• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 26
  • 2
  • 1
  • Tagged with
  • 29
  • 28
  • 25
  • 23
  • 15
  • 12
  • 12
  • 12
  • 10
  • 10
  • 10
  • 9
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Protein–Lipid Interactions and the Functional Role of Intra-Membrane Protein Hydration in the PIB-type ATPase CopA from Legionella pneumophila

Fischermeier, Elisabeth 07 October 2015 (has links)
Membrane proteins are vital for cellular homeostasis. They maintain the electrochemical gradients that are essential for signaling and control the fine balance of trace elements. In order to fulfill these tasks, they need to undergo controlled conformational transitions within the lipid bilayer of a cell membrane. It is well-recognized that membrane protein structure and function depends on the lipid membrane. However, much less is known about the role of water re-partitioning at the protein–lipid interface and particularly within a membrane protein during functional transitions. Intra-membrane protein hydration is expected to be particularly important for ion transport processes, where the hydration shell of a solvated ion needs to be rearranged and partially removed in order to bind the ion within the transporter before it is re-solvated upon exiting the membrane protein. These processes are spatially and temporally organized in metal-transporting ATPases of the PIB-subtype of P-type ATPases. Here, the functional role of water entry into the transmembrane region of the copper-transporting PIB-type ATPase CopA from Legionella pneumophila (LpCopA) has been investigated. The recombinant protein was affinity-purified and functionally reconstituted into nanodiscs prepared with the extended scaffolding protein MSP1E3D1. Nanodiscs provide a planar native-like lipid bilayer in a water-soluble nanoparticle with advantageous optical properties for spectroscopy. The small polarity-sensitive fluorophore 6-bromoacetyl-2-dimethylaminonaphthalene (BADAN) was used as a probe for the molecular environment of the conserved copper-binding cysteine-proline-cysteine (CPC) motif which is located close to a wide “entry platform” for Cu+ to the transmembrane (TM) channel. The systematic study of proteins with mutated metal-binding motifs using steady-state and time-resolved fluorescence spectroscopy indicates that strong gradients of hydration and protein flexibility can exist across the narrow range of the CPC motif. The data suggest that Cu+ passes a “hydrophobic gate” at the more cytoplasmic C384 provided by rather stable TM helix packing before entering a more flexible and readily hydratable site in the interior of LpCopA around C382 where the polarity is strongly regulated by protein–lipid interactions. This flexibility could also be partly mediated by rearrangements of an adjacent amphipathic protein stretch that runs parallel to the membrane surface as a part of the cytoplasmic entry site. Using tryptophan fluorescence, circular dichroism, and Fourier-transform infrared absorption spectroscopy of a synthetic peptide derived from this segment, its lipid-dependent structural variability could be revealed. Depending on lipid-mediated helix packing interactions, the CPC motif has the potential to support a strong dielectric gradient with about ten units difference in permittivity across the CPC distance. This property may be crucial in establishing the directionality of ion transport by a non-symmetric re-solvation potential in the ion release channel of LpCopA. The experimental elucidation of these molecular details emphasizes not only the importance of intra-membrane protein water which has been hypothesized particularly for PIB-type ATPases. Moreover it is shown here, that the lateral pressure of a cell membrane may provide a force that restores a low hydration state from a transiently formed state of high internal water content at the distal side of the CPC motif. ATP-driven conformational changes that induce intra-membrane protein hydration of a conformational intermediate of the Post-Albers cycle could thus be set back efficiently by lateral pressure of the cell membrane at a later step of the cycle.
12

Observing molecular interactions that determine stability, folding, and functional states of single Na+/H+ antiporters

Kedrov, Alexej 20 November 2006 (has links)
Selective ion and solute transport across cell membranes is a vital process occurring in all types of cells. Evolutionarily developed transport proteins work as membrane-embedded molecular machines, which alternately open a gate on each side of the membrane to bind and translocate specific ions. Sodium/proton exchange plays a crucial role in maintaining cytoplasmic pH and membrane potential, while, if not regulated, the process causes severe heart diseases in humans. Here I applied single-molecule force spectroscopy to investigate molecular interactions determining the structural stability of the sodium/proton antiporter NhaA of Escherichia coli, which serves as a model system for this class of proteins. Mechanical pulling of NhaA molecules embedded in the native lipid bilayer caused a step-wise unfolding of the protein and provided insights into its stability. Modified experiments allowed observing refolding of NhaA molecules and estimating folding kinetics for individual structural elements, as well as detecting eventual misfolded conformations of the protein. The activity of NhaA increases 2000fold upon switching pH from 6 to 8. Single-molecule force measurements revealed a reversible change in molecular interactions within the ligand-binding site of the transporter at pH 5.5. The effect was enhanced in the presence of sodium ions. The observation suggests an early activation stage of the protein and provides new insights into the functioning mechanism. When studying interactions of NhaA with the inhibitor 2-aminoperimidine, I exploited single-molecule force measurements to validate the binding mechanism and to describe quantitatively formation of the protein:inhibitor complex. The ability of single-molecule force measurements to probe structurally and functionally important interactions of membrane proteins opens new prospects for using the approach in protein science and applied research.
13

Analyse der Signalweiterleitung im spinmarkierten sensorischen Rhodopsin/Transducer-Komplex mittels zeitaufgelöster ESR-Spektroskopie

Holterhues, Julia 12 March 2009 (has links)
Das haloalkaphile Archaeon Natronomas pharaonis nutzt den Lichtrezeptor, das Sensorische Rhodopsin II (NpSRII), im Komplex mit dem halobakteriellen Transducer (NpHtrII) zur photophoben Antwort auf schädliches grün-blaues Licht und entsprechender Steuerung des Flagellenmotors um optimale Umgebungen zum Überleben aufzusuchen. In einer Membran rekonstituiert bildet der Rezeptor/Transducer Komplex eine 2:2 Stöchiometrie aus, wobei ein Transducer-Dimer von zwei Rezeptor-Molekülen flankiert wird. Durch die Lichtanregung wird ein Photozyklus initiiert, dessen Intermediate sich aufgrund ihrer optischen und/oder strukturellen Eigenschaften unterscheiden. In dieser Studie sind die strukturellen Änderungen des Rezeptors und des Transducers während des Photozyklus mit Hilfe der Elektronenspinresonanz (ESR)-Spektroskopie in Kombination mit der ortsspezifischen Spinmarkierung aufgeklärt worden. Als Methoden wurden dabei die zeitaufgelöste ESR-Spektroskopie und Abstandsmessungen in unterschiedlichen Intermediaten mit Hilfe von cw- und Puls-ESR-Techniken genutzt. Der Signaltransfer nach Initiierung des Photozyklus im Rezeptor, die Weiterleitung des Signals zum Transducer durch die Auswärtsbewegung der Helix F und die damit verbundene Verschiebung des thermodynamischen Gleichgewichts in der HAMP-Domäne des Transducers konnten beobachtet und analysiert werden. Die Methode der ESR-Spektroskopie erweist sich als mächtige biophysikalische Technik, die eine direkte und zeitaufgelöste Analyse von strukturellen Konformationsänderungen in Membranproteinen und die strukturelle Aufklärung unterschiedlicher Intermediate erlaubt.
14

Sequenz, Energie, Struktur - Untersuchungen zur Beziehung zwischen Primär- und Tertiärstruktur in globulären und Membran-Proteinen

Dressel, Frank 08 September 2008 (has links)
Proteine spielen auf der zellulären Ebene eines Organismus eine fundamentale Rolle. Sie sind quasi die „Maschinen“ der Zelle. Ihre Bedeutung wird nicht zuletzt in ihrem Namen deutlich, welcher 1838 erstmals von J. Berzelius verwendet wurde und „das Erste“, „das Wichtigste“ bedeutet. Proteine sind aus Aminosäuren aufgebaute Moleküle. Unter physiologischen Bedingungen besitzen sie eine definierte dreidimensionale Gestalt, welche für ihre biologische Funktion bestimmend ist. Es wird heutzutage davon ausgegangen, dass diese dreidimensionale, stabile Struktur von Proteinen eindeutig durch die Abfolge der einzelnen Aminosäuren, der Sequenz, bestimmt ist. Diese Abfolge ist für jedes Protein in der Desoxyribonukleinsäure (DNS) gespeichert. Es ist allerdings eines der größten ungelösten Probleme der letzten Jahrzehnte, wie die Beziehung zwischen Sequenz und 3D-Struktur tatsächlich aussieht. Die Beantwortung dieser Fragestellung erfordert interdisziplinäre Ansätze aus Biologie, Informatik und Physik. In dieser Arbeit werden mit Hilfe von Methoden der theoretischen (Bio-) Physik einige der damit verbundenen Aspekte untersucht. Das Hauptaugenmerk liegt dabei auf Wechselwirkungen der einzelnen Aminosäuren eines Proteins untereinander, wofür in dieser Arbeit ein entsprechendes Energiemodell entwickelt wurde. Es werden Grundzustände sowie Energielandschaften untersucht und mit experimentellen Daten verglichen. Die Stärke der Wechselwirkung einzelner Aminosäuren erlaubt zusätzlich Aussagen über die Stabilität von Proteinen bezüglich mechanischer Kräfte. Die vorliegende Arbeit unterteilt sich wie folgt: Kapitel 2 dient der Einleitung und stellt Proteine und ihre Funktionen dar. Kapitel 3 stellt die Modellierung der Proteinstrukturen in zwei verschiedenen Modellen vor, welche in dieser Arbeit entwickelt wurden, um 3D-Strukturen von Proteinen zu beschreiben. Anschließend wird in Kapitel 4 ein Algorithmus zum Auffinden des exakten Energieminimums dargestellt. Kapitel 5 beschäftigt sich mit der Frage, wie eine geeignete diskrete Energiefunktion aus experimentellen Daten gewonnen werden kann. In Kapitel 6 werden erste Ergebnisse dieses Modells dargestellt. Der Frage, ob der experimentell bestimmte Zustand dem energetischen Grundzustand eines Proteins entspricht, wird in Kapitel 7 nachgegangen. Die beiden Kapitel 8 und 9 zeigen die Anwendung des Modells an zwei Proteinen, dem Tryptophan cage protein als dem kleinsten, stabilen Protein und Kinesin, einem Motorprotein, für welches 2007 aufschlussreiche Experimente zur mechanischen Stabilität durchgeführt wurden. Kapitel 10 bis 12 widmen sich Membranproteinen. Dabei beschäftigt sich Kapitel 10 mit der Vorhersage von stabilen Bereichen (sog. Entfaltungsbarrieren) unter externer Krafteinwirkung. Zu Beginn wird eine kurze Einleitung zu Membranproteinen gegeben. Im folgenden Kapitel 11 wird die Entfaltung mit Hilfe des Modells und Monte-Carlo-Techniken simuliert. Mit dem an Membranproteine angepassten Wechselwirkungsmodell ist es möglich, den Einfluss von Mutationen auch ohne explizite strukturelle Informationen vorherzusagen. Dieses Thema wird in Kapitel 12 diskutiert. Die Beziehung zwischen Primär- und Tertiärstruktur eines Proteins wird in Kapitel 13 behandelt. Es wird ein Ansatz skizziert, welcher in der Lage ist, Strukturbeziehungen zwischen Proteinen zu detektieren, die mit herkömmlichen Methoden der Bioinformatik nicht gefunden werden können. Die letzten beiden Kapitel schließlich geben eine Zusammenfassung bzw. einen Ausblick auf künftige Entwicklungen und Anwendungen des Modells.
15

Single-Molecule Measurements of Complex Molecular Interactions in Membrane Proteins using Atomic Force Microscopy / Einzelmolekül-Messungen komplexer molekularer Wechselwirkungen in Membranproteinen unter Benutzung des Rasterkraftmikroskops

Sapra, K. Tanuj 04 April 2007 (has links) (PDF)
Single-molecule force spectroscopy (SMFS) with atomic force microscope (AFM) has advanced our knowledge of the mechanical aspects of biological processes, and helped us take big strides in the hitherto unexplored areas of protein (un)folding. One such virgin land is that of membrane proteins, where the advent of AFM has not only helped to visualize the difficult to crystallize membrane proteins at the single-molecule level, but also given a new perspective in the understanding of the interplay of molecular interactions involved in the construction of these molecules. My PhD work was tightly focused on exploiting this sensitive technique to decipher the intra- and intermolecular interactions in membrane proteins, using bacteriorhodopsin and bovine rhodopsin as model systems. Using single-molecule unfolding measurements on different bacteriorhodopsin oligomeric assemblies - trimeric, dimeric and monomeric - it was possible to elucidate the contribution of intra- and interhelical interactions in single bacteriorhodopsin molecules. Besides, intriguing insights were obtained into the organization of bacteriorhodopsin as trimers, as deduced from the unfolding pathways of the proteins from different assemblies. Though the unfolding pathways of bacteriorhodopsin from all the assemblies remained the same, the different occurrence probability of these pathways suggested a kinetic stabilization of bacteriorhodopsin from a trimer compared to that existing as a monomer. Unraveling the knot of a complex G-protein coupled receptor, rhodopsin, showed the existence of two structural states, a native, functional state, and a non-native, non-functional state, corresponding to the presence or absence of a highly conserved disulfide bridge, respectively. The molecular interactions in absence of the native disulfide bridge mapped onto the three-dimensional structure of native rhodopsin gave insights into the molecular origin of the neurodegenerative disease retinitis pigmentosa. This presents a novel technique to decipher molecular interactions of a different conformational state of the same molecule in the absence of a high-resolution X-ray crystal structure. Interestingly, the presence of ZnCl2 maintained the integrity of the disulfide bridge and the nature of unfolding intermediates. Moreover, the increased mechanical and thermodynamic stability of rhodopsin with bound zinc ions suggested a plausible role for the bivalent ion in rhodopsin dimerization and consequently signal transduction. Last but not the least, I decided to dig into the mysteries of the real mechanisms of mechanical unfolding with the help of well-chosen single point mutations in bacteriorhodopsin. The monumental work has helped me to solve some key questions regarding the nature of mechanical barriers that constitute the intermediates in the unfolding process. Of particular interest is the determination of altered occurrence probabilities of unfolding pathways in an energy landscape and their correlation to the intramolecular interactions with the help of bioinformatics tools. The kind of work presented here, in my opinion, will not only help us to understand the basic principles of membrane protein (un)folding, but also to manipulate and tune energy landscapes with the help of small molecules, proteins, or mutations, thus opening up new vistas in medicine and pharmacology. It is just a matter of a lot of hard work, some time, and a little bit of luck till we understand the key elements of membrane protein (un)folding and use it to our advantage.
16

Investigation of biological macromolecules using atomic force microscope-based techniques

Bippes, Christian Alexander 19 August 2009 (has links) (PDF)
The atomic force microscope (AFM) provides a powerful instrument for investigating and manipulating biological samples down to the subnanometer scale. In contrast to other microscopy methods, AFM does not require labeling, staining, nor fixation of samples and allows the specimen to be fully hydrated in buffer solution during the experiments. Moreover, AFM clearly compares in resolution to other techniques. In general, the AFM can be operated in an imaging or a force spectroscopy mode. In the present work, advantage was taken of this versatility to investigate single biomolecules and biomolecular assemblies. A novel approach to investigate the visco-elastic behavior of biomolecules under force was established, using dextran as an example. While a molecule tethered between a solid support and the cantilever tip was stretched at a constant velocity, the thermally driven oscillation of the cantilever was recorded. Analysis of the cantilever Brownian noise provided information about the visco-elastic properties of dextran that corresponded well to parameters obtained by alternative methods. However, the approach presented here was easier to implement and less time-consuming than previously used methods. A computer controlled force-clamp system was set up, circumventing the need for custom built analogue electronics. A commercial PicoForce AFM was extended by two computers which hosted data acquisition hardware. While the first computer recorded data, the second computer drove the AFM bypassing the manufacturer's microscope control software. To do so, a software-based proportional-integral-differential (PID) controller was implemented on the second computer. It allowed the force applied to a molecule to be held constant over time. After tuning of the PID controller, response times obtained using that force-clamp setup were comparable to those of the recently reported analogue systems. The performance of the setup was demonstrated by force-clamp unfolding of a pentameric Ig25 construct and the membrane protein NhaA. In the latter case, short-lived unfolding intermediates that were populated for less than 10 ms, could be revealed. Conventional single-molecule dynamic force spectroscopy was used to unfold the serine:threonine antiporter SteT from Bacillus subtilis, an integral membrane protein. Unfolding force patterns revealed the unfolding barriers stabilizing structural segments of SteT. Ligand binding did not induce new unfolding barriers suggesting that weak interactions with multiple structural segments were involved. In contrast, ligand binding caused changes in the energy landscape of all structural segments, thus turning the protein from a brittle, rigid into a more stable, structurally flexible conformation. Functionally, rigidity in the ligand-free state was thought to facilitate specific ligand binding, while flexibility and increased stability were required for conformational changes associated with substrate translocation. These results support the working model for transmembrane transport proteins that provide alternate access of the binding site to either face of the membrane. Finally, high-resolution imaging was exploited to visualize the extracellular surface of Cx26 gap junction hemichannels (connexons). AFM topographs reveal pH-dependent structural changes of the extracellular connexon surface in presence of HEPES, an aminosulfonate compound. At low pH (< 6.5), connexons showed a narrow and shallow channel entrance, which represented the closed pore. Increasing pH values resulted in a gradual opening of the pore, which was reflected by increasing channel entrance widths and depths. At pH > 7.6 the pore was fully opened and the pore diameter and depth did not increase further. Importantly, coinciding with pore gating a slight rotation of the subunits was observed. In the absence of aminosulfonate compounds, such as HEPES, acidification did not affect pore diameters and depths, retaining the open state. Thus, the intracellular concentration of taurine, a naturally abundant aminosulfonate compound, might be used to tune gap junction sensitivity at low pH.
17

Interaction of the human N-Ras protein with lipid raft model membranes of varying degrees of complexity

Vogel, Alexander, Nikolaus, Jörg, Weise, Katrin, Triola, Gemma, Waldmann, Herbert, Winter, Roland, Herrmann, Andreas, Huster, Daniel 07 December 2015 (has links) (PDF)
Ternary lipid mixtures composed of cholesterol, saturated (frequently with sphingosine backbone), and unsaturated phospholipids show stable phase separation and are often used as model systems of lipid rafts. Yet, their ability to reproduce raft properties and function is still debated. We investigated the properties and functional aspects of three lipid raft model systems of varying degrees of biological relevance – PSM/POPC/Chol, DPPC/POPC/Chol, and DPPC/DOPC/Chol – using 2H solidstate nuclear magnetic resonance (NMR) spectroscopy, fluorescence microscopy, and atomic force microscopy. While some minor differences were observed, the general behavior and properties of all three model mixtures were similar to previously investigated influenza envelope lipid membranes, which closely mimic the lipid composition of biological membranes. For the investigation of the functional aspects, we employed the human N-Ras protein, which is posttranslationally modified by two lipid modifications that anchor the protein to the membrane. It was previously shown that N-Ras preferentially resides in liquid-disordered domains and exhibits a time-dependent accumulation in the domain boundaries of influenza envelope lipid membranes. For all three model mixtures, we observed the same membrane partitioning behavior for N-Ras. Therefore, we conclude that even relatively simple models of raft membranes are able to reproduce many of their specific properties and functions.
18

Interaction of the human N-Ras protein with lipid raft model membranes of varying degrees of complexity

Vogel, Alexander, Nikolaus, Jörg, Weise, Katrin, Triola, Gemma, Waldmann, Herbert, Winter, Roland, Herrmann, Andreas, Huster, Daniel January 2014 (has links)
Ternary lipid mixtures composed of cholesterol, saturated (frequently with sphingosine backbone), and unsaturated phospholipids show stable phase separation and are often used as model systems of lipid rafts. Yet, their ability to reproduce raft properties and function is still debated. We investigated the properties and functional aspects of three lipid raft model systems of varying degrees of biological relevance – PSM/POPC/Chol, DPPC/POPC/Chol, and DPPC/DOPC/Chol – using 2H solidstate nuclear magnetic resonance (NMR) spectroscopy, fluorescence microscopy, and atomic force microscopy. While some minor differences were observed, the general behavior and properties of all three model mixtures were similar to previously investigated influenza envelope lipid membranes, which closely mimic the lipid composition of biological membranes. For the investigation of the functional aspects, we employed the human N-Ras protein, which is posttranslationally modified by two lipid modifications that anchor the protein to the membrane. It was previously shown that N-Ras preferentially resides in liquid-disordered domains and exhibits a time-dependent accumulation in the domain boundaries of influenza envelope lipid membranes. For all three model mixtures, we observed the same membrane partitioning behavior for N-Ras. Therefore, we conclude that even relatively simple models of raft membranes are able to reproduce many of their specific properties and functions.
19

Plasma Membrane Plasticity of Xenopus laevis Oocyte Imaged with Atomic Force Microscopy

Schillers, Hermann, Danker, Timm, Schnittler, Hans-Joachim, Lang, Florian, Oberleithner, Hans January 2000 (has links)
Proteins are known to form functional clusters in plasma membranes. In order to identify individual proteins within clusters we developed a method to visualize by atomic force microscopy (AFM) the cytoplasmic surface of native plasma membrane, excised from Xenopus laevis oocyte and spread on poly-L-lysine coated glass. After removal of the vitelline membrane intact oocytes were brought in contact with coated glass and then rolled off. Inside-out oriented plasma membrane patches left at the glass surface were first identified with the lipid fluorescent marker FM1-43 and then scanned by AFM. Membrane patches exhibiting the typical phospholipid bilayer height of 5 nm showed multiple proteins, protruding from the inner surface of the membrane, with heights of 5 to 20 nm. Modelling plasma membrane proteins as spherical structures embedded in the lipid bilayer and protruding into the cytoplasm allowed an estimation of the respective molecular masses. Proteins ranged from 35 to 2,000 kDa with a peak value of 280 kDa. The most frequently found membrane protein structure (40/μm2) had a total height of 10 nm and an estimated molecular mass of 280 kDa. Membrane proteins were found firmly attached to the poly-L-lysine coated glass surface while the lipid bilayer was found highly mobile. We detected protein structures with distinguishable subunits of still unknown identity. Since X. laevis oocyte is a generally accepted expression system for foreign proteins, this method could turn out to be useful to structurally identify specific proteins in their native environment at the molecular level. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
20

Structure, Function and Dynamics of G-Protein coupled Receptors

Eichler, Stefanie 26 January 2012 (has links)
Understanding the function of membrane proteins is crucial to elucidate the molecular mechanisms by which transmembrane signaling based physiological processes,i. e., the interactions of extracellular ligands with membrane-bound receptors, are regulated. In this work, synthetic transmembrane segments derived from the visual photoreceptor rhodopsin, the full length system rhodopsin and mutants of opsin are used to study physical processes that underlie the function of this prototypical class-A G-protein coupled Receptor. The dependency of membrane protein hydration and protein-lipid interactions on side chain charge neutralization is addressed by fluorescence spectroscopy on synthetic transmembrane segments in detergent and lipidic environment constituting transmembrane segments of rhodopsin in the membrane. Results from spectroscopic studies allow us to construct a structural and thermodynamical model of coupled protonation of the conserved ERY motif in transmembrane helix 3 of rhodopsin and of helix restructuring in the micro-domain formed at the protein/lipid water phase boundary. Furthermore, synthesized peptides and full length systems were studied by time resolved FTIR-Fluorescence Cross Correlation Hydration Modulation, a technique specifically developed for the purpose of this study, to achieve a full prospect of time-resolved hydration effects on lipidic and proteinogenic groups, as well as their interactions. Multi-spectral experiments and time-dependent analyses based on 2D correlation where established to analyze large data sets obtained from time-resolved FTIR difference spectra and simultaneous static fluorescence recordings. The data reveal that lipids play a mediating role in transmitting hydration to the subsequent membrane protein response followed by water penetration into the receptor structure or into the sub-headgroup region in single membrane-spanning peptides carrying the conserved proton uptake site (monitored by the fluorescence emission of hydrophobic buried tryptophan). Our results support the assumption of the critical role of the lipid/water interface in membrane protein function and they prove in particular the important influence of electrostatics, i. e., side chain charges at the phase boundary, and hydration on that function. / Für die Aufklärung der molekularen Wirkungsweise von physiologischen, auf Signaltransduktion, d. h. dem Zusammenspiel von extrazellulären Reizen und membrangebundenen Rezeptoren, beruhenden Prozessen ist das Verständnis der Funktion von Membranproteinen unerlässlich. In dieser Arbeit werden von Rhodopsin abgleitete, synthetische transmembrane Segmentpeptide, Opsin-Mutanten und der vollständige Photorezeptor Rhodopsin untersucht, um die physikalischen Prozesse zu beleuchten, die der Funktionen dieses prototypischen Klasse-A G-Protein gekoppelten Rezeptors zugrunde liegen. Die Abhängigkeit der Membranprotein-Hydratation und der Lipid-Protein-Wechselwirkung von der Ladung einer Aminosäuren-Seitenkette wird erforscht. Hierzu werden synthetische, transmembrane Segmentpeptide in Lipid und Detergenz, als Modell transmembraner Segmente von Rhodopsin in der Membran mittels Fluoreszenzspektroskopie untersucht. Aus den erhaltenen Ergebnissen wird ein thermodynamisches und strukturelles Modell hergeleitet, welches die Kopplung der Protonierung des hochkonservierten ERY-Motivs in Transmembranhelix 3 von Rhodopsin an die Restrukturierung der Helix in der Mikroumgebung der Lipid-Wasser-Phasengrenze erklärt. Des Weiteren werden sowohl die Segementpeptide als auch die vollständigen Systeme Opsin und Rhodopsin mittels zeitaufgelöster FTIR-Fluoreszenz-Kreuzkorrelations-Hydratations-Modulation untersucht. Diese Technik wurde eigens zur Aufklärung von zeitabhängigen Hydratationseffekten auf Lipide und Proteine oder Peptide entwickelt. Dabei werden zeitaufgelöste FTIR Differenz-Spektren und gleichzeitig statische Fluoreszenzsignale aufgenommen und diese zeitabhängigen multispektralen Datensätze mittels 2D Korrelation analysiert. Die Auswertung der Experimente enthüllt einen sequentiellen Hydratationsprozess. Dieser beginnt mit der Bildung von Wasserstoffbrückenbindungen an der Carbonylgruppe des Lipids, gefolgt von Strukturänderungen der Transmembranproteine und abgeschlossen durch das Eindringen von Wasser in das Proteininnere. Letzteres wird nachgewiesen durch die Fluoreszenz von Tryptophan im hydrophoben Peptid- oder Proteininneren. Die Ergebnisse dieser Arbeit unterstreichen die Annahme, dass Lipid-Protein-Wechselwirkungen eine entscheidende Rolle in der Funktion von Membranproteinen spielen und das insbesondere Elektrostatik, in Form von Ladungen an der Phasengrenze, und die Hydratisierung einen kritischen Einfluss auf diese Funktion haben.

Page generated in 0.098 seconds