• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 1
  • 1
  • Tagged with
  • 35
  • 35
  • 35
  • 22
  • 11
  • 10
  • 10
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

The effect of pulse crops on arbuscula mycorrhizal fungi in a durum-based cropping system

Fraser, Tandra 07 April 2008
Pulses are an important component in crop rotations in the semiarid Brown soil zone of southern Saskatchewan, Canada. Besides their capability to fix nitrogen, pulse crops establish a strong symbiotic relationship with arbuscular mycorrhizal fungi (AMF), which have been shown to increase nutrient and water uptake through hyphal extensions in the soil. Incorporating strongly mycorrhizal crops in a rotation may increase inoculum levels in the soil and benefit the growth of a subsequent crop. The objective of this study was to determine if AMF potential and colonization of a durum crop is significantly affected by cropping history and to assess the impact of pulses in crop rotations on the abundance and diversity of AMF communities in the soil. In 2004 and 2005, soil, plant, and root samples were taken on Triticum turgidum L. (durum) with preceding crops of Pisum sativum L. (pea), Lens culinaris Medik (lentil), Cicer arietinum L. (chickpea), Brassica napus L. (canola) or Triticum turgidum L. (durum). Although there were few differences in soil N and P levels, previous crop had a significant effect (p<0.05) on durum yields in both years. A previous crop of pea was associated with the highest yields, while the durum monocultures were lowest. Arbuscular mycorrhizal potential and colonization were significantly affected (p<0.05) by cropping history, but not consistently as a result of inclusion of a pulse crop. Phospholipid and neutralipid fatty acids (PLFA/NLFA) were completed to analyse the relative abundance of AMF (C16:1ù5), saprophytic fungi (C18:2ù6), and bacteria in the soil. The effect of treatment on the abundance of AMF, saprotrophic fungi and bacteria were not significant (p<0.05), but the changes over time were. These results demonstrate that although previous crop may play a role in microbial community structure, it is not the only influencing factor.
22

The effect of pulse crops on arbuscula mycorrhizal fungi in a durum-based cropping system

Fraser, Tandra 07 April 2008 (has links)
Pulses are an important component in crop rotations in the semiarid Brown soil zone of southern Saskatchewan, Canada. Besides their capability to fix nitrogen, pulse crops establish a strong symbiotic relationship with arbuscular mycorrhizal fungi (AMF), which have been shown to increase nutrient and water uptake through hyphal extensions in the soil. Incorporating strongly mycorrhizal crops in a rotation may increase inoculum levels in the soil and benefit the growth of a subsequent crop. The objective of this study was to determine if AMF potential and colonization of a durum crop is significantly affected by cropping history and to assess the impact of pulses in crop rotations on the abundance and diversity of AMF communities in the soil. In 2004 and 2005, soil, plant, and root samples were taken on Triticum turgidum L. (durum) with preceding crops of Pisum sativum L. (pea), Lens culinaris Medik (lentil), Cicer arietinum L. (chickpea), Brassica napus L. (canola) or Triticum turgidum L. (durum). Although there were few differences in soil N and P levels, previous crop had a significant effect (p<0.05) on durum yields in both years. A previous crop of pea was associated with the highest yields, while the durum monocultures were lowest. Arbuscular mycorrhizal potential and colonization were significantly affected (p<0.05) by cropping history, but not consistently as a result of inclusion of a pulse crop. Phospholipid and neutralipid fatty acids (PLFA/NLFA) were completed to analyse the relative abundance of AMF (C16:1ù5), saprophytic fungi (C18:2ù6), and bacteria in the soil. The effect of treatment on the abundance of AMF, saprotrophic fungi and bacteria were not significant (p<0.05), but the changes over time were. These results demonstrate that although previous crop may play a role in microbial community structure, it is not the only influencing factor.
23

Soilborne disease suppressiveness / conduciveness : analysis of microbial community dynamics / by Johannes Hendrikus Habig

Habig, Johannes Hendrikus January 2003 (has links)
Take-all is the name given to the disease caused by a soilborne fungus Gaeumannomyces graminis (Sacc.) von Arx and Olivier var. tritici Walker (Ggt), an ascomycete of the family Magnaportheaceae (Cook, 2003). This fungus is an aggressive soil-borne pathogen causing root rot of wheat (primary host), barley and rye crops (secondary host). The flowering, seedling, and vegetative growth stages can be affected by the infection of the whole plant, leaves, roots, and stems. Infections of roots result in losses in crop yield and quality primarily due to a lowering in nutrient uptake. Take-all is most common in regions where wheat is cultivated without adequate crop rotation. Crop rotation allows time between the planting dates of susceptible crops, which causes a decrease in the inoculum potential of soilborne plant pathogens to levels below an economic threshold by resident antagonistic soil microbial communities. Soilborne disease suppressiveness is an inherent characteristic of the physical, chemical, and/or biological structure of a particular soil which might be induced by agricultural practices and activities such as the cultivation of crops, or the addition of organisms or nutritional amendments, causing a change in the microfloral environment. Disturbances of soil ecosystems that impact on the normal functioning of microbial communities are potentially detrimental to soil formation, energy transfers, nutrient cycling, and long-term stability. In this regard, an overview of soil properties and processes indicated that the use of microbiological and biochemical soil properties, such as microbial biomass, the analysis of microbial functional diversity and microbial structural diversity by the quantification of community level physiological profiles and signature lipid biomarkers are useful as indicators of soil ecological stress or restoration properties because they are more responsive to small changes than physical and chemical characteristics. In this study, the relationship between physico-chemical characteristics, and different biological indicators of soil quality of agricultural soils conducive, suppressive, and neutral with respect to take-all disease of wheat as caused by the soilborne fungus Gaeumannomyces graminis var. tritici (Ggt), were investigated using various techniques. The effect of crop rotation on the functional and structural diversity of soils conducive to take-all disease was also investigated. Through the integration of quantitative and qualitative biological data as well as the physico-chemical characteristics of the various soils, the functional and structural diversity of microbial IV communities in the soils during different stadia of take-all disease of wheat were characterised. All results were evaluated statistically and the predominant physical and chemical characteristics that influenced the microbiological and biochemical properties of the agricultural soils during different stadia of take-all disease of wheat were identified using multivariate analyses. Although no significant difference @ > 0.05) could be observed between the various soils using conventional microbiological enumeration techniques, the incidence of Gliocladium spp. in suppressive soils was increased. Significant differences @ < 0.05) were observed between agricultural soils during different stadia of take-all disease of wheat. Although no clear distinction could be made between soils suppressive and neutral to take-all disease of wheat, soils suppressive and conducive to take-all disease of wheat differed substantially in their community level physiological profiles (CLPPs). Soils suppressive / neutral to take-all disease were characterised by enhanced utilisation of carboxylic acids, amino acids, and carbohydrates, while conducive soils were characterised by enhanced utilisation of carbohydrates. Shifts in the functional diversity of the associated microbial communities were possibly caused by the presence of Ggt and associated antagonistic fungal and bacterial populations in the various soils. It was evident that the relationships amongst the functionality of the microbial communities within the various soils had undergone changes through the different stages of development of take-all disease of wheat, thus implying different substrate utilisation capabilities of present soil microbial communities. Diversity indices were calculated as Shannon's diversity index (H') and substrate equitability (J) and were overall within the higher diversity range of 3.6 and 0.8, respectively, indicating the achievement of very high substrate diversity values in the various soils. A substantial percentage of the carbon sources were utilised, which contributed to the very high Shannon-Weaver substrate utilisation indices. Obtained substrate evenness (equitability) (J) indices indicated an existing high functional diversity. The functional diversity as observed during crop rotation, differed significantly (p < 0.05) from each other, implying different substrate utilisation capabilities of present soil microbial communities, which could possibly be ascribed to the excretion of root exudates by sunflowers and soybeans. Using the Sorenson's index, a clear distinction could be made between the degrees of substrate utilisation between microbial populations in soils conducive, suppressive, and neutral to take-all disease of wheat, as well as during crop rotation. Furthermore, the various soils could also be differentiated on the basis of the microbial community structure as determined by phospholipid fatty acid (PLFA) analysis. Soil suppressive to take-all disease of wheat differed significantly (p < 0.05) from soils conducive, and neutral to take-all disease of wheat, implying a shift in relationships amongst the structural diversity of microbial communities within the various soils. A positive association was observed between the microbial phospholipid fatty acid profiles, and dominant environmental variables of soils conducive, suppressive, and neutral to take-all disease of wheat. Soils conducive and neutral to take-all disease of wheat were characterised by high concentrations of manganese, as well as elevated concentrations of monounsaturated fatty acids, terminally branched saturated fatty acids, and polyunsaturated fatty acids which were indicative of Gram-negative bacteria, Gram-positive bacteria and micro eukaryotes (primarily fungi), respectively. These soils were also characterised by low concentrations of phosphorous, potassium, percentage organic carbon, and percentage organic nitrogen, as well as low soil pH. Soil suppressive to take-all disease of wheat was characterised by the elevated levels of estimated of biomass and elevated concentrations of normal saturated fatty acids, which is ubiquitous to micro-organisms. The concentration of normal saturated fatty acids in suppressive soils is indicative of a low structural diversity. This soil was also characterised by high concentrations of phosphorous, potassium, percentage organic carbon, and percentage organic nitrogen, as well as elevated soil pH. The relationship between PLFAs and agricultural soils was investigated using principal component analysis (PCA), redundancy analysis (RDA) and discriminant analysis (DA). Soil suppressive to take-all disease of wheat differed significantly (p < 0.05) from soils conducive, and neutral to take-all disease of wheat, implying a shift in relationships amongst the structural diversity of microbial communities within the various soils. A positive association was observed between the microbial phospholipid fatty acid profiles, and dominant environmental variables of soils conducive, suppressive, and neutral to take-all disease of wheat. Hierarchical cluster analysis of the major phospholipid fatty acid groups indicated that the structural diversity differed significantly between soils conducive, suppressive, and neutral to take-all disease of wheat caused by Gaeumannomyces graminis var. tritici. The results indicate that the microbial community functionality as well as the microbial community structure was significantly influenced by the presence of take-all disease of wheat caused by Gaeumannomyces graminis var. tritici, and that the characterisation of microbial functional and structural diversity by analysis of community level physiological profiles and phospholipid fatty acid analysis, respectively, could be successfully used as an assessment criteria for the evaluation of agricultural soils conducive, suppressive, and neutral to take-all disease of wheat, as well as in crop rotation systems. This methodology might be of significant value in assisting in the management and evaluation of agricultural soils subject to the prevalence of other soilborne diseases. / Thesis (M.Sc. (Microbiology))--North-West University, Potchefstroom Campus, 2004.
24

Soilborne disease suppressiveness / conduciveness : analysis of microbial community dynamics / by Johannes Hendrikus Habig

Habig, Johannes Hendrikus January 2003 (has links)
Take-all is the name given to the disease caused by a soilborne fungus Gaeumannomyces graminis (Sacc.) von Arx and Olivier var. tritici Walker (Ggt), an ascomycete of the family Magnaportheaceae (Cook, 2003). This fungus is an aggressive soil-borne pathogen causing root rot of wheat (primary host), barley and rye crops (secondary host). The flowering, seedling, and vegetative growth stages can be affected by the infection of the whole plant, leaves, roots, and stems. Infections of roots result in losses in crop yield and quality primarily due to a lowering in nutrient uptake. Take-all is most common in regions where wheat is cultivated without adequate crop rotation. Crop rotation allows time between the planting dates of susceptible crops, which causes a decrease in the inoculum potential of soilborne plant pathogens to levels below an economic threshold by resident antagonistic soil microbial communities. Soilborne disease suppressiveness is an inherent characteristic of the physical, chemical, and/or biological structure of a particular soil which might be induced by agricultural practices and activities such as the cultivation of crops, or the addition of organisms or nutritional amendments, causing a change in the microfloral environment. Disturbances of soil ecosystems that impact on the normal functioning of microbial communities are potentially detrimental to soil formation, energy transfers, nutrient cycling, and long-term stability. In this regard, an overview of soil properties and processes indicated that the use of microbiological and biochemical soil properties, such as microbial biomass, the analysis of microbial functional diversity and microbial structural diversity by the quantification of community level physiological profiles and signature lipid biomarkers are useful as indicators of soil ecological stress or restoration properties because they are more responsive to small changes than physical and chemical characteristics. In this study, the relationship between physico-chemical characteristics, and different biological indicators of soil quality of agricultural soils conducive, suppressive, and neutral with respect to take-all disease of wheat as caused by the soilborne fungus Gaeumannomyces graminis var. tritici (Ggt), were investigated using various techniques. The effect of crop rotation on the functional and structural diversity of soils conducive to take-all disease was also investigated. Through the integration of quantitative and qualitative biological data as well as the physico-chemical characteristics of the various soils, the functional and structural diversity of microbial IV communities in the soils during different stadia of take-all disease of wheat were characterised. All results were evaluated statistically and the predominant physical and chemical characteristics that influenced the microbiological and biochemical properties of the agricultural soils during different stadia of take-all disease of wheat were identified using multivariate analyses. Although no significant difference @ > 0.05) could be observed between the various soils using conventional microbiological enumeration techniques, the incidence of Gliocladium spp. in suppressive soils was increased. Significant differences @ < 0.05) were observed between agricultural soils during different stadia of take-all disease of wheat. Although no clear distinction could be made between soils suppressive and neutral to take-all disease of wheat, soils suppressive and conducive to take-all disease of wheat differed substantially in their community level physiological profiles (CLPPs). Soils suppressive / neutral to take-all disease were characterised by enhanced utilisation of carboxylic acids, amino acids, and carbohydrates, while conducive soils were characterised by enhanced utilisation of carbohydrates. Shifts in the functional diversity of the associated microbial communities were possibly caused by the presence of Ggt and associated antagonistic fungal and bacterial populations in the various soils. It was evident that the relationships amongst the functionality of the microbial communities within the various soils had undergone changes through the different stages of development of take-all disease of wheat, thus implying different substrate utilisation capabilities of present soil microbial communities. Diversity indices were calculated as Shannon's diversity index (H') and substrate equitability (J) and were overall within the higher diversity range of 3.6 and 0.8, respectively, indicating the achievement of very high substrate diversity values in the various soils. A substantial percentage of the carbon sources were utilised, which contributed to the very high Shannon-Weaver substrate utilisation indices. Obtained substrate evenness (equitability) (J) indices indicated an existing high functional diversity. The functional diversity as observed during crop rotation, differed significantly (p < 0.05) from each other, implying different substrate utilisation capabilities of present soil microbial communities, which could possibly be ascribed to the excretion of root exudates by sunflowers and soybeans. Using the Sorenson's index, a clear distinction could be made between the degrees of substrate utilisation between microbial populations in soils conducive, suppressive, and neutral to take-all disease of wheat, as well as during crop rotation. Furthermore, the various soils could also be differentiated on the basis of the microbial community structure as determined by phospholipid fatty acid (PLFA) analysis. Soil suppressive to take-all disease of wheat differed significantly (p < 0.05) from soils conducive, and neutral to take-all disease of wheat, implying a shift in relationships amongst the structural diversity of microbial communities within the various soils. A positive association was observed between the microbial phospholipid fatty acid profiles, and dominant environmental variables of soils conducive, suppressive, and neutral to take-all disease of wheat. Soils conducive and neutral to take-all disease of wheat were characterised by high concentrations of manganese, as well as elevated concentrations of monounsaturated fatty acids, terminally branched saturated fatty acids, and polyunsaturated fatty acids which were indicative of Gram-negative bacteria, Gram-positive bacteria and micro eukaryotes (primarily fungi), respectively. These soils were also characterised by low concentrations of phosphorous, potassium, percentage organic carbon, and percentage organic nitrogen, as well as low soil pH. Soil suppressive to take-all disease of wheat was characterised by the elevated levels of estimated of biomass and elevated concentrations of normal saturated fatty acids, which is ubiquitous to micro-organisms. The concentration of normal saturated fatty acids in suppressive soils is indicative of a low structural diversity. This soil was also characterised by high concentrations of phosphorous, potassium, percentage organic carbon, and percentage organic nitrogen, as well as elevated soil pH. The relationship between PLFAs and agricultural soils was investigated using principal component analysis (PCA), redundancy analysis (RDA) and discriminant analysis (DA). Soil suppressive to take-all disease of wheat differed significantly (p < 0.05) from soils conducive, and neutral to take-all disease of wheat, implying a shift in relationships amongst the structural diversity of microbial communities within the various soils. A positive association was observed between the microbial phospholipid fatty acid profiles, and dominant environmental variables of soils conducive, suppressive, and neutral to take-all disease of wheat. Hierarchical cluster analysis of the major phospholipid fatty acid groups indicated that the structural diversity differed significantly between soils conducive, suppressive, and neutral to take-all disease of wheat caused by Gaeumannomyces graminis var. tritici. The results indicate that the microbial community functionality as well as the microbial community structure was significantly influenced by the presence of take-all disease of wheat caused by Gaeumannomyces graminis var. tritici, and that the characterisation of microbial functional and structural diversity by analysis of community level physiological profiles and phospholipid fatty acid analysis, respectively, could be successfully used as an assessment criteria for the evaluation of agricultural soils conducive, suppressive, and neutral to take-all disease of wheat, as well as in crop rotation systems. This methodology might be of significant value in assisting in the management and evaluation of agricultural soils subject to the prevalence of other soilborne diseases. / Thesis (M.Sc. (Microbiology))--North-West University, Potchefstroom Campus, 2004.
25

Temporal Changes and Alternating Host Tree Root and Shoot Growth Affect Soil Microbiomes

de Dieu Habiyaremye, Jean, Herrmann, Sylvie, Buscot, François, Goldmann, Kezia 08 May 2023 (has links)
Patterns of trees’ endogenous rhythmic growth (ERG) and paralleled C allocation shift between root and shoot systems have been studied, but there is still a need to understand their impact in shaping soil microbiomes. Moreover, the impact of plants on soil microbial communities can be modulated or overweighed by time-induced plant and/or seasonal changes. Thus, we intended to analyze the structure of soil microbiomes as response to simultaneous alternated host tree root and shoot flushes and time-induced changes within one vegetation period at two sites in Central Germany. In this study, we utilized oak phytometers (Quercus robur L., clone DF159) as host trees, and made use of their ERG, whereby consecutive root and shoot flushes make a complete growth cycle. We studied two complete growth cycles during the same vegetation period, performed a non-destructive soil sampling and applied high-throughput amplicon sequencing of the bacterial 16S gene and the fungal ITS2 region. As C allocation shifts between the tree root and shoot, released root exudates and consequently the nutrient availability alternate for soil microorganisms. We therefore anticipated different microbial communities in the host tree root zone along the growth cycles until autumnal leaf senescence. In our results, the bacterial community exhibited a directional change over time along the vegetation period. In contrast, the fungal community appeared sample specific. Our findings enlarge the current understanding of the temporal microbial assembly in the host tree root zone.
26

Indicative Bacteria in Stored Biosolids and Wastewater Associated Pharmaceuticals in the Environment

Wu, Chenxi 08 September 2010 (has links)
No description available.
27

Microbial community structure and nematode diversity in soybean-based cropping systems / Chantelle Jansen

Jansen, Chantelle January 2014 (has links)
Soil is an important ecosystem that supports a wide variety of organisms such as bacteria, fungi, arthropods and nematodes. This sensitive ecosystem may be influenced by various factors, including agricultural management practices. With the introduction of genetically modified (GM) glyphosate-tolerant (RoundUp ® Ready: RR) crops, herbicides such as glyphosate have been increasingly used. However, little is known about the effect of glyphosate on the biological communities in these herbicide-sprayed soils. With the intimate proximity that microorganisms and nematodes have with the roots of plants, these organisms can be used to assess changes that may occur in the soil surrounding roots of RR crops. The aim of this study was to determine microbial community structure and nematode diversity, with emphasis on that of non-parasitic nematodes, in soil samples from conventional soybean (CS) - and RR- soybean fields compared to that in adjacent natural veld (NV) areas. Samples were collected from twenty three sites at six localities that are situated within the soybean-production areas of South Africa. These sites represented fields where RR and CS soybean grew, as well as surrounding NV. All RR fields have been treated with glyphosate for no less than five years. Microbial community structures of the twenty three sites in the RR, CS and NV ecosystems were determined by phospholipid fatty acid (PLFA) analyses. Nematode diversity was determined by extracting the nematodes from soil samples and conducting a faunal analysis. Soil physical and chemical properties were determined by an independent laboratory, Eco-Analytica (North West University, Potchefstroom) according to standard procedures. Results from this study indicated differences in microbial community structure between the various localities. However, there were no significant (p ≤ 0.05) differences in microbial community structures between RR- and CS ecosystems. Soils of both RR- and CS crops were primarily dominated by bacteria. Nematode identification and faunal analysis also indicated no significant (p ≤ 0.05) differences between the different non-parasitic/beneficial nematodes that were present in soils of these two ecosystems during the time of sampling. Non-parasitic nematode communities were primarily dominated by bacterivores. A faunal analysis indicated that most of the sites contained enriched, but unstructured soil food-webs. However, four of the sites showed enriched and structured food webs due to the presence of non-parasitic nematodes with high coloniser-persister (cp) values. Relationships between non-parasitic nematode – and microbial communities showed that there was a positive relationship between nematode functional groups and their corresponding microbial prey. From the results obtained in this study, it can be concluded that the community structures of both non-parasitic nematodes and microorganisms shared similarities. These community structures showed no long-term detrimental effects of glyphosate application in the soils surrounding roots of RR soybean crops. Relationships existed between non-parasitic nematode and microbial communities in the rhizosphere of soybean crops and natural veld. For example, bacterivore nematodes had a strong positive relationship with gram-negative bacteria. Similar but weaker relationships also existed between carnivores, omnivores, plantparasitic nematodes and gram-negative bacteria. A positive relationship also existed between fungivores and fungal fatty acids. This emphasises the value of these organisms as indicators of soil health and also the impact that agricultural practices can have on soils. / MSc (Environmental Sciences), North-West University, Potchefstroom Campus, 2014
28

Microbial community structure and nematode diversity in soybean-based cropping systems / Chantelle Jansen

Jansen, Chantelle January 2014 (has links)
Soil is an important ecosystem that supports a wide variety of organisms such as bacteria, fungi, arthropods and nematodes. This sensitive ecosystem may be influenced by various factors, including agricultural management practices. With the introduction of genetically modified (GM) glyphosate-tolerant (RoundUp ® Ready: RR) crops, herbicides such as glyphosate have been increasingly used. However, little is known about the effect of glyphosate on the biological communities in these herbicide-sprayed soils. With the intimate proximity that microorganisms and nematodes have with the roots of plants, these organisms can be used to assess changes that may occur in the soil surrounding roots of RR crops. The aim of this study was to determine microbial community structure and nematode diversity, with emphasis on that of non-parasitic nematodes, in soil samples from conventional soybean (CS) - and RR- soybean fields compared to that in adjacent natural veld (NV) areas. Samples were collected from twenty three sites at six localities that are situated within the soybean-production areas of South Africa. These sites represented fields where RR and CS soybean grew, as well as surrounding NV. All RR fields have been treated with glyphosate for no less than five years. Microbial community structures of the twenty three sites in the RR, CS and NV ecosystems were determined by phospholipid fatty acid (PLFA) analyses. Nematode diversity was determined by extracting the nematodes from soil samples and conducting a faunal analysis. Soil physical and chemical properties were determined by an independent laboratory, Eco-Analytica (North West University, Potchefstroom) according to standard procedures. Results from this study indicated differences in microbial community structure between the various localities. However, there were no significant (p ≤ 0.05) differences in microbial community structures between RR- and CS ecosystems. Soils of both RR- and CS crops were primarily dominated by bacteria. Nematode identification and faunal analysis also indicated no significant (p ≤ 0.05) differences between the different non-parasitic/beneficial nematodes that were present in soils of these two ecosystems during the time of sampling. Non-parasitic nematode communities were primarily dominated by bacterivores. A faunal analysis indicated that most of the sites contained enriched, but unstructured soil food-webs. However, four of the sites showed enriched and structured food webs due to the presence of non-parasitic nematodes with high coloniser-persister (cp) values. Relationships between non-parasitic nematode – and microbial communities showed that there was a positive relationship between nematode functional groups and their corresponding microbial prey. From the results obtained in this study, it can be concluded that the community structures of both non-parasitic nematodes and microorganisms shared similarities. These community structures showed no long-term detrimental effects of glyphosate application in the soils surrounding roots of RR soybean crops. Relationships existed between non-parasitic nematode and microbial communities in the rhizosphere of soybean crops and natural veld. For example, bacterivore nematodes had a strong positive relationship with gram-negative bacteria. Similar but weaker relationships also existed between carnivores, omnivores, plantparasitic nematodes and gram-negative bacteria. A positive relationship also existed between fungivores and fungal fatty acids. This emphasises the value of these organisms as indicators of soil health and also the impact that agricultural practices can have on soils. / MSc (Environmental Sciences), North-West University, Potchefstroom Campus, 2014
29

Structure of and carbon flux through soil food webs of temperate grassland as affected by land use management

Lemanski, Kathleen 24 October 2014 (has links)
No description available.
30

Rotating Drum Biofiltration

Yang, Chunping 06 October 2004 (has links)
No description available.

Page generated in 0.1078 seconds