methods. The studied scenarios of WSN take advantage of the wake-up radio (WUR). A generic WUR-based MAC (GWR-MAC) protocol with objective to improve energy efficiency by avoiding idle listening is proposed. First, the proposed cross-layer model is developed at a general level and applied to study the forward error correction (FEC) code rate selection effect on the length of the transmission period and energy efficiency in a star topology network. Then an energy efficiency model for intelligent hierarchical architecture based on GWR-MAC is proposed and performance comparison with a duty-cycle radio (DCR) approach is performed. Interactions between different layers' devices are taken into account, and the WUR and DCR approaches are compared as a function of event frequency. The third cross-layer model focuses on the effect of the FEC code rate and data packet payload length on the energy efficiency of the IEEE Std 802.15.6-based WBANs using IR-UWB PHY. The results acquired by using analytical modelling and simulations with the Matlab software clearly illustrates the potential energy gains that can be achieved with the proposed cross-layer approaches. The developed WUR-based MAC protocol, analytical models and achieved results can be exploited by other researchers in the WSN and WBAN field. The contribution of this thesis is also to stimulate further research on these timely topics and foster development of short-range communication, which has a crucial role in future converging networks such as the Internet of Things. / Tiivistelmä Tässä väitöskirjassa ehdotetaan protokollakerrosten välistä tietoa hyödyntäviä (cross-layer) lähestymistapoja, jotka mahdollistavat energiatehokkuuden parantamisen langattomissa sensori- ja kehoverkoissa. Työ kohdistuu fyysisen- ja kanavanhallintakerroksen välisen vuorovaikutuksen tutkimiseen. Fyysisen- ja kanavanhallintakerrosten analyysissä huomioidaan niiden tärkeimmät ominaisuudet ja tutkitaan kerrosten yhteistä energiatehokkuutta. Lisäksi kerrosten välistä analyysiä sovelletaan verkkotasolle tutkimalla hierarkkisen verkon energiatehokkuutta. Tavoitteena on energiatehokkuuden parantamisen mahdollistaminen siten, että merkittäviä muutoksia nykyisiin standardeihin ja tekniikoihin ei tarvitse tehdä hyödyntääkseen ehdotettuja menetelmiä. Tutkitut sensoriverkkoskenaariot hyödyntävät heräteradiota. Väitöskirjassa ehdotetaan geneerinen heräteradiopohjainen kanavanhallintaprotokolla (GWR-MAC), jolla parannetaan energiatehokkuutta vähentämällä turhaa kanavan kuuntelua. Kerrosten välinen malli kehitetään ensin yleisellä tasolla ja sen avulla tutkitaan virheenkorjauskoodisuhteen valinnan vaikutusta lähetysperiodin pituuteen ja energiatehokkuuteen tähtitopologiaan pohjautuvissa sensoriverkoissa. Sitten väitöskirjassa ehdotetaan energiatehokkuusmalli älykkäälle GWR-MAC -protokollaan perustuvalle hierarkkiselle arkkitehtuurille ja sen suorituskykyä vertaillaan toimintajaksoperiaatteella toimivaan lähestymistapaan. Eri kerroksilla olevien laitteiden väliset vuorovaikutukset huomioidaan heräteradio- ja toimintajaksoperiaatteella toimivien verkkojen suorituskykyvertailussa tapahtumatiheyden funktiona. Kolmas malli kohdistuu virheenkorjauskoodisuhteen ja datapaketin hyötykuorman pituuden energiatehokkuusvaikutuksen tutkimiseen IEEE 802.15.6 -standardiin perustuvissa langattomissa kehoverkoissa. Analyyttinen mallinnus ja Matlab-ohjelmiston avulla tuotetut simulointitulokset osoittavat selvästi energiatehokkuushyödyt, jotka saavutetaan ehdotettuja menetelmiä käyttämällä. Kehitetty GWR-MAC -protokolla, analyyttiset mallit ja tulokset ovat hyödynnettävissä sensori- ja kehoverkkotutkijoiden toimesta. Tämän väitöskirjan tavoitteena on myös näiden ajankohtaisten aiheiden jatkotutkimuksen stimulointi sekä lyhyen kantaman viestinnän kehityksen vauhdittaminen, sillä niillä on erittäin merkittävä rooli tulevaisuuden yhteen liittyvissä verkoissa, kuten esineiden ja asioiden Internetissä.
86

A cross-layer approach for optimizing the efficiency of wireless sensor and actor networks

Kohlmeyer, Eckhard Bernhard 25 June 2009 (has links)
Recent development has lead to the emergence of distributed Wireless Sensor and Actor Networks (WSAN), which are capable of observing the physical environment, processing the data, making decisions based on the observations and performing appropriate actions. WSANs represent an important extension of Wireless Sensor Networks (WSNs) and may comprise a large number of sensor nodes and a smaller number of actor nodes. The sensor nodes are low-cost, low energy, battery powered devices with restricted sensing, computational and wireless communication capabilities. Actor nodes are resource richer with superior processing capabilities, higher transmission powers and a longer battery life. A basic operational scenario of a typical WSAN application follows the following sequence of events. The physical environment is periodically sensed and evaluated by the sensor nodes. The sensed data is then routed towards an actor node. Upon receiving sensed data, an actor node performs an action upon the physical environment if necessary, i.e. if the occurrence of a disturbance or critical event has been detected. The specific characteristics of sensor and actor nodes combined with some stringent application constraints impose unique requirements for WSANs. The fundamental challenges for WSANs are to achieve low latency, high energy efficiency and high reliability. The latency and energy efficiency requirements are in a trade-off relationship. The communication and coordination inside WSANs is managed via a Communication Protocol Stack (CPS) situated on every node. The requirements of low latency and energy efficiency have to be addressed at every layer of the CPS to ensure overall feasibility of the WSAN. Therefore, careful design of protocol layers in the CPS is crucial in attempting to meet the unique requirements and handle the abovementioned trade-off relationship in WSANs. The traditional CPS, comprising the application, network, medium access control and physical layer, is a layered protocol stack with every layer, a predefined functional entity. However, it has been found that for similar types of networks with similar stringent network requirements, the strictly layered protocol stack approach performs at a sub-optimal level with regards to network efficiency. A modern cross-layer paradigm, which proposes the employment of interactions between layers in the CPS, has recently attracted a lot of attention. The cross-layer approach promotes network efficiency optimization and promises considerable performance gains. It is found that in literature, the adoption of this cross-layer paradigm has not yet been considered for WSANs. In this dissertation, a complete cross-layer enabled WSAN CPS is developed that features the adoption of the cross-layer paradigm towards promoting optimization of the network efficiency. The newly proposed cross-layer enabled CPS entails protocols that incorporate information from other layers into their local decisions. Every protocol layer provides information identified as beneficial to another layer(s) in the CPS via a newly proposed Simple Cross-Layer Framework (SCLF) for WSANs. The proposed complete cross-layer enabled WSAN CPS comprises a Cross-Layer enabled Network-Centric Actuation Control with Data Prioritization (CL-NCAC-DP) application layer (APPL) protocol, a Cross-Layer enabled Cluster-based Hierarchical Energy/Latency-Aware Geographic Routing (CL-CHELAGR) network layer (NETL) protocol and a Cross-Layer enabled Carrier Sense Multiple Access with Minimum Preamble Sampling and Duty Cycle Doubling (CL-CSMA-MPS-DCD) medium access control layer (MACL) protocol. Each of these protocols builds on an existing simple layered protocol that was chosen as a basis for development of the cross-layer enabled protocols. It was found that existing protocols focus primarily on energy efficiency to ensure maximum network lifetime. However, most WSAN applications require latency minimization to be considered with the same importance. The cross-layer paradigm provides means of facilitating the optimization of both latency and energy efficiency. Specifically, a solution to the latency versus energy trade-off is given in this dissertation. The data generated by sensor nodes is prioritised by the APPL and depending on the delay-sensitivity, handled in a specialised manor by every layer of the CPS. Delay-sensitive data packets are handled in order to achieve minimum latency. On the other hand, delay-insensitive non critical data packets are handled in such a way as to achieve the highest energy efficiency. In effect, either latency minimization or energy efficiency receives an elevated precedence according to the type of data that is to be handled. Specifically, the cross-layer enabled APPL protocol provides information pertaining to the delay-sensitivity of sensed data packets to the other layers. Consequently, when a data packet is detected as highly delay-sensitive, the cross-layer enabled NETL protocol changes its approach from energy efficient routing along the maximum residual energy path to routing along the fastest path towards the cluster-head actor node for latency minimizing of the specific packet. This is done by considering information (contained in the SCLF neighbourhood table) from the MACL that entails wakeup schedules and channel utilization at neighbour nodes. Among the added criteria, the next-hop node is primarily chosen based on the shortest time to wakeup. The cross-layer enabled MACL in turn employs a priority queue and a temporary duty cycle doubling feature to enable rapid relaying of delay-sensitive data. Duty cycle doubling is employed whenever a sensor node’s APPL state indicates that it is part of a critical event reporting route. When the APPL protocol state (found in the SCLF information pool) indicates that the node is not part of the critical event reporting route anymore, the MACL reverts back to promoting energy efficiency by disengaging duty cycle doubling and re-employing a combination of a very low duty cycle and preamble sampling. The APPL protocol conversely considers the current queue size of the MACL and temporarily halts the creation of data packets (only if the sensed value is non critical) to prevent a queue overflow and ease congestion at the MACL By simulation it was shown that the cross-layer enabled WSAN CPS consistently outperforms the layered CPS for various network conditions. The average end-to-end latency of delay-sensitive critical data packets is decreased substantially. Furthermore, the average end-to-end latency of delay-insensitive data packets is also decreased. Finally, the energy efficiency performance is decreased by a tolerable insignificant minor margin as expected. The trivial increase in energy consumption is overshadowed by the high margin of increase in latency performance for delay-sensitive critical data packets. The newly proposed cross-layer CPS achieves an immense latency performance increase for WSANs, while maintaining excellent energy efficiency. It has hence been shown that the adoption of the cross-layer paradigm by the WSAN CPS proves hugely beneficial with regards to the network efficiency performance. This increases the feasibility of WSANs and promotes its application in more areas. / Dissertation (MEng)--University of Pretoria, 2009. / Electrical, Electronic and Computer Engineering / unrestricted
87

Uma proposta de protocolo token ring sem fio / A Proposal Wireless Token Ring Protocol

Adroaldo Lazouriano Moreira Borges 23 January 2014 (has links)
O protocolo Token Ring sem o (WTRP) é um protocolo distribuído de controle de acesso ao meio que provê qualidade de serviço em termos de uso de largura de banda e latência limitada. WTRP consiste de nós (estações) que formam topologicamente um anel. Contudo, quando o número de nós em um anel aumenta a latência aumenta e o tempo de reuso de token por parte de um nó em anel também aumenta. Neste trabalho, apresentamos uma versão extendida de WTRP com foco em reduzir a latência, tempo de reuso de token e permitir encaminhamento de dados entre anéis sem aumentar signicativamente o consumo de energia. Para provar o conceito que propomos, implementamos e testamos a nossa versão de WTRP usando simulador de rede - NS. / Wireless Token Ring Protocol (WTRP) is a distributed Medium Access Control protocol that provides quality of service in terms of reserved bandwidth and limited latency]. It consists of nodes or stations structured in ring topology. However, when the number of nodes in a ring increases latency and time of a node reuse token increases. In this work, we present an extended version WTRP that focus on reducing latency, time of token reuse and data forwarding among the rings in a MANet , without suggestive increasing of energy consumption. We have implemented and tested our version of WTRP in network simulator - NS.
88

Medium Access Control and Networking Protocols for the Intra-Body Network

Stucki, Eric Thomas 05 March 2006 (has links) (PDF)
Biomedical applications offer an exciting growth opportunity for wireless sensor networks. However, radio frequency communication is problematic in hospital environments that are susceptible to interference in the industrial, scientific, and medical (ISM) bands. Also, RF is inherently insecure as eavesdroppers can easily pick up signals. The Intra-Body Network (IBNet) proposes a novel communication model for biomedical sensor networks. It seeks the convenience of wireless communication while avoiding interference and privacy concerns associated with RF. IBNet's solution is to utilize a subject's own body tissue as a transmission medium. Assuming that transmissions are contained within the body, IBNet solves otherwise complex problems of privacy and interference. Unfortunately, transmitting through the same medium in which we sense creates a new type of conflict; it is possible that one sensor's network transmission might corrupt an adjacent sensor's sample data. We present Body Language, a set of protocols that arbitrate IBNet's sampling/communication conflict while providing basic services such as dynamic node discovery, network configuration, quality of service, and sensor sample collection. Body Language seeks to provide these services and solve IBNet's unique communication challenges while minimizing hardware resource requirements and hence sensor node cost. In order to prove Body Language feasibility, we created an IBNet prototype environment where the protocols were demonstrated on real hardware and in real time. The prototype also offers important insight into the Body Language's computational resource requirements. Our results show that Body Language provides all services required by IBNet and it does so with a very modest footprint.
89

Decentralized Learning over Wireless Networks with Imperfect and Constrained Communication : To broadcast, or not to broadcast, that is the question!

Dahl, Martin January 2023 (has links)
The ever-expanding volume of data generated by network devices such as smartphones, personal computers, and sensors has significantly contributed to the remarkable advancements in artificial intelligence (AI) and machine learning (ML) algorithms. However, effectively processing and learning from this extensive data usually requires substantial computational capabilities centralized in a server. Moreover, concerns regarding data privacy arise when collecting training data from distributed network devices. To address these challenges, collaborative ML with decentralized data has emerged as a promising solution for large-scale machine learning across distributed devices, driven by the parallel computing and learning trends. Collaborative and distributed ML can be broadly classified into two types: server-based and fully decentralized, based on whether the model aggregation is coordinated by a parameter server or performed in a decentralized manner through peer-to-peer communication. In cases where communication between devices occurs over wireless links, which are inherently imperfect, unreliable, and resource-constrained, how can we design communication protocols to achieve the best learning performance? This thesis investigates decentralized learning using decentralized stochastic gradient descent, an established algorithm for decentralized ML, in a novel setting with imperfect and constrained communication. "Imperfect" implies that communication can fail and "constrained" implies that communication resources are limited. The communication across a link between two devices is modeled as a binary event with either success or failure, depending on if multiple neighbouring devices are transmitting information. To compensate for communication failures, every communication round can have multiple communication slots, which are limited and must be carefully allocated over the learning process. The quality of communication is quantified by introducing normalized throughput, describing the ratio of successful links in a communication round. To decide when devices should broadcast, both random and deterministic medium access policies have been developed with the goal of maximizing throughput, which has shown very efficient learning performance. Finally, two schemes for allocating communication slots over communication rounds have been defined and simulated: Delayed-Allocation and the Periodic-Allocation schemes, showing that it is better to allocate slots late rather than early, and neither too frequently nor infrequently which can depend on several factors and requires further study
90

ON-DEMAND MEDIUM ACCESS IN HETEROGENEOUS MULTIHOP WIRELESS NETWORKS

JAIN, VIVEK 02 July 2007 (has links)
No description available.

Page generated in 0.0729 seconds