• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 124
  • 121
  • 96
  • 12
  • 9
  • 9
  • 9
  • 6
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 453
  • 77
  • 51
  • 51
  • 45
  • 35
  • 30
  • 27
  • 27
  • 26
  • 26
  • 24
  • 24
  • 23
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

Energetická náročnost chůze na slackline / Energy cost of slacklining

Klaus, Jan January 2021 (has links)
Title Energy expenditure of slackline walking Objectives The aim of this study was to investigate the energy expenditure of slacklining in intermediate and advanced slackliners. Methods In this observatory study, 19 slackliners (10 intermediate, of which 7 men and 3 women, 9 advanced, of which 7 men and 2 women) completed experimental energy expenditure measurement of slacklining using indirect colorimetry. The MetaMax 3B metabolic analyzer (Cortex Biophysik, Germany) was used to determine respiratory parameters and the heart rate monitor (Polar Electro OY, Finland) was used to determine the heart rate (HR). Comparative statistical tools were used in the data analysis. Results Relative energy expenditure of 0,471 kJ·min-1 ·kg-1 was found in intermediate slackliners and 0,377 kJ·min-1 ·kg-1 in advanced slackliners in walking on a 10 m long slackline at a constant speed of 15 m·min-1 . In the static standing on slackline, the relative energy expenditure was found to be 0.368 kJ·min-1 ·kg-1 in intermediate slackliners and 0.289 kJ·min-1 ·kg-1 in advanced slackliners. The weighted arithmetic mean for HR in men and women walking on the slackline at 15 m·min-1 was at 67.3% of the predicted HRmax (220 - age for men, 226 - age for women). The MET value in the advanced group (n = 10) was set at 5.15, and in...
192

Simulating Met-Enkephalin With Population Annealing Molecular Dynamics

Christiansen, Henrik, Weigel, Martin, Janke, Wolfhard 09 June 2023 (has links)
Met-enkephalin, one of the smallest opiate peptides and an important neurotransmitter, is a widely used benchmarking problem in the field of molecular simulation. Through its range of possible low-temperature conformations separated by free-energy barriers it was previously found to be hard to thermalize using straight canonical molecular dynamics simulations. Here, we demonstrate how one can use the recently proposed population annealing molecular dynamics scheme to overcome these difficulties. We show how the use of multihistogram reweighting allows one to accurately estimate the density of states of the system and hence derive estimates such as the potential energy as quasi continuous functions of temperature. We further investigate the free-energy surface as a function of end-to-end distance and radius of-gyration and observe two distinct basins of attraction.
193

c-Met Initiates Epithelial Scattering through Transient Calcium Influxes and NFAT-Dependent Gene Transcription

Langford, Peter R. 13 December 2011 (has links) (PDF)
Hepatocyte growth factor (HGF) signaling drives epithelial cells to scatter by breaking cell-cell adhesions and migrating as solitary cells, a process that parallels epithelial-mesenchymal transition. HGF binds and activates the c-Met receptor tyrosine kinase, but downstream signaling required for scattering remains poorly defined. This study addresses this shortcoming in a number of ways.A high-throughput in vitro drug screen was employed to identify proteins necessary in this HGF-induced signaling. Cells were tested for reactivity to HGF stimulation in a Boyden chamber assay. This tactic yielded several small molecules that block HGF-induced scattering, including a calcium channel blocker. Patch clamping was used to determine the precise effect of HGF stimulation on Ca2+ signaling in MDCK II cells. Cell-attached patch clamping was employed to detect Ca2+ signaling patterns, and channel blockers were used in various combinations to deduce the identity of Ca2+ channels involved in EMT. The results of these experiments show that HGF stimulation results in sudden and transient increases in calcium channel influxes. These increases occur at predictable intervals and rely on proper tubulin polymerization to appear, as determined through the use of a tubulin polymerization inhibitor. Though multiple channels occur in the membranes of MDCK II cells, noticeably TRPV4 and TrpC6, it is TrpC6 that is specifically required for HGF-induced scattering. These HGF-induced calcium influxes through TrpC6 channels drive a transient increase in NFAT-dependent gene transcription which is required for HGF-induced EMT. This was determined through the use of luciferase-based NFAT reporter assays and confirmed through confocal immunofluorescence. Using a small-molecule inhibitor of WNK kinase, it was determined that loss of WNK kinase function is sufficient to prevent HGF-induced EMT. Furthermore, patch-clamp analysis demonstrated that WNK kinase significantly increases channel opening at the surface of MDCK cells, indicating a possible mechanism of action for c-Met inhibition, but leaving doubt as to whether WNK kinase is in fact normally involved in c-Met signaling, or whether it is simply permissive.
194

HGF/Met-mediated Phosphorylation of Stathmin1 Serine 16 Regulates Cell Proliferation and not Metastasis

Deford, Paul 23 August 2022 (has links)
No description available.
195

Overexpression of HGF/MET axis along with p53 inhibition induces de novo glioma formation in mice

Qin, Yuan, Musket, Anna, Kou, Jianqun, Preiszner, Johanna, Tschida, Barbara R., Qin, Anna, Land, Craig A., Staal, Ben, Kang, Liang, Tanner, Kirk, Jiang, Yong, Schweitzer, John B., Largaespada, David A., Xie, Qian 01 January 2020 (has links)
BACKGROUND: Aberrant MET receptor tyrosine kinase (RTK) activation leads to invasive tumor growth in different types of cancer. Overexpression of MET and its ligand hepatocyte growth factor (HGF) occurs more frequently in glioblastoma (GBM) than in low-grade gliomas. Although we have shown previously that HGF-autocrine activation predicts sensitivity to MET tyrosine kinase inhibitors (TKIs) in GBM, whether it initiates tumorigenesis remains elusive. METHODS: Using a well-established Sleeping Beauty (SB) transposon strategy, we injected human and cDNA together with a short hairpin siRNA against (SB-hHgf.Met.ShP53) into the lateral ventricle of neonatal mice to induce spontaneous glioma initiation and characterized the tumors with H&E and immunohistochemistry analysis. Glioma sphere cells also were isolated for measuring the sensitivity to specific MET TKIs. RESULTS: Mixed injection of SB-hHgf.Met.ShP53 plasmids induced de novo glioma formation with invasive tumor growth accompanied by HGF and MET overexpression. While glioma stem cells (GSCs) are considered as the tumor-initiating cells in GBM, both SB-hHgf.Met.ShP53 tumor sections and glioma spheres harvested from these tumors expressed GSC markers nestin, GFAP, and Sox 2. Moreover, specific MET TKIs significantly inhibited tumor spheres' proliferation and MET/MAPK/AKT signaling. CONCLUSIONS: Overexpression of the HGF/MET axis along with p53 attenuation may transform neural stem cells into GSCs, resulting in GBM formation in mice. These tumors are primarily driven by the MET RTK pathway activation and are sensitive to MET TKIs. The SB-hHgf.Met.ShP53 spontaneous mouse glioma model provides a useful tool for studying GBM tumor biology and MET-targeting therapeutics.
196

Mediated Immunity and Signaling Transduction in Gastric Cancer

Ito, Nozomi, Tsujimoto, Hironori, Ueno, Hideki, Xie, Qian, Shinomiya, Nariyoshi 18 November 2020 (has links)
infection is a leading cause of gastric cancer, which is the second-most common cancer-related death in the world. The chronic inflammatory environment in the gastric mucosal epithelia during infection stimulates intracellular signaling pathways, namely inflammatory signals, which may lead to the promotion and progression of cancer cells. We herein report two important signal transduction pathways, the LPS-TLR4 and CagA-MET pathways. Upon stimulation, lipopolysaccharide (LPS) binds to toll-like receptor 4 (TLR4) mainly on macrophages and gastric epithelial cells. This induces an inflammatory response in the gastric epithelia to upregulate transcription factors, such as NF-κB, AP-1, and IRFs, all of which contribute to the initiation and progression of gastric cancer cells. Compared with other bacterial LPSs, LPS has a unique function of inhibiting the mononuclear cell (MNC)-based production of IL-12 and IFN-γ. While this mechanism reduces the degree of inflammatory reaction of immune cells, it also promotes the survival of gastric cancer cells. The HGF/SF-MET signaling plays a major role in promoting cellular proliferation, motility, migration, survival, and angiogenesis, all of which are essential factors for cancer progression. infection may facilitate MET downstream signaling in gastric cancer cells through its CagA protein via phosphorylation-dependent and/or phosphorylation-independent pathways. Other signaling pathways involved in infection include EGFR, FAK, and Wnt/β-Catenin. These pathways function in the inflammatory process of gastric epithelial mucosa, as well as the progression of gastric cancer cells. Thus, infection-mediated chronic inflammation plays an important role in the development and progression of gastric cancer.
197

ANALYZING WIND MEASUREMENTS FROM THE MET MAST, SODAR & LIDAR

Bin Asad, S M Sayeed January 2022 (has links)
Wind energy is rapidly expanding worldwide, and it is common practice to maximize production by selecting sites with higher wind potential. To perform critical operations such as wind flow modeling, wind turbine micro placement, annual energy yield calculation, and cost of energy estimation, a thorough understanding of a site's wind resource is required. The present study examines data from three independent wind measurement systems to see how measured data depends on the choice of the measurement system and how this might forecast the wind resource and, consequently, the energy output of a potential wind farm.  The present analysis uses three measurement units, one meteorological mast (met mast), and ground-based AQ510 Sound Detection And Ranging (SoDAR) & SoDAR and ZX 300 Light Detection And Ranging (LiDAR) devices to capture wind data for nearly a year. This study describes the operating concept of remote sensing devices such as AQ510 SoDAR and ZX 300 LiDAR, the linear regression relationship between wind speed measured on the Met Mast versus SoDAR, Met Mast versus LiDAR, and SoDAR versus LiDAR. Additionally, an understanding of stratification for this potential wind farm’s site is explored for specific days during spring, summer, and winter.  The results of the intercomparison study among Met Mast, SoDAR & LiDAR show quite a good relationship between the different measurement systems, being the correlation coefficient between the mast and the LiDAR measurements being slightly larger than between the mast and the SoDAR measurements. Comparison during the stability and instability regimes show a larger difference in some cases. Python and MS Excel are used to build data filtering procedures, the Richardson number, and comparison computations.
198

The roles of hepatocyte growth factor family members in androgen-regulation of human hair growth. A comparison of the expression of hepatocyte growth factor family members, HGF and MSP, and their receptors, c-Met and RON, in isolated hair follicles from normal and androgenetic alopecia (balding) scalp.

Al-Waleedi, Saeed A. January 2010 (has links)
Androgens are the main regulators of human hair growth stimulating larger, terminal hair development e.g. beard and causing scalp balding, androgenetic alopecia. Hair disorders cause psychological distress but are poorly controlled. Androgens probably act by altering regulatory paracrine factors produced by the mesenchyme-derived dermal papilla. This study aimed to investigate paracrine factors involved in androgen-regulated alopecia, particularly hepatocyte growth factor (HGF) family members, by investigating their in vivo status. Balding and non-balding scalp hair follicles and their component tissues were isolated and analysed by molecular biological methods (reverse transcriptase-polymerase chain reaction (RT-PCR), quantitative PCR and DNA microarray analysis), cell culture and immunohistochemistry. Scalp follicles expressed a range of paracrine messenger genes. The dermal papilla, cultured dermal papilla cells and dermal sheath expressed several HGF family genes, while matrix cells only produced the receptor RON suggesting autocrine roles for HGF and MSP, but a paracrine route only for MSP. Comparing balding and non-balding follicles from the same individuals revealed the expected reduction in several keratin and keratin-related protein genes supporting this approach's validity. There were also significant differences in paracrine factors previously implicated in androgen action by in vitro studies. Several factors believed to increase during androgen stimulation of larger, darker follicles, e.g. IGF-I and SCF, were lowered in balding follicles, while putative inhibitory factors, e.g. TGFß-1, were increased. HGF and MSP and their receptors, c-Met and RON, were significantly reduced. These results increase our understanding of androgen action in human hair follicles; this could lead to better treatments for hair disorders. / Saudi government
199

SATB1-Mediated Upregulation of the Oncogenic Receptor Tyrosine Kinase HER3 Antagonizes MET Inhibition in Gastric Cancer Cells

Jenke, Robert, Holzhäuser-Rein, Miriam, Mueller-Wilke, Stefanie, Lordick, Florian, Aigner, Achim, Büch, Thomas 19 December 2023 (has links)
MET-amplified gastric cancer cells are extremely sensitive to MET inhibition in vitro, whereas clinical efficacy of MET inhibitors is disappointing. The compensatory activation of other oncogenic growth factor receptors may serve as an underlying mechanism of resistance. In this study, we analyzed the role of HER receptors, in particular HER3 and its ligand heregulin, in this respect. This also included the chromatin-organizer protein SATB1, as an established regulator of HER expression in other tumor entities. In a panel of MET-amplified gastric carcinoma cell lines, cell growth under anchorage-dependent and independent conditions was studied upon inhibitor treatment or siRNA-mediated knockdown. Expression analyses were performed using RT-qPCR, FACS, and immunoblots. Signal transduction was monitored via antibody arrays and immunoblots. As expected, MET inhibition led to a growth arrest and inhibition of MAPK signaling. Strikingly, however, this was accompanied by a rapid and profound upregulation of the oncogenic receptor HER3. This finding was determined as functionally relevant, since HER3 activation by HRG led to partial MET inhibitor resistance, and MAPK/Akt signaling was even found enhanced upon HRG+MET inhibitor treatment compared to HRG alone. SATB1 was identified as mediator of HER3 upregulation. Concomitantly, SATB1 knockdown prevented upregulation of HER3, thus abrogating the HRG-promoted rescue from MET inhibition. Taken together, our results introduce the combined HER3/MET inhibition as strategy to overcome resistance towards MET inhibitors.
200

Comparaison du comportement tribologique des molécules de thiophosphates et de phosphates de zinc en tant qu'additifs anti-usure.

Njiwa, Paule 16 December 2011 (has links)
Grâce à ses propriétés d’antioxydant, d’anti-usure et éventuellement d’extrême pression le dithiophosphate de zinc (ZDDP) fait partie des additifs les plus utilisés dans les lubrifiants pour moteurs thermiques. De nos jours, dans un souci de respect de l’environnement, de nouveaux lubrifiants possédant de bonnes performances en lubrification (frottement faible et usure limitée) sont développés en prenant compte des limitations d’utilisations actuelles du ZDDP. L’idée étant de réduire dans ceux-ci les teneurs en phosphore et soufre (Normes euros VI), éléments essentiels du ZDDP qui endommagent les pots catalytiques. L’objectif de cette thèse est l’étude du comportement tribologique du phosphate de zinc di alkyl (ZP) en comparaison avec le ZDDP. La méthodologie expérimentale étudiée pour comprendre le mécanisme d’action de ces additifs, associe des essais de frottement à descaractérisations physico-chimiques des surfaces frottantes après essais.Cette comparaison a été effectuée en fonction de la température (25°C et 100°C), la vitesse de glissement (25, 50 et 100 mm/s) et la concentration en additif (200 et 600 ppm dephosphore). Les meilleures actions anti-usure sont obtenues avec le ZDDP pour une température de 100°C et une vitesse de glissement de 100 mm/s et le ZP pour une température de 25°C et une vitesse de glissement de 25 mm/s. Les analyses de surface XPS, AES, XANES et MET-EDX ont permis de mettre en évidence la présence d’un film protecteur constitué principalement de phosphate de zinc, ceci pour les deux additifs.Une synergie de comportement tribologique a été mise en évidence avec un lubrifiantconstitué de ZP (usure faible) et d’oléate d’urée (frottement faible). Des essais complémentaires sur un tribomètre dynamique ont permis d’étudier le niveau de frottement du tribofilm formé à partir du ZDDP. Le caractère visqueux du tribofilm de ZDDP a été mis en évidence. / Thanks to its antioxidant, anti-wear and extreme pressure properties, zinc dialkyldithiophosphate (ZDDP) is nowadays the most used anti-wear additives in engine oil. Due to environmental protection concerns, new lubricants with good tribological performances (low friction and low wear) are developed. This research aims to evaluate the current limitations of ZDDP and to find alternative environmentally friendly solutions. Thus, the target is to reduce the quantity of phosphorus and sulphur in lubricants, two essential elements of ZDDP molecule that damage catalytic. The objective of this thesis is to study tribological behavior of zinc phosphate di alkyl (ZP) in comparison to ZDDP. The experimental method performed is the coupling of friction test with surface physico-chemical characterisation of rubbing surface after tests.This comparison carried out according to the temperature (25°C and 100°C), the sliding speed (25, 50, 100 mm/s) and additives concentrations (200 and 600 ppm). The best anti-wear efficiency is obtained with the ZDDP additive at 100°C - 100 mm/s and with the ZP at 25°C - 25 mm/s. For both additives and under these conditions, tribofilms are mainly made of zinc phosphate.A tribological synergy are obtained with a lubricant contained ZP (low wear) and oleyl urea (low friction). Complementary tests were made on a original dynamic tribometer for a better understanding of ZDDP tribofilm friction behavior. The viscous character of ZDDP tribofilm was obtained.

Page generated in 0.036 seconds