Spelling suggestions: "subject:"metallurgists"" "subject:"metallurgi""
41 |
A study of slag-steel-inclusion interaction during Ladle treatmentBjörklund, Johan January 2006 (has links)
<p>The thesis is based on two supplements with two major objectives. In the first supplement equilibrium top slag-steel bulk and inclusions-steel bulk were investigated by comparison between calculated and measured oxygen activity values. This was done by applying different oxide activity models for slags combined with thermodynamic calculations. In the second supplement the inclusion composition is studied during the ladle refining process. The inclusion composition is related to top slag composition and other parameters during ladle</p><p>treatment.</p><p>The work was carried out by collecting data during well controlled sampling procedures at two different steel plants. Extensive inclusion analyses in Scanning Electron Microscope, SEM, were done. The data was used together with thermodynamics for a description of the interaction between slag-steel-inclusion interaction during ladle treatment.</p><p>Evaluation of inclusion composition during the ladle refining have revealed that the majority of the inclusions belonged to the system Al<sub>2</sub>O<sub>3</sub>-CaO-MgO-SiO<sub>2 </sub>and showed a continuous composition change throughout the ladle refining process, from high Al<sub>2</sub>O<sub>3,</sub> via MgO-spinel to finally complex types rich in CaO and Al<sub>2</sub>O<sub>3.</sub> The final composition after vacuum treatment was found to be close to the top slag composition. Small process parameter changes and practical variations during ladle refining were proven to give large differences of the inclusion composition.</p><p>Finally, it was concluded that equilibrium does not exist between top slag and steel bulk, with respect to oxygen, for the studied conditions. However, the equilibrium does exist between the steel bulk and inclusion.</p>
|
42 |
On some positive effects of swirling flow for the continuous cast mould billetsKholmatov, Shavkat January 2007 (has links)
<p>Continuous caster moulds are the last and most important stage in the steelmaking process, where inclusions can either be generated or removed. With increasing casting speed using conventional immersion nozzles critical problems, such as unstable bulk mould flow have been noticed. Mould flux entrapment due to vortex and shearing action from the oscillating surface waves have become of particular concern. It is therefore necessary to have a calm inlet flow at the entrance of the mould. Recently, it has been acknowledged that a swirl blade placed at the upstream of the immersion nozzle effectively resolves the problems arising from unstable bulk mould flow. Therefore, to increase the knowledge of effect of swirling flow on the flow pattern in the mould, fundamental mathematical models of a billet mould equipped with a swirl blade in the nozzle have been developed. The model was used to study the effect of divergent angle of the immersion nozzle and mould aspect ratio on the flow field and temperature distribution inside billets moulds. Data from water model experiments were used to verify the mathematical model predictions. A fairly good agreement was found between physical modeling data and predictions, which ensured that the numerical model is reliable. Thereafter, the differences between square and round billet moulds were studied. Next, the effect of changing aspect ratio of the rectangular mould on the fluid flow and heat transfer, while keeping mould surface area constant, was studied. Two types of immersion nozzles, bottomless and conventional, were also analyzed during the research. The model moulds were changed gradually from a square billet with an aspect ratio of 1x1 to a rectangular billet with an aspect ratio of 3x1. First, the temperature and velocity distributions were calculated. Later, unsteady calculations were done to determine velocity fluctuations on the meniscus level for two types of nozzles and several moulds geometries.</p>
|
43 |
A Study of EAF High-Chromium Stainless Steelmaking Slags Characteristics and FoamabilityMostafaee, Saman January 2011 (has links)
A good slag practice is essential for production of a high-quality stainless steel. In addition, the electrical and material efficiency of the electric arc furnace (EAF) can considerably be improved by a good slag practice. The metallurgical properties of the slag are strongly influenced by its high-temperature microstructure. Thus, characterization of the phases within the EAF slag as well as the determination of the amount of these phases is of high importance.In addition, the knowledge about the chemical composition of the liquid slag and solid phases at the process temperatures is instrumental in developing a good slag practice.In order to study the slag in EAF high-chromium stainless steelmaking, slag samples were collected from 14 heats of AISI 304L steel (two samples per heat) and 7 heats of duplex steel (three samples per heat).The selected slag samples were petrographically studied both using scanning electron microscopy equipped with energy dispersive X-ray spectroscopy (SEM-EDS) and light optical microscopy (LOM). In some cases, X-ray diffraction (XRD) analyses were also performed. Moreover, computational thermodynamics was used to determine the equilibrium phases in the EAF steelmaking slags at the process temperatures. In addition, parameter studies were performed on the factors influencing the equilibria.More specifically, a petrographical and thermodynamic characterization was performed on the EAF austenitic steelmaking slags. Thereafter, the microstructural evolution of the slag during the EAF duplex steelmaking process was investigated. Moreover, an investigation with focus on the total amount of precipitates within the high-chromium stainless steelmaking slags was done. Finally, the foamability of these slags was quantified and evaluated.The petrographic investigations showed that, during the refining stage, in both austenitic and duplex cases, the main constituent of the EAF slag is a melt consisting of liquid oxides. In addition, the slag samples contain solid spinel particles. However, before ferrosilicon-addition (FeSi), the slag may also contain solid stoichiometric calcium chromite. Moreover, depending on the slag basicity, the slag may contain solid dicalcium silicate at the process temperatures.The evolution of the slag during the refining stage of the EAF was graphically illustrated in the calculated isothermal phase diagrams for the slag system Al2O3-Cr2O3-CaO-MgO-SiO2-TiO2.It was found that the only critical parameter affecting the amount of solid spinel particles in the slag is the chromium-oxide content. More specifically, it was shown that the amount of the spinel particles in the slag increases with an increased chromium-oxide content of the slag. It wasvialso shown that a higher basicity and a lower temperature of the slag contribute to the dicalcium silicate precipitation.In order to evaluate and quantify the foamability of the slags, the slag’s physical properties influencing its foaming index were determined. Computational thermodynamics was used as a tool to calculate the weight fractions of the solid phases within the slag at different EAF process stages. The computational thermophysics was used to estimate the viscosity of the liquid part of the slag samples at the process temperatures. The apparent viscosity of the samples was calculated by combining the above results. By estimating the density, surface tension and the foaming-gas bubble size, the foaming index of the slag samples were quantified. It could be shown that the foaming index of the EAF high-chromium stainless steelmaking slag may be on its minimum as the slag’s basicity takes a value in the range of 1.2 – 1.5. A basicity value of around 1.50 – 1.60 can be suitable for enhancing the foaming index of the slag, during the refining period in EAF high-chromium stainless steelmaking.
|
44 |
Inclusions and/or Particles Engineering for Grain Refining Purposes in Ferritic Fe-20mass%Cr alloysJanis, Jesper January 2010 (has links)
Compared to more common used austenitic stainless steels, ferritic stainless steels contain very low amounts of the expensive alloying element Ni. In addition, they have good corrosion properties, but are sometimes suffering from poor weldability and bad mechanical properties. This is mainly due to the presence of large grains after casting and large grain growth during heat treatment or welding. Processes for reducing the grain size (grain refining) of metal alloys are widely known and proven before to be suitable for many alloys. A successful grain refining process can increase the strength of an alloy without decreasing the ductility. This can be achieved by different methods, such as rolling or cooling. In this work, the focus has been on studying the aspect from a metallurgist point of view, to analyse the possibilities to create small particles in the liquid stage to enhance the solidification. The focus has been on oxide and nitride formation for nucleation of smaller grains during solidification. This study was made by forming particles, develop the analysis methods and thereafter to study the effect of particles on the structure of a ferritic stainless steel. The particles were formed by additions of Ti, Ce and Zr in to a liquid Fe-20mass% Cr alloy containing different amounts of oxygen and nitrogen. The electrolytic extraction technique was used to achieve a good understanding of the reaction processes and the particles size, number, composition and morphology. The grain sizes and the particles were then studied in as-cast samples as well as in specimens heat treated for 60 minutes at 1200, 1300 and 1400°C in a Confocal Scanning Laser Microscope (CSLM). Also, based on Scanning Electron Microscope (SEM) determinations and Thermo-Calc calculations, the precipitated particles were divided as primary and secondary particles. Thereafter, the grain refining potential was studied for each of these types. In this work, particles engineering by using small particles have been proven suitable for the Fe-20mass% Cr ferritic stainless steel alloys. Although the work has been based on small-scale samples and experiments, the results show good tendencies with respect to grain refining as well as a clear relationship between the particles in the steels and the microstructures. It was found that Ti-Ce additions in Fe-20mass% Cr alloys resulted in complex oxides including Ti, Ce and Cr. These oxides were observed to have high agglomeration tendencies and therefore to form larger particles or clusters. The grain refining potential on the solidification structure was insignificant, despite a relatively large amount of particles. However, Ti-Zr additions in Fe- 20mass% Cr alloys on the other hand resulted in primary precipitated particles such as ZrO2 and ZrO2+ZrN. Furthermore, ZrN nucleated ferrite during solidification, which lead to a clearly observed grain refining effect. This effect was also increased with an increased number of particles. The amount of particles (primary and secondary) was also found to increase with an increased amount of nitrogen. Secondary particles (mostly TiN) were precipitated near grain boundaries, which lead to a location based pinning effect of the grain growth during heat treatment at 1200 °C. This pinning effect was increased by an increased nitrogen content and thereby an increased number of particles. Finally, the pinning effect was clearly reduced during heat treatment at 1400 °C. / QC20100524
|
45 |
Turning to Europe : a new Swedish industrial relations regime in the 1990s /Murhem, Sofia, January 2003 (has links)
Diss. (sammanfattning) Uppsala : Univ., 2003. / Härtill 4 uppsatser.
|
46 |
Recovery of iron and manganese values from metallurgical slags by the oxidation routeSemykina, Anna January 2010 (has links)
In the modern practice, a sustainable development strategy in a domain of wasteutilization is shifting its focus from a general completeness of recycling to a morespecific attention to efficiently utilize elements in the wastes. This is well-illustrated bythe steelmaking slag industries. The major waste product from the steelmaking practiceis slag and its main constituents are: CaO, SiO2, Al2O3, MnO, FeO and so on. The mainfield of application for the steelmaking slags is civil engineering, especially for road andwaterway construction. However, a significant amount of the slag remains in the dumps,damaging the environment as well as requiring a land for secure storage. Efficientrecycling of these materials is of increasing interest worldwide as a result of increasingsustainability in processes with respect to increasing raw material costs and wastereduction.In order to find a practical solution, joint efforts are currently made at the RoyalInstitute of Technology, Sweden and National Metallurgical Academy of Ukraine. Theconcept is based on transformation of non-magnetic wüstite (FeO) to magneticmagnetite (Fe3O4) using an oxidizing atmosphere was proposed.In order to verify the feasibility of the proposed way of slag utilization, experiments onthe ternary CaO-FeO-SiO2 and quaternary CaO-FeO-SiO2-MnO slags systems,accompanied by thermodynamic and kinetic modelling, were performed. The crystalprecipitation during synthetic slag oxidation was observed by Confocal Scanning LaserMicroscopy (CSLM). Precipitated phases were found to be magnetite and manganeseferrite in the spinel form.Obtained magnetite and manganese ferrite can be separated from the slag by magneticseparation.The formation of nanosize manganese ferrite from the CaO-FeO-SiO2-MnO slag systemduring oxidation was investigated. Experiments were conducted in a horizontalresistance furnace in an oxidizing atmosphere (air). The final product was analysed by Xraydiffraction (XRD). The particles size of the manganese ferrite was estimated by theScherrer formula and was found to be of the order of 23-25 nm. In order to get anunderstanding of the magnetic properties of the manganese ferrite recovered from slagtreatment, it was necessary to synthesize a reference compound from pure precursors.The MnFe2O4 nanopowder was synthesized by the oxalate route. The size effects on themagnetic properties of manganese ferrite particles were investigated.IIThe potential way of the magnetite particles separation from liquid slags was investigatedby cold model studies. The experimental technique of mobilising non-conducting,nonmagnetic particles in conducting liquid in crossed electric and magnetic fields wasinvestigated in order to find the way of the particle separation from the liquidsteelmaking slags. The effects of the current density, magnetic field, size and shape ofthe particle on the particle velocity under action of the electromagnetic buoyancy force(EBF) in the electrolyte were analyzed. / QC 20100916
|
47 |
Theoretical and experimental studies of surface and interfacial phenomena involving steel surfacesCao, Weimin January 2010 (has links)
The present work was initiated to investigate the surface- and interfacial phenomena for iron and slag/iron systems. The aim was to understand the mechanism of the effect of surface active elements on surface and interfacial properties. In the present work, the adsorption of oxygen and sulfur on iron surface as well as adatom surface movements were studied based on the ab initio method. BCC iron melting phenomena and sulfur diffusion in molten iron were investigated by Monte Carlo simulations. The impact of oxygen potential on interfacial mass transfer was carried out by X-ray sessile drop method. Firstly, the structural, electronic and magnetic properties as well as thermodynamic stability were studied by Density functional theory (DFT). The hollow site was found to be the most stable adsorption site both for oxygen and sulfur adsorbed on iron (100) surface, which is in agreement with the experiment. The relaxation geometries and difference charge density of the different adsorption systems were calculated to analyze the interaction and bonding properties between Fe and O/S. It can be found that the charge redistribution was related to the geometry relaxation. In addition, the sulfur coverage is considered from a quarter of one monolayer (1ML) to a full monolayer. It was found that the work function and its change Δφ increased with S coverage, in very good agreement with experiment. Due to a recent discussion regarding the influence of charge transfer on Δφ, it is shown in the present work that the increase in Δφ can be explained by the increasing surface dipole moment as a function of S coverage. S strongly interacts with the surface Fe layer and decreases the surface magnetic moment as the S coverage increases. Secondly, a two dimensional (2D) gas model based on density functional calculations combined with thermodynamics and statistical physics, was proposed to simulate the movement of the surface active elements, viz. oxygen and sulfur atoms on the Fe(100) surface. The average velocity of oxygen and sulfur atoms was found to be related to the vibration frequencies and energy barrier in the final expression developed. The calculated results were based on the density function and thermodynamics & statistical physics theories. In addition, this 2D gas model can be used to simulate and give an atomic view of the complex interfacial phenomena in the steelmaking refining process. A distance dependent atomistic Monte Carlo model was developed for studying the iron melting phenomenon as well as effect of sulfur on molten iron surface. The effect of boundary conditions on the melting process of an ensemble of bcc iron atoms has been investigated using a Lennard-Jones distance dependent pair potential. The stability of melting process was energetically and spatially analyzed under fixed wall and free surface conditions and the effects of short and long-range interactions were discussed. The role of boundary conditions was significantly reduced when long-range interactions were used in the simulation. This model was further developed for investigating the effect of sulfur on molten iron surface. A combination of fixed wall and free surface boundary condition was found to well-represent the molten bath configuration while considering the second nearest neighbor interactions. Calculations concerning the diffusion of sulfur on molten surface were carried out as a function of temperature and sulfur concentration. Our results show that sulfur atoms tended to diffuse away from the surface into the liquid bulk and the diffusion rate increased by increasing temperature. Finally, impact of oxygen potential on sulfur mass transfer at slag/metal interface, was carried out by X-ray sessile drop method. The movement of sulfur at the slag/metal interface was monitored in dynamic mode at temperature 1873 K under non-equilibrium conditions. The experiments were carried out with pure iron and CaO-SiO2-Al2O3-FeO slag (alumina saturated at the experimental temperature) contained in alumina crucibles with well-controlled partial pressures of oxygen and sulfur. As the partial pressure of oxygen increased, it was found that interfacial velocity as well as the oscillation amplitude increased. The thermo-physical and thermo-chemical properties of slag were also found to influence interfacial velocity. / QC 20101123
|
48 |
Investigations on the Oxidation of Iron-chromium and Iron-vanadium Molten AlloysWang, Haijuan January 2010 (has links)
With the progress of high alloy steelmaking processes, it is essential to minimize the loss of valuable metals, like chromium and vanadium during the decarburization process, from both economic as well as environmental view points. One unique technique to realize this aim, used in the present work, is the decarburization of high alloy steel grades using oxygen with CO2 in order to reduce the partial pressure of oxygen. In the present work, the investigation on the oxidation of iron-chromium and iron-vanadium molten alloys under CO2-O2 mixtures was carried out and presented in this dissertation. For oxidation study on Fe-Cr molten alloy with CO2-O2 mixtures, on the basis of thermodynamic analysis, energy balance calculation and modeling results, experimental validation in laboratory was carried out, and later on, the oxidation kinetics of Fe-Cr and Fe-Cr-C melts under controlled partial pressure of oxygen was investigated. Thermodynamics calculation and energy balance estimation demonstrated that, it is possible to use CO2 or CO2-O2 mixtures as decarburizers during EAF process and high initial carbon contents in the steel can be adopted at the beginning in order to reduce the cost. A generic model has been developed to describe the overall process kinetics prevailing in metallurgical reactors containing liquid metal and gas bubbles. This model is general and can be extended further to consider any gas liquid reactions in any chemical engineering reactor, and especially the metallurgical ones, like AOD. In the present dissertation, the model is applied in predicting the evolution of Cr and C contents in a Fe-C-Cr melt during injection of different O2-CO2 mixtures. The related simulation results illustrated that CO2 is efficient in Cr retention. In order to verify the modeling results, 1kg induction furnace experiments were carried out in the present laboratory. The results indicated that the predictions of the model are in good agreement with the experimental results. Meanwhile, the experimental results indicated that the Cr-losses can be significantly lowered by replacing the oxygen with CO2 in the injected gas, specifically for Fe-Cr-C melts with carbon levels higher than about 0.8 mass%. Subsequently, the oxidation kinetics of Fe-Cr and Fe-Cr-C melts was investigated under different CO2-O2 mixtures. It is indicated that, the oxidation rate is controlled by the chemical reaction at the initial stage and the reaction rate can be expressed as at the Cr range of 11-21 mass% in the Fe-Cr melt. For oxidation study on Fe-V liquid alloy, the investigation of the oxidation kinetics was carried out under CO2-O2 mixtures, which is followed by the study on thermodynamic properties of vanadium containing slags. During oxidation of Fe-V melt, in the case of alloys with vanadium contents exceeding 10 mass%, there exists an incubation period before the chemical reactions prevail the process. In addition, the ‘incubation time’ increased with the increase of temperature and the vanadium content, whereas it decreased with the increase of oxygen partial pressure in the oxidant gas. High-temperature mass spectrometric method was used to determine the activity of the vanadium oxide in CaO-MgO-Al2O3-SiO2-V2O3 slags, whereas, the oxidation states of vanadium in the CaO-MgO-Al2O3-SiO2-VOxslag system was studied by XANES method. The results indicated that, higher basicities stabilize higher vanadium oxidation state, whereas, higher temperature stabilizes lower vanadium oxidation state. The present work, which was carried out within the ECO-STEELMAKING project funded by MISTRA via Jernkontoret is expected to lead to implementation of some modifications in high alloy steel production based on fundamental concepts towards more environment-friendly steel processing. / <p>QC20100628</p>
|
49 |
Microstructure and properties of welds in the lean duplex stainless steel LDX 2101Westin, Elin M. January 2010 (has links)
Duplex stainless steels can be very attractive alternatives to austenitic grades due to their almost double strength at equal pitting corrosion resistance. When welding, the duplex alloys normally require addition of filler metal, while the commodity austenitic grades can often be welded autogenously. Over-alloyed consumables are used to counteract segregation of important alloying elements and to balance the two phases, ferrite and austenite, in the duplex weld metal. This work focuses on the weldability of the recently-developed lean duplex stainless steel LDX 2101® (EN 1.4162, UNS S32101). The pitting corrosion resistance of this grade is better than that of austenitic AISI 304 (EN 1.4307) and can reach the level of AISI 316L (EN 1.4404). The austenite formation is rapid in LDX 2101 compared to older duplex grades. Pitting resistance tests performed show that 1-2.5 mm thick laser and gas tungsten arc (GTA) welded LDX 2101 can have good corrosion properties even when welding autogenously. Additions of filler metal, nitrogen in the shielding gas, nitrogen-based backing gas and use of laser hybrid welding methods, however, increase the austenite formation. The pitting resistance may also be increased by suppressing formation of chromium nitrides in the weld metal and heat affected zone (HAZ). After thorough post-weld cleaning (pickling), pitting primarily occurred 1-3 mm from the fusion line, in the parent metal rather than in the HAZ. Neither the chromium nitride precipitates found in the HAZ, nor the element depletion along the fusion line that was revealed by electron probe microanalysis (EPMA) were found to locally decrease the pitting resistance. The preferential pitting location is suggested to be controlled by the residual weld oxide composition that varies over the surface. The composition and thickness of weld oxide formed on LDX 2101 and 2304 (EN 1.4362, UNS S32304) were determined using X-ray photoelectron spectroscopy (XPS). The heat tint on these lean duplex grades proved to contain significantly more manganese than what has been reported for standard austenitic stainless steels in the AISI 300 series. A new approach to heat tint formation is presented; whereby evaporation of material from the weld metal and subsequent deposition on the already-formed weld oxide are suggested to contribute to weld oxide formation. This is consistent with manganese loss from the weld metal, and nitrogen additions to the GTA shielding gas enhance the evaporation. The segregation of all elements apart from nitrogen is low in autogenously welded LDX 2101. This means that filler wire additions may not be required as for other duplex grades assuming that there is no large nitrogen loss that could cause excessive ferrite contents. As the nitrogen appears to be controlling the austenite formation, it becomes essential to avoid losing nitrogen during welding by choosing nitrogen-containing shielding and backing gas. / QC 20101213
|
Page generated in 0.0725 seconds