• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 149
  • 24
  • 24
  • 17
  • 16
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 297
  • 297
  • 52
  • 40
  • 36
  • 32
  • 31
  • 29
  • 29
  • 27
  • 27
  • 26
  • 26
  • 26
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

Drug Partitioning into Natural and Artificial Membranes : Data Applicable in Predictions of Drug Absorption

Engvall, Caroline January 2005 (has links)
<p>When drug molecules are passively absorbed through the cell membrane in the small intestine, the first key step is partitioning of the drug into the membrane. Partition data can therefore be used to predict drug absorption. The partitioning of a solute can be analyzed by drug partition chromatography on immobilized model membranes, where the chromatographic retention of the solute reflects the partitioning. The aims of this thesis were to develop the model membranes used in drug partition chromatography and to study the effects of different membrane components and membrane structures on drug partitioning, in order to characterize drug–membrane interactions.</p><p>Electrostatic effects were observed on the partitioning of charged drugs into liposomes containing charged detergent, lipid or phospholipid; bilayer disks; proteoliposomes and porcine intestinal brush border membrane vesicles (BBMVs), and on the retention of an oligonucleotide on positive liposomes. Biological membranes are naturally charged, which will affect drug partitioning in the human body.</p><p>Proteoliposomes containing transmembrane proteins and cholesterol, BBMVs and bilayer disks were used as novel model membranes in drug partition chromatography. Partition data obtained on proteoliposomes and BBMVs demonstrated how cholesterol and transmembrane proteins interact with drug molecules. Such interactions will occur between drugs and natural cell membranes. In the use of immobilized BBMVs for drug partition chromatography, yet unsolved problems with the stability of the membrane were encountered. A comparison of partition data obtained on bilayer disks with data on multi- and unilamellar liposomes indicated that the structure of the membrane affect the partitioning. The most accurate partition values might be obtained on bilayer disks.</p><p>Drug partition data obtained on immobilized model membranes include both hydrophobic and electrostatic interactions. Such partition data should preferably be used when deriving algorithms or computer programs for prediction of drug absorption.</p>
212

Macromolecular Matchmaking : Mechanisms and Biology of Bacterial Small RNAs

Holmqvist, Erik January 2012 (has links)
Cells sense the properties of the surrounding environment and convert this information into changes in gene expression. Bacteria are, in contrast to many multi-cellular eukaryotes, remarkable in their ability to cope with rapid environmental changes and to endure harsh and extreme milieus. Previously, control of gene expression was thought to be carried out exclusively by proteins. However, it is now clear that small regulatory RNAs (sRNA) also carry out gene regulatory functions. Bacteria such as E. coli harbor a large class of sRNAs that bind to mRNAs to alter translation and/or mRNA stability. By identifying mRNAs that are targeted by sRNAs, my studies have broadened the understanding of the mechanisms that underlie sRNA-dependent gene regulation, and have shed light on the impact that this type of regulation has on bacterial physiology. Control of gene expression often relies on the interplay of many regulators. This interplay is exemplified by our discovery of mutual regulation between the sRNA MicF and the globally acting transcription factor Lrp. Through double negative feedback, these two regulators respond to nutrient availability in the environment which results in reprogramming of downstream gene expression. We have also shown that both the transcription factor CsgD, and the anti-sigma factor FlgM, are repressed by the two sRNAs OmrA and OmrB, suggesting that these sRNAs are important players in the complex regulation that allow bacteria to switch between motility and sessility. Bacterial populations of genetically identical individuals show phenotypic variations when switching to the sessile state due to bistability in gene expression. While bistability has previously been demonstrated to arise from stochastic fluctuations in transcription, our results suggest that bistability possibly may arise from sRNA-dependent regulatory events also on the post-transcriptional level.
213

Exploring the Molecular Dynamics of Proteins and Viruses

Larsson, Daniel January 2012 (has links)
Knowledge about structure and dynamics of the important biological macromolecules — proteins, nucleic acids, lipids and sugars — helps to understand their function. Atomic-resolution structures of macromolecules are routinely captured with X-ray crystallography and other techniques. In this thesis, simulations are used to explore the dynamics of the molecules beyond the static structures. Viruses are machines constructed from macromolecules. Crystal structures of them reveal little to no information about their genomes. In simulations of empty capsids, we observed a correlation between the spatial distribution of chloride ions in the solution and the position of RNA in crystals of satellite tobacco necrosis virus (STNV) and satellite tobacco mosaic virus (STMV). In this manner, structural features of the non-symmetric RNA could also be inferred. The capsid of STNV binds calcium ions on the icosahedral symmetry axes. The release of these ions controls the activation of the virus particle upon infection. Our simulations reproduced the swelling of the capsid upon removal of the ions and we quantified the water permeability of the capsid. The structure and dynamics of the expanded capsid suggest that the disassembly is initiated at the 3-fold symmetry axis. Several experimental methods require biomolecular samples to be injected into vacuum, such as mass-spectrometry and diffractive imaging of single particles. It is therefore important to understand how proteins and molecule-complexes respond to being aerosolized. In simulations we mimicked the dehydration process upon going from solution into the gas phase. We find that two important factors for structural stability of proteins are the temperature and the level of residual hydration. The simulations support experimental claims that membrane proteins can be protected by a lipid micelle and that a non-membrane protein could be stabilized in a reverse micelle in the gas phase. A water-layer around virus particles would impede the signal in diffractive experiments, but our calculations estimate that it should be possible to determine the orientation of the particle in individual images, which is a prerequisite for three-dimensional reconstruction. / BMC B41, 25/5, 9:15
214

Nanosized Bilayer Disks as Model Membranes for Interaction Studies

Lundquist, Anna January 2008 (has links)
PEG-lipid stabilized bilayer disks have been found in lipid mixtures containing polyethylene glycol (PEG)-lipids where the combination of a high bending rigidity and low PEG-lipid/lipid miscibility favours disk formation. The disks are planar and circular in shape and their long-term stability is excellent. Theoretical calculations and experimental observations suggest that the micelle forming PEG-lipid are situated at the rim of the aggregate, protecting the hydrophobic lipid chains in the bulk of the aggregate from contact with water. This thesis deals with fundamental aspects concerning the lipid distribution in the disks, as well as with development, optimization, and initial evaluation of the disks as model membranes in partition and interaction studies. Small angle neutron scattering was used to study the partial segregation of components within the bilayer disk. The experiments verified that the PEG-lipids segregate and accumulate at the bilayer disk rim. The proof of component segregation is important from a fundamental point of view and useful, as exemplified in the below-mentioned study of melittin-lipid interaction, when interpreting partition or binding data obtained from studies based on bilayer disks. Today liposomes are often used as model membranes in partition and interaction studies. Using liposomes to predict, e.g., drug partitioning can however have certain drawbacks. In this thesis the disks were proven to be attractive alternatives to liposomes as model membranes in partition studies. The formation of bilayer disks by a technique based on detergent depletion enabled incorporation of a transmembrane protein in the bilayer disks and opened up for the use of disks as model membranes in membrane protein studies. Further, bilayer disks were used in a comparative study focused on the effect of aggregate curvature on the binding of the peptide melittin. Various techniques were used to perform initial evaluations of the bilayer disks as model membranes. Of these, capillary electrophoresis and biosensor-based technology had not been used before in combination with bilayer disks.
215

The Search for Novel Wnt Pathway Modulators

Poliszczuk, Peter 13 January 2011 (has links)
Signaling pathways are complex and function to transmit signals from the extracellular environment into the cell. Analysis of results obtained from a high throughput siRNA screen led to the identification of Membrane protein palmitoylated 3 (MPP3) and Leukocyte Tyrosine Kinase (LTK) as novel negative regulators of the Wnt pathway. MPP3 is a MAGUK family protein and domain mapping studies indicated that the Guk domain plays a role in the negative regulation of the pathway. LTK, a receptor tyrosine kinase, has several transcript variants one of which lacks the entire kinase domain (LTK∆KD). While LTK∆KD interacted with the Wnt receptor Frizzled7, the full length LTK did not, suggesting distinct modes of pathway regulation. Analysis of neuronal cells, NIE115 and Neuro2a, demonstrated LTK is expressed and that cells are Wnt3a responsive, thereby providing a neuronal model system appropriate for further studies on the mechanism and biological role of LTK as a negative regulator of the Wnt pathway
216

The Search for Novel Wnt Pathway Modulators

Poliszczuk, Peter 13 January 2011 (has links)
Signaling pathways are complex and function to transmit signals from the extracellular environment into the cell. Analysis of results obtained from a high throughput siRNA screen led to the identification of Membrane protein palmitoylated 3 (MPP3) and Leukocyte Tyrosine Kinase (LTK) as novel negative regulators of the Wnt pathway. MPP3 is a MAGUK family protein and domain mapping studies indicated that the Guk domain plays a role in the negative regulation of the pathway. LTK, a receptor tyrosine kinase, has several transcript variants one of which lacks the entire kinase domain (LTK∆KD). While LTK∆KD interacted with the Wnt receptor Frizzled7, the full length LTK did not, suggesting distinct modes of pathway regulation. Analysis of neuronal cells, NIE115 and Neuro2a, demonstrated LTK is expressed and that cells are Wnt3a responsive, thereby providing a neuronal model system appropriate for further studies on the mechanism and biological role of LTK as a negative regulator of the Wnt pathway
217

The phiX174 Lysis Protein E: a Protein Inhibitor of the Conserved Translocase MraY

Zheng, Yi 2009 May 1900 (has links)
Most bacteriophages release progeny virions at the end of the infection cycle by lysis of the host. Large phages with double-stranded DNA genomes use a multigene strategy based on holins, small membrane proteins, and bacteriolytic enzymes, or endolysins. Holins mediate the control of endolysin activity and thus the timing of lysis. Phages with small genomes only encode a single protein for cell lysis. There are three known unrelated single protein lysis systems: the ?X174 E protein, the MS2 L protein, and the Q? A2 protein. None of these phages encodes a cell wall degrading activity, and previous work has shown that the lytic activity of E stems from its ability to inhibit the host enzyme, MraY, which catalyzes the formation of lipid I, the first lipid intermediate in cell wall synthesis. The purpose of the work described in this dissertation was to characterize the ?X174 E-mediated inhibition of MraY using genetic and biochemical strategies. A fundamental question was why no large phages use the single gene system. This was addressed by constructing a recombinant phage, ?E, in which the holin-endolysin based lysis cassette of ? was replaced with E. ?E was compared with ? in genetic and physiological experiments, with the results indicating that the holin-endolysin system increases fitness in terms of adjusting lysis timing to environmental conditions. Using ?E, physiological experiments were conducted to characterize the interaction between E and MraY in vivo. Transmembrane domains (TMD) 5 and 9 have been identified as the potential E binding site by isolating MraY mutants resistant to E inhibition. The five Eresistant MraY mutants were found to fall into three classes, which reflect the apparent affinity of the mutant proteins for E. Finally, an assay for MraY activity employing the dansylated UDP-MurNAc-pentapeptide and phytol-P, was used to demonstrate the inhibition of MraY by purified E protein. It was determined that E is a non-competitive inhibitor for MraY in respect with both substrates. A model for E-mediated inhibition of MraY was proposed, in which E binds to TMDs 5 and 9 in MraY and thus inactivates the enzyme by inducing a conformational change.
218

Engineering membrane proteins for production and topology

Toddo, Stephen January 2015 (has links)
The genomes of diverse organisms are predicted to contain 20 – 30% membrane protein encoding genes and more than half of all therapeutics target membrane proteins. However, only 2% of crystal structures deposited in the protein data bank represent integral membrane proteins. This reflects the difficulties in studying them using standard biochemical and crystallographic methods. The first problem frequently encountered when investigating membrane proteins is their low natural abundance, which is insufficient for biochemical and structural studies. The aim of my thesis was to provide a simple method to improve the production of recombinant proteins. One of the most commonly used methods to increase protein yields is codon optimization of the entire coding sequence. However, our data show that subtle synonymous codon substitutions in the 5’ region can be more efficient. This is consistent with the view that protein yields under normal conditions are more dependent on translation initiation than elongation. mRNA secondary structures around the 5’ region are in large part responsible for this effect although rare codons, as well as other factors, also contribute. We developed a PCR based method to optimize the 5’ region for increased protein production in Escherichia coli. For those proteins produced in sufficient quantities several additional hurdles remain before high quality crystals can be obtained. A second aim of my thesis work was to provide a simple method for topology mapping membrane proteins. A topology map provides information about the orientation of transmembrane regions and the location of protein domains in relation to the membrane, which can give information on structure-function relationships. To this end we explored the split-GFP system in which GFP is split between the 10th and 11th β-strands. This results in one large and one small fragment, both of which are non-fluorescent but can re-anneal and regain fluorescence if localized to the same cellular compartment. Fusing the 11th β-strand to the termini of a protein of interest and expressing it, followed by expression of the detector fragment in the cytosol, allows determination of the topology of inner membrane proteins. Using this strategy the topology of three model proteins was correctly determined. We believe that this system could be used to predict the topology of a large number of additional proteins, especially single-spanning inner membrane proteins in E. coli. The methods for efficient protein production and topology mapping engineered during my thesis work are simple and cost-efficient and may be very valuable in future studies of membrane proteins. / <p>At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 2: Manuscript.</p>
219

Protein–Lipid Interactions and the Functional Role of Intra-Membrane Protein Hydration in the PIB-type ATPase CopA from Legionella pneumophila

Fischermeier, Elisabeth 24 November 2015 (has links) (PDF)
Membrane proteins are vital for cellular homeostasis. They maintain the electrochemical gradients that are essential for signaling and control the fine balance of trace elements. In order to fulfill these tasks, they need to undergo controlled conformational transitions within the lipid bilayer of a cell membrane. It is well-recognized that membrane protein structure and function depends on the lipid membrane. However, much less is known about the role of water re-partitioning at the protein–lipid interface and particularly within a membrane protein during functional transitions. Intra-membrane protein hydration is expected to be particularly important for ion transport processes, where the hydration shell of a solvated ion needs to be rearranged and partially removed in order to bind the ion within the transporter before it is re-solvated upon exiting the membrane protein. These processes are spatially and temporally organized in metal-transporting ATPases of the PIB-subtype of P-type ATPases. Here, the functional role of water entry into the transmembrane region of the copper-transporting PIB-type ATPase CopA from Legionella pneumophila (LpCopA) has been investigated. The recombinant protein was affinity-purified and functionally reconstituted into nanodiscs prepared with the extended scaffolding protein MSP1E3D1. Nanodiscs provide a planar native-like lipid bilayer in a water-soluble nanoparticle with advantageous optical properties for spectroscopy. The small polarity-sensitive fluorophore 6-bromoacetyl-2-dimethylaminonaphthalene (BADAN) was used as a probe for the molecular environment of the conserved copper-binding cysteine-proline-cysteine (CPC) motif which is located close to a wide “entry platform” for Cu+ to the transmembrane (TM) channel. The systematic study of proteins with mutated metal-binding motifs using steady-state and time-resolved fluorescence spectroscopy indicates that strong gradients of hydration and protein flexibility can exist across the narrow range of the CPC motif. The data suggest that Cu+ passes a “hydrophobic gate” at the more cytoplasmic C384 provided by rather stable TM helix packing before entering a more flexible and readily hydratable site in the interior of LpCopA around C382 where the polarity is strongly regulated by protein–lipid interactions. This flexibility could also be partly mediated by rearrangements of an adjacent amphipathic protein stretch that runs parallel to the membrane surface as a part of the cytoplasmic entry site. Using tryptophan fluorescence, circular dichroism, and Fourier-transform infrared absorption spectroscopy of a synthetic peptide derived from this segment, its lipid-dependent structural variability could be revealed. Depending on lipid-mediated helix packing interactions, the CPC motif has the potential to support a strong dielectric gradient with about ten units difference in permittivity across the CPC distance. This property may be crucial in establishing the directionality of ion transport by a non-symmetric re-solvation potential in the ion release channel of LpCopA. The experimental elucidation of these molecular details emphasizes not only the importance of intra-membrane protein water which has been hypothesized particularly for PIB-type ATPases. Moreover it is shown here, that the lateral pressure of a cell membrane may provide a force that restores a low hydration state from a transiently formed state of high internal water content at the distal side of the CPC motif. ATP-driven conformational changes that induce intra-membrane protein hydration of a conformational intermediate of the Post-Albers cycle could thus be set back efficiently by lateral pressure of the cell membrane at a later step of the cycle.
220

The quest for a general co-crystallization strategy for macromolecules: lessons on the use of chaperones for membrane protein crystallization

Johnson, Jennifer Leigh 21 September 2015 (has links)
Crystallization is often a major bottleneck to macromolecular structure determination. This is particularly true for membrane proteins, which have hydrophobic surfaces that cannot readily form crystal contacts. Of the roughly 109,000 protein structures in the PDB, only about 539 represent unique membrane proteins, despite immense interest in membrane proteins from both a biological and therapeutic standpoint. Membrane protein crystallization has been facilitated by the development of new detergents, lipidic cubic phase methods, soluble protein chimeras, and non-covalent protein complexes. The design process of protein fusion constructs and non-covalent antibody fragments specific for each target membrane protein, however, is costly and time-consuming. An improved, more general method of membrane protein co-crystallization is needed. This dissertation details the development of two approaches for cost-effective non-covalent crystallization chaperones: (1) Engineered hypercrystallizable Fab antibody fragment with high affinity for EYMPME (EE epitope), which form complexes with EE-tagged soluble and membrane proteins. (2) Engineered monomeric streptavidin (mSA2) for complexation with biotinylated membrane proteins. Both methods are generalizable through insertion of a short epitope into a surface-exposed loop of a membrane protein by site directed mutagenesis. Crystallization trials of representative chaperone-membrane protein complexes and possible difficulties with the approach are discussed.

Page generated in 0.0662 seconds