• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • 1
  • Tagged with
  • 7
  • 7
  • 5
  • 5
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Study of the dynamics of conductive fluids in the presence of localised magnetic fields. Application to the "Lorentz Force Flowmeter".

Viré, Axelle 02 September 2010 (has links)
When an electrically conducting fluid moves through a magnetic field, fluid mechanics and electromagnetism are coupled. This interaction is the object of magnetohydrodynamics, a discipline which covers a wide range of applications, from electromagnetic processing to plasma- and astro-physics. In this dissertation, the attention is restricted to turbulent liquid metal flows, typically encountered in steel and aluminium industries. Velocity measurements in such flows are extremely challenging because liquid metals are opaque, hot and often corrosive. Therefore, non-intrusive measurement devices are essential. One of them is the Lorentz force flowmeter. Its working principle is based on the generation of a force acting on a charge, which moves in a magnetic field. Recent studies have demonstrated that this technique can measure efficiently the mean velocity of a liquid metal. In the existing devices, however, the measurement depends on the electrical conductivity of the fluid. In this work, a novel version of this technique is developed in order to obtain measurements that are independent of the electrical conductivity. This is particularly appealing for metallurgical applications, where the conductivity often fluctuates in time and space. The study is entirely numerical and uses a flexible computational method, suitable for industrial flows. In this framework, the cost of numerical simulations increases drastically with the level of turbulence and the geometry complexity. Therefore, the simulations are commonly unresolved. Large eddy simulations are then very promising, since they introduce a subgrid model to mimic the dynamics of the unresolved turbulent eddies. The first part of this dissertation focuses on the quality and reliability of unresolved numerical simulations. The attention is drawn on the ambiguity that may arise when interpretating the results. Owing to coarse resolutions, numerical errors affect the performances of the discrete model, which in turn looses its physical meaning. In this work, a novel implementation of the turbulent strain rate appearing in the models is proposed. As opposed to its usual discretisation, the present strain rate is in accordance with the discrete equations of motion. Two types of flow are considered: decaying turbulence located far from boundaries, and turbulent flows between two parallel and infinite walls. Particular attention is given to the balance of resolved kinetic energy, in order to assess the role of the model. The second part of this dissertation deals with a novel version of Lorentz force flowmeters, consisting in one or two coils placed around a circular pipe. The forces acting on each coil are recorded in time as the liquid metal flows through the pipe. It is highlighted that the auto- or cross-correlation of these forces can be used to determine the flowrate. The reliability of the flowmeter is first investigated with a synthetic velocity profile associated to a single vortex ring, which is convected at a constant speed. This configuration is similar to the movement of a solid rod and enables a simple analysis of the flowmeter. Then, the flowmeter is applied to a realistic three-dimensional turbulent flow. In both cases, the influence of the geometrical parameters of the coils is systematically assessed.
2

Die Design in Drawing with Drawbeads and Spacers

Advaith Narayanan, . January 2019 (has links)
No description available.
3

Study of the dynamics of conductive fluids in the presence of localised magnetic fields: application to the Lorentz force flowmeter

Viré, Axelle 02 September 2010 (has links)
When an electrically conducting fluid moves through a magnetic field, fluid mechanics and electromagnetism are coupled.<p>This interaction is the object of magnetohydrodynamics, a discipline which covers a wide range of applications, from electromagnetic processing to plasma- and astro-physics.<p><p>In this dissertation, the attention is restricted to turbulent liquid metal flows, typically encountered in steel and aluminium industries. Velocity measurements in such flows are extremely challenging because liquid metals are opaque, hot and often corrosive. Therefore, non-intrusive measurement devices are essential. One of them is the Lorentz force flowmeter. Its working principle is based on the generation of a force acting on a charge, which moves in a magnetic field. Recent studies have demonstrated that this technique can measure efficiently the mean velocity of a liquid metal. In the existing devices, however, the measurement depends on the electrical conductivity of the fluid. <p><p>In this work, a novel version of this technique is developed in order to obtain measurements that are independent of the electrical conductivity. This is particularly appealing for metallurgical applications, where the conductivity often fluctuates in time and space. The study is entirely numerical and uses a flexible computational method, suitable for industrial flows. In this framework, the cost of numerical simulations increases drastically with the level of turbulence and the geometry complexity. Therefore, the simulations are commonly unresolved. Large eddy simulations are then very promising, since they introduce a subgrid model to mimic the dynamics of the unresolved turbulent eddies. <p><p>The first part of this dissertation focuses on the quality and reliability of unresolved numerical simulations. The attention is drawn on the ambiguity that may arise when interpretating the results. Owing to coarse resolutions, numerical errors affect the performances of the discrete model, which in turn looses its physical meaning. In this work, a novel implementation of the turbulent strain rate appearing in the models is proposed. As opposed to its usual discretisation, the present strain rate is in accordance with the discrete equations of motion. Two types of flow are considered: decaying turbulence located far from boundaries, and turbulent flows between two parallel and infinite walls. Particular attention is given to the balance of resolved kinetic energy, in order to assess the role of the model.<p><p>The second part of this dissertation deals with a novel version of Lorentz force flowmeters, consisting in one or two coils placed around a circular pipe. The forces acting on each coil are recorded in time as the liquid metal flows through the pipe. It is highlighted that the auto- or cross-correlation of these forces can be used to determine the flowrate. The reliability of the flowmeter is first investigated with a synthetic velocity profile associated to a single vortex ring, which is convected at a constant speed. This configuration is similar to the movement of a solid rod and enables a simple analysis of the flowmeter. Then, the flowmeter is applied to a realistic three-dimensional turbulent flow. In both cases, the influence of the geometrical parameters of the coils is systematically assessed. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
4

The seasonal cycling and physico-chemical speciation of iron on the Celtic and Hebridean shelf seas

Birchill, Antony James January 2017 (has links)
Shelf seas represent an important source of iron (Fe) to the open ocean. Additionally, shelf seas are highly productive environments which contribute to atmospheric carbon dioxide drawdown and support large fisheries. The work presented in this thesis describes the seasonal cycle of Fe in the Celtic and Hebridean Shelf Seas, and determines the physico-chemical speciation of Fe supplied from oxic margins. The results from repeated field surveys of the central Celtic Sea showed a nutrient type seasonal cycling of dissolved Fe (< 0.2 µm; dFe), which is surprising in a particle rich shelf system, suggesting a balance of scavenging and remineralisation processes. Coincident drawdown of dFe and nitrate (NO3-) was observed during the phytoplankton spring bloom. During the bloom, preferential drawdown of soluble Fe (< 0.02 µm; sFe) over colloidal Fe (0.02-0.2 µm; cFe) indicated greater bioavailability of the soluble fraction. Throughout summer stratification, it is known that NO3- is drawn down to < 0.02 µM in surface waters. This study revealed that both dFe and labile particulate Fe (LpFe) were also seasonally drawn down to < 0.2 nM. Consequently, it is hypothesised that the availability of Fe seasonally co-limits primary production in this region. At depth both dFe and NO3- concentrations increased from spring to autumn, indicating that remineralisation is an important process governing the seasonal cycling of dFe in the central Celtic Sea. In spring, summer and autumn, distinctive intermediate nepheloid layers (INL) were observed emanating from the Celtic Sea shelf slope. The INLs were associated with elevated concentrations of dFe (up to 3.25 ± 0.16 nM) and particulate Fe (up to 315 ± 1.8 nM) indicating that they are a persistent conduit for the supply of Fe to the open ocean. Typically > 15% of particulate Fe was labile and 60-90% of dFe was in the colloidal fraction. Despite being < 50 km from the 200 m isobath, the concentration of dFe was < 0.1 nM in surface waters at several stations. Broadly, the concentration of nutrients in surface waters described an oligotrophic environment where co-limitation between multiple nutrients, including Fe, appears likely. Over the Hebridean shelf break, residual surface NO3- concentrations (5.27 ± 0.79 µM) and very low concentrations of dFe (0.09 ± 0.04 nM) were observed during autumn, implying seasonal Fe limitation. The dFe:NO3- ratio observed is attributed to sub-optimal vertical supply of Fe relative to NO3- from sub-surface waters. In contrast to the shelf break, surface water in coastal regions contained elevated dFe concentrations (1.73 ± 1.16 nM) alongside low NO3-. Seasonal Fe limitation is known to occur in the Irminger and Iceland Basins; therefore, the Hebridean shelf break likely represents the eastern extent of sub-Arctic Atlantic seasonal Fe limitation, thus indicating that the associated weakening of the biological carbon pump exists over a wider region of the sub-Arctic Atlantic than previously recognised. These key findings demonstrate that the availability of Fe to phytoplankton may seasonally reach limiting levels in temperate shelf waters and that oxic margins persistently supply Fe dominated by colloidal and particulate fractions to the ocean.
5

Liquid metal flows drive by gas bubbles in a static magnetic field

Zhang, Chaojie 02 February 2010 (has links) (PDF)
This thesis presents an experimental study which investigates the behaviour of gas bubbles rising in a liquid metal and the related bubble-driven flow under the influence of external DC magnetic fields. The experimental configuration considered here concerns a cylindrical container filled with the eutectic alloy GaInSn. Argon gas bubbles are injected through a single orifice located at the container bottom in the centre of the circular cross-section. A homogeneous magnetic field was generated by a Helmholtz configuration of a pair of water-cooled copper coils. The magnetic field has been imposed either in vertical direction parallel to the main bubble motion or in horizontal direction, respectively. A vertical magnetic field stabilizes and damps the liquid metal flow effectively. The temporal variations of the fluid velocity with time become smaller with increasing magnetic induction. The velocity magnitudes are decreased, and the velocity distributions along the magnetic field lines are smoothed. The flow field keeps the axisymmetric distribution. A horizontal magnetic field destabilizes and enhances the flow within a range of moderate Hartmann numbers (100 &amp;lt; Ha &amp;lt; 400). The flow becomes non-axisymmetric due to the non-isotropic influence of the magnetic field. In the meridional plane parallel to the field lines, the flow changes its direction from a downward to an upward motion. Enhanced downward flows were observed in the meridional plane perpendicular to the field lines. The liquid velocity in both planes shows strong, periodic oscillations. The fluid motion is dominated by large-scale structures elongated along the magnetic field lines over the entire chord lengths of the circular cross-section.
6

Liquid metal flows drive by gas bubbles in a static magnetic field

Zhang, Chaojie 18 January 2010 (has links)
This thesis presents an experimental study which investigates the behaviour of gas bubbles rising in a liquid metal and the related bubble-driven flow under the influence of external DC magnetic fields. The experimental configuration considered here concerns a cylindrical container filled with the eutectic alloy GaInSn. Argon gas bubbles are injected through a single orifice located at the container bottom in the centre of the circular cross-section. A homogeneous magnetic field was generated by a Helmholtz configuration of a pair of water-cooled copper coils. The magnetic field has been imposed either in vertical direction parallel to the main bubble motion or in horizontal direction, respectively. A vertical magnetic field stabilizes and damps the liquid metal flow effectively. The temporal variations of the fluid velocity with time become smaller with increasing magnetic induction. The velocity magnitudes are decreased, and the velocity distributions along the magnetic field lines are smoothed. The flow field keeps the axisymmetric distribution. A horizontal magnetic field destabilizes and enhances the flow within a range of moderate Hartmann numbers (100 &amp;lt; Ha &amp;lt; 400). The flow becomes non-axisymmetric due to the non-isotropic influence of the magnetic field. In the meridional plane parallel to the field lines, the flow changes its direction from a downward to an upward motion. Enhanced downward flows were observed in the meridional plane perpendicular to the field lines. The liquid velocity in both planes shows strong, periodic oscillations. The fluid motion is dominated by large-scale structures elongated along the magnetic field lines over the entire chord lengths of the circular cross-section.
7

Numerische Untersuchung der Rayleigh-Bénard-Konvektion in einem Flüssigmetall unter dem Einfluss einer zeitlich modulierten gezeitenartigen Kraft

Röhrborn, Sebastian 01 September 2023 (has links)
In der vorliegenden Arbeit konnte gezeigt werden, dass die numerischen simulationen einer freien Rayleigh-Bénard-Konvektion und einer rein elektromagnetisch angetriebenen gezeiten-artigen Strömung in einem stehenden zylindrischen Volumen mit einem Seitenverhältnis Г = D/H = 1 und seitlich angelegten Magnetspulen eine gute Übereinstimmung mit entspre-chenden Experimenten aufweisen. Kombiniert man beide Mechanismen und moduliert die Lorentzkraft, so zeigen sich in den Frequenzspektren der Helizität in zwei Halbräumen des Volumens deutliche Maxima an der Modulationsfrequenz. Eine solche Helizitätssynchronisierung durch Gezeitenkräfte wird derzeit als mögliche Erklärung für die hohe Regularität des Sonnendynamos diskutiert. Des Weiteren wird die in freier Konvektion auftretende langsame azimutale Wanderung der Konvektionszelle unterdrückt. Der Schwingungswinkel der azimutalen Schwappbewegung nimmt dabei ab und die in der Strömung dominante Frequenz erhöht sich. Die durch die zwei unterschiedlichen Antriebsmechanismen erzeugten Strömungsstrukturen bleiben in der Strömung eigenständig erhalten und treten in gegenseitige Interaktion.:1. Einleitung 2. Grundlagen 2.1. Rayleigh-Bénard-Konvektion 2.2. MHD - Magnetohydrodynamik 2.3. Wichtige Aspekte des numerischen Modells 3. Modellerstellung 3.1. Geometrie 3.2. Numerisches Modell 3.2.1. Elektromagnetisches Modell in Opera 3.2.2. Modell der Strömungsberechnung in OpenFOAM 4. Ergebnisse 4.1. Ergebnisse der freien Rayleigh-Bénard-Konvektion 4.2. Ergebnisse der nichtmodulierten elektromagnetischen Strömungsanregung ohne Temperaturgradient 4.3. Ergebnisse der zeitmodulierten elektromagnetischen Strömungsanregung ohne Temperaturgradient 4.4. Ergebnisse der elektromagnetisch beeinflussten Rayleigh-Bénard-Konvektion 4.4.1. Auswirkung der elektromagnetischen Beeinflussung auf die Strömungsstruktur 4.4.2. Vergleich ausgewählter Ergebnisse der numerischen Untersuchung und des Experimentes 4.4.3. Auswirkung der elektromagnetischen Beeinflussung auf die Helizität 5. Zusammenfassung und Fazit

Page generated in 0.2322 seconds