• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 63
  • 6
  • 5
  • 4
  • 4
  • 2
  • 2
  • 1
  • Tagged with
  • 112
  • 112
  • 112
  • 77
  • 77
  • 38
  • 36
  • 32
  • 29
  • 25
  • 24
  • 21
  • 20
  • 20
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Analysis and improvement of medium access control protocols in wireless networks : performance modelling and Quality-of-Service enhancement of IEEE 802.11e MAC in wireless local area networks under heterogeneous multimedia traffic

Hu, Jia January 2010 (has links)
In order to efficiently utilize the scarce wireless resource as well as keep up with the ever-increasing demand for Quality-of-Service (QoS) of multimedia applications, wireless networks are undergoing rapid development and dramatic changes in the underlying technologies and protocols. The Medium Access Control (MAC) protocol, which coordinates the channel access and data transmission of wireless stations, plays a pivotal role in wireless networks. Performance modelling and analysis has been and continues to be of great theoretical and practical importance in the design and development of wireless networks. This research is devoted to developing efficient and cost-effective analytical tools for the performance analysis and enhancement of MAC protocols in Wireless Local Area Networks (WLANs) under heterogeneous multimedia traffic. To support the MAC-layer QoS in WLANs, the IEEE 802.11e Enhanced Distributed Channel Access (EDCA) protocol has proposed three QoS differentiation schemes in terms of Arbitrary Inter-Frame Space (AIFS), Contention Window (CW), and Transmission Opportunity (TXOP). This research starts with the development of new analytical models for the TXOP scheme specified in the EDCA protocol under Poisson traffic. A dynamic TXOP scheme is then proposed to adjust the TXOP limits according to the status of the transmission queue. Theoretical analysis and simulation experiments show that the proposed dynamic scheme largely improves the performance of TXOP. To evaluate the TXOP scheme in the presence of ii heterogeneous traffic, a versatile analytical model is developed to capture the traffic heterogeneity and model the features of burst transmission. The performance results highlight the importance of taking into account the heterogeneous traffic for the accurate evaluation of the TXOP scheme in wireless multimedia networks. To obtain a thorough and deep understanding of the performance attributes of the EDCA protocol, a comprehensive analytical model is then proposed to accommodate the integration of the three QoS schemes of EDCA in terms of AIFS, CW, and TXOP under Poisson traffic. The performance results show that the TXOP scheme can not only support service differentiation but also improve the network performance, whereas the AIFS and CW schemes provide QoS differentiation only. Moreover, the results demonstrate that the MAC buffer size has considerable impact on the QoS performance of EDCA under Poisson traffic. To investigate the performance of EDCA in wireless multimedia networks, an analytical model is further developed for EDCA under heterogeneous traffic. The performance results demonstrate the significant effects of heterogeneous traffic on the total delay and frame losses of EDCA with different buffer sizes. Finally, an efficient admission control scheme is presented for the IEEE 802.11e WLANs based on analytical modelling and a game-theoretical approach. The admission control scheme can maintain the system operation at an optimal point where the utility of the Access Point (AP) is maximized with the QoS constraints of various users.
92

Estratégias de roteamento e de controle de acesso ao meio para redes de sensores sem fio destinadas a redes urbanas / Routing and medium access control strategies for wireless sensor networks in urban networks

Pantoni, Rodrigo Palucci 31 January 2012 (has links)
Este trabalho propõe estratégias de roteamento e de controle de acesso ao meio destinadas as redes urbanas, motivadas pelo monitoramento e controle de variáveis elétricas relacionadas à iluminação pública. Tais estratégias foram desenvolvidas segundo requisitos da aplicação, trabalhos encontrados na literatura, limitações do protocolo IEEE 802.15.4 e as especificações RFC 5548 e IEEE 802.15.4e (draft). As estratégias desenvolvidas foram incorporadas a protocolos encontrados na literatura, as quais geraram protocolos aperfeiçoados para redes urbanas, dentre eles GGPSR e gradiente em função da maior distância, utilizados para o tráfego divergente e convergente, respectivamente. O protocolo GGPSR é composto pelo algoritmo geográfico GPSR, geocast e retransmissões para os vizinhos seguindo o critério do GGPSR em caso de falha. O protocolo baseado na maior distância é composto pelo algoritmo do gradiente, o qual utiliza a maior distância no caso de receptores com pesos de gradiente iguais e retransmissões seguindo o mesmo critério. Foi utilizado um modelo de propagação realista, no qual foi aplicada a estratégia de mapeamento de vizinhos dos nós de acordo com a distância aproximada fornecida pelo atributo do pacote RSSI. Além disso, para ambos os tipos de tráfego, foi aplicado o mecanismo de controle de acesso ao meio RIT com o objetivo de minimizar o consumo energético. A avaliação dos protocolos gerados a partir dessas estratégias foi feita em simulação utilizando a ferramenta NS-2 integrada em cenários de grande escala fornecidos pela concessionária de iluminação pública Elektro, segundo os critérios de energia remascente da rede, média de atraso fim a fim e taxa de entrega fim a fim. Os resultados obtidos mostram que os protocolos gerados superam protocolos propostos na literatura; além disso, a estratégia baseada na distância obtida pelo atributo RSSI viabiliza a aplicação do protocolo GGPSR. Em relação à aplicação do RIT com a estratégia de parâmetros em função do gradiente, esta se mostrou mais eficiente em comparação com os parâmetros de RIT iguais para todos os nós. / This work proposes routing and medium access control strategies for urban networks, particularly related to monitoring and control of electric variables in the street lighting system. Such strategies were developed according to application requirements, studies in the literature, limitations of the IEEE 802.15.4 protocol, and RFC 5548 and IEEE 802.15.4e (draft) specifications. Strategies were incorporated into protocols found in the literature, which generated specific improved protocols for urban networks, including GGPSR and Gradient based on the farthest neighbor, applied to divergent and convergent traffic, respectively. The GGPSR protocol is composed by the GPSR algorithm, geocast and retransmissions to neighbors according to the GGPSR criterion when a failure occurs. The protocol based on the longest distance comprises the gradient algorithm, which considers the longest distance when receivers have equal gradient weights and retransmissions follow the same criterion. A realistic propagation model was used, implementing the strategy to map neighboring nodes according to the approximate distance provided by the RSSI packet attribute. Moreover, for both traffic ypes, the RIT medium access control mechanism was used in order to minimize energy consumption. Protocols generated by these strategies were evaluated through simulation in NS-2 tool applied to large scale scenarios provided by public street lighting concessionaire Elektro, according to the criteria of remaining energy network, end-to-end average delay and end-to-end delivery rate. Results show that the generated protocols outperform protocols proposed in the literature; in addition, the strategy based on the distance obtained by the RSSI attribute enables the use of the GGPSR protocol. Regarding the use of RIT considering the parameters as a function of the gradient, this strategy is more efficient compared to using the same RIT parameters for all nodes.
93

Predictable and Scalable Medium Access Control for Vehicular Ad Hoc Networks

Sjöberg Bilstrup, Katrin January 2009 (has links)
<p>This licentiate thesis work investigates two medium access control (MAC) methods, when used in traffic safety applications over vehicular <em>ad hoc</em> networks (VANETs). The MAC methods are carrier sense multiple access (CSMA), as specified by the leading standard for VANETs IEEE 802.11p, and self-organizing time-division multiple access (STDMA) as used by the leading standard for transponders on ships. All vehicles in traffic safety applications periodically broadcast cooperative awareness messages (CAMs). The CAM based data traffic implies requirements on a predictable, fair and scalable medium access mechanism. The investigated performance measures are <em>channel access delay</em>, <em>number of consecutive packet drops</em> and the <em>distance between concurrently transmitting nodes</em>. Performance is evaluated by computer simulations of a highway scenario in which all vehicles broadcast CAMs with different update rates and packet lengths. The obtained results show that nodes in a CSMA system can experience <em>unbounded channel access delays</em> and further that there is a significant difference between the best case and worst case channel access delay that a node could experience. In addition, with CSMA there is a very high probability that several <em>concurrently transmitting nodes are located close to each other</em>. This occurs when nodes start their listening periods at the same time or when nodes choose the same backoff value, which results in nodes starting to transmit at the same time instant. The CSMA algorithm is therefore both <em>unpredictable</em> and <em>unfair</em> besides the fact that it <em>scales badly</em> for broadcasted CAMs. STDMA, on the other hand, will always grant channel access for all packets before a predetermined time, regardless of the number of competing nodes. Therefore, the STDMA algorithm is <em>predictable</em> and <em>fair</em>. STDMA, using parameter settings that have been adapted to the vehicular environment, is shown to outperform CSMA when considering the performance measure <em>distance between concurrently transmitting nodes</em>. In CSMA the distance between concurrent transmissions is random, whereas STDMA uses the side information from the CAMs to properly schedule concurrent transmissions in space. The price paid for the superior performance of STDMA is the required network synchronization through a global navigation satellite system, e.g., GPS. That aside since STDMA was shown to be scalable, predictable and fair; it is an excellent candidate for use in VANETs when complex communication requirements from traffic safety applications should be met.</p>
94

Correlation-based Cross-layer Communication in Wireless Sensor Networks

Vuran, Mehmet Can 09 July 2007 (has links)
Wireless sensor networks (WSN) are event based systems that rely on the collective effort of densely deployed sensor nodes continuously observing a physical phenomenon. The spatio-temporal correlation between the sensor observations and the cross-layer design advantages are significant and unique to the design of WSN. Due to the high density in the network topology, sensor observations are highly correlated in the space domain. Furthermore, the nature of the energy-radiating physical phenomenon constitutes the temporal correlation between each consecutive observation of a sensor node. This unique characteristic of WSN can be exploited through a cross-layer design of communication functionalities to improve energy efficiency of the network. In this thesis, several key elements are investigated to capture and exploit the correlation in the WSN for the realization of advanced efficient communication protocols. A theoretical framework is developed to capture the spatial and temporal correlations in WSN and to enable the development of efficient communication protocols. Based on this framework, spatial Correlation-based Collaborative Medium Access Control (CC-MAC) protocol is described, which exploits the spatial correlation in the WSN in order to achieve efficient medium access. Furthermore, the cross-layer module (XLM), which melts common protocol layer functionalities into a cross-layer module for resource-constrained sensor nodes, is developed. The cross-layer analysis of error control in WSN is then presented to enable a comprehensive comparison of error control schemes for WSN. Finally, the cross-layer packet size optimization framework is described.
95

On spectrum sensing, resource allocation, and medium access control in cognitive radio networks

Karaputugala Gamacharige, Madushan Thilina 12 1900 (has links)
The cognitive radio-based wireless networks have been proposed as a promising technology to improve the utilization of the radio spectrum through opportunistic spectrum access. In this context, the cognitive radios opportunistically access the spectrum which is licensed to primary users when the primary user transmission is detected to be absent. For opportunistic spectrum access, the cognitive radios should sense the radio environment and allocate the spectrum and power based on the sensing results. To this end, in this thesis, I develop a novel cooperative spectrum sensing scheme for cognitive radio networks (CRNs) based on machine learning techniques which are used for pattern classification. In this regard, unsupervised and supervised learning-based classification techniques are implemented for cooperative spectrum sensing. Secondly, I propose a novel joint channel and power allocation scheme for downlink transmission in cellular CRNs. I formulate the downlink resource allocation problem as a generalized spectral-footprint minimization problem. The channel assignment problem for secondary users is solved by applying a modified Hungarian algorithm while the power allocation subproblem is solved by using Lagrangian technique. Specifically, I propose a low-complexity modified Hungarian algorithm for subchannel allocation which exploits the local information in the cost matrix. Finally, I propose a novel dynamic common control channel-based medium access control (MAC) protocol for CRNs. Specifically, unlike the traditional dedicated control channel-based MAC protocols, the proposed MAC protocol eliminates the requirement of a dedicated channel for control information exchange. / October 2015
96

Medium Access Control, Packet Routing, and Internet Gateway Placement in Vehicular Ad Hoc Networks

Omar, Hassan Aboubakr January 2014 (has links)
Road accidents represent a serious social problem and are one of the leading causes of human death and disability on a global scale. To reduce the risk and severity of a road accident, a variety of new safety applications can be realized through wireless communications among vehicles driving nearby each other, or among vehicles and especially deployed road side units (RSUs), a technology known as a vehicular ad hoc network (VANET). Most of the VANET-enabled safety applications are based on broadcasting of safety messages by vehicles or RSUs, either periodically or in case of an unexpected event, such as a hard brake or dangerous road condition detection. Each broadcast safety message should be successfully delivered to the surrounding vehicles and RSUs without any excess delay, which is one of the main functions of a medium access control (MAC) protocol proposed for VANETs. This thesis presents VeMAC, a new multichannel time division multiple access (TDMA) protocol specifically designed to support the high priority safety applications in a VANET scenario. The ability of the VeMAC protocol to deliver periodic and event-driven safety messages in VANETs is demonstrated by a detailed delivery delay analysis, including queueing and service delays, for both types of safety messages. As well, computer simulations are conducted by using MATLAB, the network simulator ns-2, and the microscopic vehicle traffic simulator VISSIM, in order to evaluate the performance of the VeMAC protocol, in comparison with the IEEE 802.11p standard and the ADHOC MAC protocol (another TDMA protocol proposed for ad hoc networks). A real city scenario is simulated and different performance metrics are evaluated, including the network goodput, protocol overhead, channel utilization, protocol fairness, probability of a transmission collision, and safety message delivery delay. It is shown that the VeMAC protocol considerably outperforms the existing MAC schemes, which have significant limitations in supporting VANET safety applications. In addition to enhancing road safety, in-vehicle Internet access is one of the main applications of VANETs, which aims at providing the vehicle passengers with a low-cost access to the Internet via on-road gateways. This thesis presents a new strategy for deploying Internet gateways on the roads, in order to minimize the total cost of gateway deployment, while ensuring that a vehicle can connect to an Internet gateway (using multihop communications) with a probability greater than a specified threshold. This cost minimization problem is formulated by using binary integer programming, and applied for optimal gateway placement in a real city scenario. To the best of our knowledge, no previous strategy for gateway deployment has considered the probability of multihop connectivity among the vehicles and the deployed gateways. In order to allow a vehicle to discover the existence of an Internet gateway and to communicate with the gateway via multihops, a novel data packet routing scheme is proposed based on the VeMAC protocol. The performance of this cross-layer design is evaluated for a multichannel VANET in a highway scenario, mainly in terms of the end-to-end packet delivery delay. The packet queueing at each relay vehicle is considered in the end-to-end delay analysis, and numerical results are presented to study the effect of various parameters, such as the vehicle density and the packet arrival rate, on the performance metrics. The proposed VeMAC protocol is a promising candidate for MAC in VANETs, which can realize many advanced safety applications to enhance the public safety standards and improve the safety level of drivers/passengers and pedestrians on roads. On the other hand, the proposed gateway placement strategy and packet routing scheme represent a strong step toward providing reliable and ubiquitous in-vehicle Internet connectivity.
97

Channel based medium access control for ad hoc wireless networks

Ashraf, Manzur January 2009 (has links)
Opportunistic communication techniques have shown to provide significant performance improvements in centralised random access wireless networks. The key mechanism of opportunistic communication is to send back-to-back data packets whenever the channel quality is deemed "good". Recently there have been attempts to introduce opportunistic communication techniques in distributed wireless networks such as wireless ad hoc networks. In line of this research, we propose a new paradigm of medium access control, called Channel MAC based on the channel randomness and opportunistic communication principles. Scheduling in Channel MAC depends on the instance at which the channel quality improves beyond a threshold, while neighbouring nodes are deemed to be silent. Once a node starts transmitting, it will keep transmitting until the channel becomes "bad". We derive an analytical throughput equation of the proposed MAC in a multiple access environment and validate it by simulations. It is observed that Channel MAC outperforms IEEE 802.11 for all probabilities of good channel condition and all numbers of nodes. For higher number of nodes, Channel MAC achieves higher throughput at lower probabilities of good channel condition increasing the operating range. Furthermore, the total throughput of the network grows with increasing number of nodes considering negligible propagation delay in the network. A scalable channel prediction scheme is required to implement the practical Channel MAC protocol in practice. We propose a mean-value based channel prediction scheme, which provides prediction with enough accuracy to be used in the Channel MAC protocol. NS2 simulation result shows that the Channel MAC protocol outperforms the IEEE 802.11 in throughput due to its channel diversity mechanism in spite of the prediction errors and packet collisions. Next, we extend the Channel MAC protocol to support multi-rate communications. At present, two prominent multi-rate mechanisms, Opportunistic Auto Rate (OAR) and Receiver Based Auto Rate (RBAR) are unable to adapt to short term changes in channel conditions during transmission as well as to use optimum power and throughput during packet transmissions. On the other hand, using channel predictions, each source-destinations pair in Channel MAC can fully utilise the non-fade durations. We combine the scheduling of Channel MAC and the rate adaptive transmission based on the channel state information to design the 'Rate Adaptive Channel MAC' protocol. However, to implement the Rate adaptive Channel MAC, we need to use a channel prediction scheme to identify transmission opportunities as well as auto rate adaptation mechanism to select rates and number of packets to transmit during those times. For channel prediction, we apply the scheme proposed for the practical implementation of Channel MAC. We propose a "safety margin" based technique to provide auto rate adaptation. Simulation results show that a significant performance improvement can be achieved by Rate adaptive Channel MAC as compared to existing rate adaptive protocols such as OAR.
98

Channel based medium access control for ad hoc wireless networks

Ashraf, Manzur January 2009 (has links)
Opportunistic communication techniques have shown to provide significant performance improvements in centralised random access wireless networks. The key mechanism of opportunistic communication is to send back-to-back data packets whenever the channel quality is deemed "good". Recently there have been attempts to introduce opportunistic communication techniques in distributed wireless networks such as wireless ad hoc networks. In line of this research, we propose a new paradigm of medium access control, called Channel MAC based on the channel randomness and opportunistic communication principles. Scheduling in Channel MAC depends on the instance at which the channel quality improves beyond a threshold, while neighbouring nodes are deemed to be silent. Once a node starts transmitting, it will keep transmitting until the channel becomes "bad". We derive an analytical throughput equation of the proposed MAC in a multiple access environment and validate it by simulations. It is observed that Channel MAC outperforms IEEE 802.11 for all probabilities of good channel condition and all numbers of nodes. For higher number of nodes, Channel MAC achieves higher throughput at lower probabilities of good channel condition increasing the operating range. Furthermore, the total throughput of the network grows with increasing number of nodes considering negligible propagation delay in the network. A scalable channel prediction scheme is required to implement the practical Channel MAC protocol in practice. We propose a mean-value based channel prediction scheme, which provides prediction with enough accuracy to be used in the Channel MAC protocol. NS2 simulation result shows that the Channel MAC protocol outperforms the IEEE 802.11 in throughput due to its channel diversity mechanism in spite of the prediction errors and packet collisions. Next, we extend the Channel MAC protocol to support multi-rate communications. At present, two prominent multi-rate mechanisms, Opportunistic Auto Rate (OAR) and Receiver Based Auto Rate (RBAR) are unable to adapt to short term changes in channel conditions during transmission as well as to use optimum power and throughput during packet transmissions. On the other hand, using channel predictions, each source-destinations pair in Channel MAC can fully utilise the non-fade durations. We combine the scheduling of Channel MAC and the rate adaptive transmission based on the channel state information to design the 'Rate Adaptive Channel MAC' protocol. However, to implement the Rate adaptive Channel MAC, we need to use a channel prediction scheme to identify transmission opportunities as well as auto rate adaptation mechanism to select rates and number of packets to transmit during those times. For channel prediction, we apply the scheme proposed for the practical implementation of Channel MAC. We propose a "safety margin" based technique to provide auto rate adaptation. Simulation results show that a significant performance improvement can be achieved by Rate adaptive Channel MAC as compared to existing rate adaptive protocols such as OAR.
99

Estratégias de roteamento e de controle de acesso ao meio para redes de sensores sem fio destinadas a redes urbanas / Routing and medium access control strategies for wireless sensor networks in urban networks

Rodrigo Palucci Pantoni 31 January 2012 (has links)
Este trabalho propõe estratégias de roteamento e de controle de acesso ao meio destinadas as redes urbanas, motivadas pelo monitoramento e controle de variáveis elétricas relacionadas à iluminação pública. Tais estratégias foram desenvolvidas segundo requisitos da aplicação, trabalhos encontrados na literatura, limitações do protocolo IEEE 802.15.4 e as especificações RFC 5548 e IEEE 802.15.4e (draft). As estratégias desenvolvidas foram incorporadas a protocolos encontrados na literatura, as quais geraram protocolos aperfeiçoados para redes urbanas, dentre eles GGPSR e gradiente em função da maior distância, utilizados para o tráfego divergente e convergente, respectivamente. O protocolo GGPSR é composto pelo algoritmo geográfico GPSR, geocast e retransmissões para os vizinhos seguindo o critério do GGPSR em caso de falha. O protocolo baseado na maior distância é composto pelo algoritmo do gradiente, o qual utiliza a maior distância no caso de receptores com pesos de gradiente iguais e retransmissões seguindo o mesmo critério. Foi utilizado um modelo de propagação realista, no qual foi aplicada a estratégia de mapeamento de vizinhos dos nós de acordo com a distância aproximada fornecida pelo atributo do pacote RSSI. Além disso, para ambos os tipos de tráfego, foi aplicado o mecanismo de controle de acesso ao meio RIT com o objetivo de minimizar o consumo energético. A avaliação dos protocolos gerados a partir dessas estratégias foi feita em simulação utilizando a ferramenta NS-2 integrada em cenários de grande escala fornecidos pela concessionária de iluminação pública Elektro, segundo os critérios de energia remascente da rede, média de atraso fim a fim e taxa de entrega fim a fim. Os resultados obtidos mostram que os protocolos gerados superam protocolos propostos na literatura; além disso, a estratégia baseada na distância obtida pelo atributo RSSI viabiliza a aplicação do protocolo GGPSR. Em relação à aplicação do RIT com a estratégia de parâmetros em função do gradiente, esta se mostrou mais eficiente em comparação com os parâmetros de RIT iguais para todos os nós. / This work proposes routing and medium access control strategies for urban networks, particularly related to monitoring and control of electric variables in the street lighting system. Such strategies were developed according to application requirements, studies in the literature, limitations of the IEEE 802.15.4 protocol, and RFC 5548 and IEEE 802.15.4e (draft) specifications. Strategies were incorporated into protocols found in the literature, which generated specific improved protocols for urban networks, including GGPSR and Gradient based on the farthest neighbor, applied to divergent and convergent traffic, respectively. The GGPSR protocol is composed by the GPSR algorithm, geocast and retransmissions to neighbors according to the GGPSR criterion when a failure occurs. The protocol based on the longest distance comprises the gradient algorithm, which considers the longest distance when receivers have equal gradient weights and retransmissions follow the same criterion. A realistic propagation model was used, implementing the strategy to map neighboring nodes according to the approximate distance provided by the RSSI packet attribute. Moreover, for both traffic ypes, the RIT medium access control mechanism was used in order to minimize energy consumption. Protocols generated by these strategies were evaluated through simulation in NS-2 tool applied to large scale scenarios provided by public street lighting concessionaire Elektro, according to the criteria of remaining energy network, end-to-end average delay and end-to-end delivery rate. Results show that the generated protocols outperform protocols proposed in the literature; in addition, the strategy based on the distance obtained by the RSSI attribute enables the use of the GGPSR protocol. Regarding the use of RIT considering the parameters as a function of the gradient, this strategy is more efficient compared to using the same RIT parameters for all nodes.
100

Predictable and Scalable Medium Access Control for Vehicular Ad Hoc Networks

Sjöberg Bilstrup, Katrin January 2009 (has links)
This licentiate thesis work investigates two medium access control (MAC) methods, when used in traffic safety applications over vehicular ad hoc networks (VANETs). The MAC methods are carrier sense multiple access (CSMA), as specified by the leading standard for VANETs IEEE 802.11p, and self-organizing time-division multiple access (STDMA) as used by the leading standard for transponders on ships. All vehicles in traffic safety applications periodically broadcast cooperative awareness messages (CAMs). The CAM based data traffic implies requirements on a predictable, fair and scalable medium access mechanism. The investigated performance measures are channel access delay, number of consecutive packet drops and the distance between concurrently transmitting nodes. Performance is evaluated by computer simulations of a highway scenario in which all vehicles broadcast CAMs with different update rates and packet lengths. The obtained results show that nodes in a CSMA system can experience unbounded channel access delays and further that there is a significant difference between the best case and worst case channel access delay that a node could experience. In addition, with CSMA there is a very high probability that several concurrently transmitting nodes are located close to each other. This occurs when nodes start their listening periods at the same time or when nodes choose the same backoff value, which results in nodes starting to transmit at the same time instant. The CSMA algorithm is therefore both unpredictable and unfair besides the fact that it scales badly for broadcasted CAMs. STDMA, on the other hand, will always grant channel access for all packets before a predetermined time, regardless of the number of competing nodes. Therefore, the STDMA algorithm is predictable and fair. STDMA, using parameter settings that have been adapted to the vehicular environment, is shown to outperform CSMA when considering the performance measure distance between concurrently transmitting nodes. In CSMA the distance between concurrent transmissions is random, whereas STDMA uses the side information from the CAMs to properly schedule concurrent transmissions in space. The price paid for the superior performance of STDMA is the required network synchronization through a global navigation satellite system, e.g., GPS. That aside since STDMA was shown to be scalable, predictable and fair; it is an excellent candidate for use in VANETs when complex communication requirements from traffic safety applications should be met.

Page generated in 0.4775 seconds