• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 39
  • 13
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 65
  • 27
  • 21
  • 21
  • 19
  • 17
  • 17
  • 17
  • 15
  • 14
  • 14
  • 13
  • 13
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Hemispherical optical microcavity for cavity-QED strong coupling

Hannigan, Justin Michio, 1977- 12 1900 (has links)
xv, 204 p. : ill. (some col.) A print copy of this thesis is available through the UO Libraries. Search the library catalog for the location and call number. / This thesis reports on progress made toward realizing strong cavity quantum electrodynamics coupling in a novel micro-cavity operating close to the hemispherical limit. Micro-cavities are ubiquitous wherever the aim is observing strong interactions in the low-energy limit. The cavity used in this work boasts a novel combination of properties. It utilizes a curved mirror with radius in the range of 40-60 µm that exhibits high reflectivity over a large solid angle and is capable of producing a diffraction limited mode waist in the approach to the hemispherical limit. This small waist implies a correspondingly small effective mode volume due to concentration of the field into a small transverse distance. The cavity assembled for this investigation possesses suitably low loss (suitably low linewidth) to observe vacuum Rabi splitting under suitable conditions. According to best estimates for the relevant system parameters, this system should be capable of displaying strong coupling. The dipole coupling strength, cavity loss and quantum dot dephasing rates are estimated to be, respectively, g = 35µeV, κ = 30µeV, and γ = 15µeV. A survey of two different distributed Bragg reflector (DBR) samples was carried out. Four different probe lasers were used to measure transmission spectra for the coupled cavity-QED system. The system initially failed to display strong coupling due to the available lasers being too far from the design wavelength of the spacer layer, corresponding to a loss of field strength at the location of the quantum dots. Unfortunately, the only available lasers capable of probing the design wavelength of the spacer layer had technical problems that prevented us from obtaining clean spectra. Both a Ti:Al 2 O 3 and a diode laser were used to measure transmission over the design wavelength range. The cavity used here has many promising features and should be capable of displaying strong coupling. It is believed that with a laser system centered at the design wavelength and possessing low enough linewidth and single-mode operation across a wide wavelength range strong coupling should be observable in this system. / Committee in charge: Hailin Wang, Chairperson, Physics; Michael Raymer, Advisor, Physics; Jens Noeckel, Member, Physics; Richard Taylor, Member, Physics; Andrew Marcus, Outside Member, Chemistry
12

Phosphorescent Organic Light Emitting Diodes Implementing Platinum Complexes

January 2014 (has links)
abstract: Organic light emitting diodes (OLEDs) are a promising approach for display and solid state lighting applications. However, further work is needed in establishing the availability of efficient and stable materials for OLEDs with high external quantum efficiency's (EQE) and high operational lifetimes. Recently, significant improvements in the internal quantum efficiency or ratio of generated photons to injected electrons have been achieved with the advent of phosphorescent complexes with the ability to harvest both singlet and triplet excitons. Since then, a variety of phosphorescent complexes containing heavy metal centers including Os, Ni, Ir, Pd, and Pt have been developed. Thus far, the majority of the work in the field has focused on iridium based complexes. Platinum based complexes, however, have received considerably less attention despite demonstrating efficiency's equal to or better than their iridium analogs. In this study, a series of OLEDs implementing newly developed platinum based complexes were demonstrated with efficiency's or operational lifetimes equal to or better than their iridium analogs for select cases. In addition to demonstrating excellent device performance in OLEDs, platinum based complexes exhibit unique photophysical properties including the ability to form excimer emission capable of generating broad white light emission from a single emitter and the ability to form narrow band emission from a rigid, tetradentate molecular structure for select cases. These unique photophysical properties were exploited and their optical and electrical properties in a device setting were elucidated. Utilizing the unique properties of a tridentate Pt complex, Pt-16, a highly efficient white device employing a single emissive layer exhibited a peak EQE of over 20% and high color quality with a CRI of 80 and color coordinates CIE(x=0.33, y=0.33). Furthermore, by employing a rigid, tetradentate platinum complex, PtN1N, with a narrow band emission into a microcavity organic light emitting diode (MOLED), significant enhancement in the external quantum efficiency was achieved. The optimized MOLED structure achieved a light out-coupling enhancement of 1.35 compared to the non-cavity structure with a peak EQE of 34.2%. In addition to demonstrating a high light out-coupling enhancement, the microcavity effect of a narrow band emitter in a MOLED was elucidated. / Dissertation/Thesis / Doctoral Dissertation Materials Science and Engineering 2014
13

Oscilação em cavidades optomecânicas / Oscillation in optomechanical cavities

Luiz, Gustavo de Oliveira, 1988- 23 August 2018 (has links)
Orientador: Gustavo Silva Wiederhecker / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin / Made available in DSpace on 2018-08-23T23:27:40Z (GMT). No. of bitstreams: 1 Luiz_GustavodeOliveira_M.pdf: 12840478 bytes, checksum: 50b184b19ca56624e14520e4331b112a (MD5) Previous issue date: 2013 / Resumo: A transferência de momento linear da luz para partículas foi teorizada no século XVII por Johanes Kepler e demonstrada pela primeira vez por Lebedev e, independentemente, por Nichols e Hull apenas em 1901. Em cavidades ópticas, como demonstrado por V. Braginsky, essa interação pode dar origem a diversos fenômenos interessantes. No ano de 2005 Tal Carmon demonstra alguns destes efeitos em cavidades microfabricadas. Nesta dissertação são apresentados os resultados de estudos sobre as microcavidades optomecânicas de disco duplo de nitreto de silício. Dentre estes estão medidas de ruído térmico de uma cavidade optomecânica deste tipo; a demonstração teórica de que deve ser possível operar tais cavidades no regime de banda lateral resolvida, usando modos mecânicos de ordem superior; a otimização do processo de fabricação destas cavidades, culminando em cavidades com fatores de qualidade mecânico, em vácuo e a temperatura ambiente, em torno de 10000 / Abstract: Momentum transfer from light to particles was theorized in the XVII century byJohanes Kepler and experimentally demonstrated for the first time by Lebedev and, independently, by Nichols and Hull only in 1901. In optical cavities, as shown by V. Braginsky, this interaction may result in many interesting phenomena. In 2005 Tal Carmon demonstrated some of these effects in microfabricated cavities. In this thesis the results of studies on silicon nitride double-disk optomechanical microcavities are presented. Among these results are the theoretical demonstration that it is possible to drive such devices in the resolved side-band regime, exciting higher order mechanical modes, thermal noise measurements and optimization of the fabrication process, yielding cavities with mechanical quality factors close to 10000, in vacuum and at room temperature / Mestrado / Física / Mestre em Física
14

Polarization and gain phenomena in dye-doped polymer micro-lasers / Phénomènes liés à la polarisation et au gain dans des micro-lasers en polymère dopé par des colorants organiques

Gozhyk, Iryna 16 October 2012 (has links)
La démonstration de la première diode laser organique reste un défi majeur en opto-électronique organique. Parmi les nombreuses problématiques à étudier, l’aspect « matériau » (gain et pertes) est capital. Par exemple, la limite théorique basse du seuil laser en pompage électrique pourrait être connue s’il existait une méthode d’estimation fiable du seuil laser en pompage optique. Dans cette thèse nous avons étudié le gain et la polarisation de lasers basés sur des couches minces de polymère dopées par des colorants organiques. L’originalité de ce travail repose sur l’étude des propriétés du matériau organique à travers l’analyse des caractéristiques de microlasers. Cela permet aussi de s’intéresser aux problématiques de couplage gain-mode et aux systèmes ouverts. Nous proposons une description quantitative du processus d’amplification dans les matériaux organiques. Une relation liant gain, pertes et seuil est établie dans le cas d’une cavité Fabry-Perot, ce qui permet par la suite l’étude de l’amplification optique et de l’extraction de la lumière dans les cavités diélectriques à travers la mesure précise du seuil laser. Nous avons exploré différentes formes de cavités, comme les carrés où la lumière est couplée vers l’extérieur par diffraction au niveau des coins. Nous avons démontré que l’anisotropie de fluorescence intrinsèque des molécules de colorant gouverne la polarisation de tels systèmes lasers. Nous avons développé à cette occasion un modèle original incluant la distribution non-isotrope des molécules dans le polymère. Nous avons aussi étudié le rôle de la géométrie de la cavité sur l’état de polarisation du laser, et différents moyens de contrôler cet état. / The demonstration of an electrically pumped organic laser remains a major issue of organic optoelectronics for several decades. This goal requires an improved device configuration so as to reduce losses which are intrinsically higher under electrical excitation compared to optical pumping. Moreover a systematic investigation of the material properties is still missing and should lead to a reliable estimate of the lasing threshold under optical pumping, and then to a lower limit for electrical pumping. In this thesis we addressed the issue of gain and polarization properties of organic materials in the case of dye-doped polymer thin films. The originality of this work lies in the study of materials via the features of dielectric micro-lasers, allowing to investigate the issues of gain and mode coupling and the physics of open systems. We propose a quantitative description of amplification in organic materials. The “gain-loss-threshold” relation was developed and demonstrated for a Fabry-Perot type cavity, opening the way to study both amplification in organic materials and light out-coupling in dielectric micro-cavities via the lasing threshold. Within this context, different cavity shapes were studied, for instance squares, where light out-coupling takes place by diffraction at dielectric corners. We evidence that polarization properties of such lasing system originate from the intrinsic fluorescence anisotropy of dyes, which required to develop a specific anisotropic model going beyond the existing theory. We also investigated the role of the cavity geometry on the polarization states of the micro-lasers and proposed different ways to influence these features.
15

Spectroscopie optique de nanostructures GaN/AlN insérées dans des microcavités planaires et des microdisques / Optical spectroscopy of GaN/AlN nanostructures embedded in planar microcavities and microdisks

Selles, Julien 07 December 2015 (has links)
Cette thèse porte sur l'interaction lumière-matière au sein de nanostructures placées dans des cavités optiques à base de semi-conducteurs nitrures. A l'aide d'expériences de micro-photoluminescence dans l'ultra-violet, nous étudions les propriétés optiques de boîtes quantiques GaN/AlN dans des microcavités planaires et celles de puits quantiques GaN/AlN insérés dans des microdisques AlN.Afin d'améliorer la collection du faible signal de photoluminescence de boîtes quantiques uniques, nous utilisons des microcavités planaires pour modifier le diagramme d'émission d'une boîte quantique. Le dessin des microcavités est optimisé grâce à des simulations numériques basées sur la méthode des matrices de transfert en présence d'un émetteur. Nous montrons que, pour une microcavité nitrure à base de miroirs de Bragg AlN/AlGaN, la collection des photons émis par une boîte quantique peut être théoriquement améliorée d'un ordre de grandeur, ce qui est confirmé par nos mesures sur boîtes quantiques uniques, ouvrant ainsi la voie à des études avancées de corrélations de photons dans l'UV.La seconde partie des travaux est dédiée à la réalisation d'un micro-laser opérant dans l'UV profond et à température ambiante. En utilisant des puits quantiques GaN/AlN de 2,8 mono-couches, crûs sur substrat silicium et insérés dans des microdisques AlN, nous observons une émission laser à 275 nm sous pompage optique impulsionnel. Cette démonstration montre le fort potentiel des semi-conducteurs nitrures pour la nano-photonique UV sur silicium. / This thesis addresses the light-matter interaction in nitride nanostructures embedded in optical microcavities. By using micro-photoluminescence experiments, we study the optical properties of GaN/AlN quantum dots embedded in planar microcavities and those of GaN/AlN quantum wells in AlN microdisks.By placing quantum dots in planar microcavities, we are able to modify the emission diagram and increase the collection efficiency. The design of the microcavities is optimized by using numerical simulations based on transfer matrix method with an internal emitter. For an AlN microcavity with AlN/AlGaN Bragg mirrors, we show that the collection efficiency could be theoretical increase by one order of magnitude, which is confirmed by our micro-photoluminescence experiments on single quantum dots. This observation opens the way for advanced studies such as photon correlations experiments in the UV range.The second part of our work is devoted to the realization of a micro-laser operating in the deep-UV range at room-temperature. By using thin GaN/AlN quantum wells (2.8 monolayers), grown on silicon substrate and embedded in AlN microdisks, we observe a laser emission at 275 nm under pulsed optical pumping. This demonstration shows the strong potentiality for future developments of nitride-on-silicon nano-photonics.
16

Subwavelength-scale Light Localization in Complete Photonic Bandgap Materials

Tang, Lingling January 2010 (has links)
<p>The objective of this dissertation work is to examine light localization in semiconductors provided by a complete photonic bandgap via three-dimensional (3D) woodpile photonic crystals. A 3D photonic crystal is a periodic nanostructure that demonstrates omni-directional Bragg reflection. These materials are anticipated to become a powerful tool for engineering light propagation and localization within subwavelength scales due to their complete photonic bandgap and the distinctive dispersion relation. </p><p>The approach of realizing microcavities in this dissertation is to combine multi-directional etching fabrication methods with mode gap design. Modulation of unit cell size along a line-defect 3D waveguide could bring a guiding mode into the mode gap region of the waveguide and form a microcavity with a resonance inside the complete photonic bandgap. The designed microcavities could be fabricated by multi-directional etching methods because they can structurally be decomposed into two sets of connected and straight dielectric rods. </p><p>Ultra-high-quality factor microcavities and sub-wavelength-scale waveguides are designed without introduction of local disorders. Monopole, dipole, and quadrupole resonant modes are demonstrated with a small modal volume. The smallest modal volumes obtained are 0.36 cubic half-wavelengths for a resonance field in vacuum, and 2.88 cubic half-wavelengths for a resonance field in a dielectric. Direct metal contacts with the microcavities do not significantly deteriorate the quality factors because the resonant fields are located inside the microcavities. Single-mode woodpile waveguides are also designed in both lateral and vertical propagation directions. </p><p>The multi-directional etching method is a simple approach to the fabrication of woodpile photonic crystals and designed optical components with a variety of crystal orientations and surfaces, including (110), (001), (100), and (010) planes. An arbitrary surface plane (mn0) is obtained with this method, where m and n are integers. Moreover, it can also produce large area woodpile photonic crystals with high precision in silicon and GaAs materials.</p><p>These optical components in woodpile photonic crystals would be building blocks of high-density, low-loss 3D integrated optics, cavity quantum electrodynamics (QED), nonlinear optics, and enable the realization of current-injection optical devices.</p> / Dissertation
17

Optical Manipulation and Sensing with Silicon Photonics

Lin, Shiyun 15 March 2013 (has links)
Optical trapping enables the non-contact manipulation of micro and nanoparticles with extremely high precision. Recent research on integrated optical trapping using the evanescent fields of photonic devices has opened up new opportunities for the manipulation of nano- and microparticles in lab-on-a-chip devices. Considerable interest has emerged for the use of optical microcavities as “sensors-on-a-chip”, due to the possibility for the label-free detection of nanoparticles and molecules with high sensitivity. This dissertation focuses on the demonstration of an on-chip optical manipulation system with multiple functionalities, including trapping, buffering, sorting, and sensing. We demonstrate the optically trapping of polystyrene particles with diameters from 110 nm to 5.6 \(\mu m\) using silicon microrings and photonic crystal cavities. By integrating multiple microrings with different resonant wavelengths, we show that tuning the laser wavelength to the resonance wavelengths of different rings enables trapped particles to be transferred back and forth between the rings in a controllable manner. We term this functionality “buffering”. We furthermore demonstrate an integrated microparticle passive sorting system based on the near-field optical forces exerted by a 3-dB optical power splitter that consists of a slot waveguide and a conventional channel waveguide. In related work, we demonstrate an ultra-compact polarization splitter design leveraging the giant birefringence of silicon-on-insulator slot waveguides to achieve a high extinction ratio over the entire C band. We demonstrate trapping-assisted particle sensing, using the shift in the microcavity resonance induced by the trapped particle. We show that this permits the sensing of proteins via a binding assay approach, in which the presence of green fluorescent protein causes the particles to bind. By detecting the size distribution of particles clusters using the microcavity, we quantitatively detect the GFP concentration. In a complementary approach, we demonstrate a reusable and reconfigurable surface-enhanced Raman scattering (SERS) sensing platform. We use a photonic crystal cavity to trap silver nanoparticles in a controllable manner, and measure SERS from molecules on their surfaces. We anticipate that the on-chip sensing approaches we introduce could lead to various applications in nanotechnology and the environmental and life sciences. / Engineering and Applied Sciences
18

Polarization and gain phenomena in dye-doped polymer micro-lasers

Gozhyk, Iryna 16 October 2012 (has links) (PDF)
The demonstration of an electrically pumped organic laser remains a major issue of organic optoelectronics for several decades. This goal requires an improved device configuration so as to reduce losses which are intrinsically higher under electrical excitation compared to optical pumping. Moreover a systematic investigation of the material properties is still missing and should lead to a reliable estimate of the lasing threshold under optical pumping, and then to a lower limit for electrical pumping. In this thesis we addressed the issue of gain and polarization properties of organic materials in the case of dye-doped polymer thin films. The originality of this work lies in the study of materials via the features of dielectric micro-lasers, allowing to investigate the issues of gain and mode coupling and the physics of open systems. We propose a quantitative description of amplification in organic materials. The "gain-loss-threshold" relation was developed and demonstrated for a Fabry-Perot type cavity, opening the way to study both amplification in organic materials and light out-coupling in dielectric micro-cavities via the lasing threshold. Within this context, different cavity shapes were studied, for instance squares, where light out-coupling takes place by diffraction at dielectric corners. We evidence that polarization properties of such lasing system originate from the intrinsic fluorescence anisotropy of dyes, which required to develop a specific anisotropic model going beyond the existing theory. We also investigated the role of the cavity geometry on the polarization states of the micro-lasers and proposed different ways to influence these features.
19

Optical control of polariton condensation and dipolaritons in coupled quantum wells

Cristofolini, Peter January 2015 (has links)
Polaritons are lightweight bosonic quasiparticles that result from the strong coupling of light with an exciton transition inside a microcavity. A sufficiently dense cloud of polaritons condenses into a polariton condensate, a state of matter showing macroscopic coherence and superfluid properties, whose dynamics are influenced by the cycle of constant pumping and decay of polaritons. This thesis begins with an introduction on the particle and wave properties of the polariton condensate, followed by a theoretical description of two-dimensional Bose-Einstein condensation (BEC) and a section on simulation of polariton condensates. The optical setup and the microcavity sample are presented thereafter, including holographic laser shaping with a spatial light modulator (SLM), which allows exciting the microcavity with arbitrarily shaped pump geometries. Experimental results comprise optical control of polariton condensates, and dipolaritons. First, optical blueshift trapping and energy synchronisation (phase locking) of condensates are introduced. The transition from phase-locked condensates to an optically trapped condensate is investigated for a configuration of N pump spots arranged on a circle of varying diameter. Differences between these two condensate types are highlighted in the discussion section. Next, two parallel pump laser lines with small separation are investigated, which create a one-dimensional waveguide with strong uniform gain. Optically guided polaritons are investigated in this configuration with respect to coherence, flow speed, temperature and chemical potential. Observations hint that coherence arises below the condensation threshold simply from the chosen geometry of the system. The final chapter is dedicated to dipolaritons (polaritons with a static dipole moment) which form when polaritons strongly couple to indirect excitons in coupled quantum wells. In this system quantum tunnelling of electrons can be controlled with bias voltage. This allows tuning the dipolariton properties optically and electrically, with exciting prospects for future experiments. A conclusion and outlook section rounds off this work.
20

Réalisation et caractérisation optique de microcavités en régime de couplage fort mettant à profit la structure en multi-puits quantiques auto-organisés des pérovskites en couches minces / Realization and optical characterisation of microcavities in strong coupling regime using self-assembled multi-quantum wells structure of 2D perovskites

Lanty, Gaëtan 21 November 2011 (has links)
Le travail de recherche qui est rapporté dans ce manuscrit porte sur les couches minces de pérovskites et leur utilisation dans le cadre de la problématique des microcavités en régime de couplage fort. L’arrangement cristallin des pérovskites forme une structure en multi-puits quantiques dans laquelle les états excitoniques présentent une grande force d’oscillateur et une énergie de liaison importante (quelques 100 meV), en raison des effets de confinements quantique et diélectrique. Un premier axe de ce travail a consisté à collecter des informations sur les propriétés excitoniques de ces matériaux. Sur une pérovskite particulière (PEPI), nous avons notamment effectué des mesures de photoluminescence sous excitation impulsionnelle et des mesures pompe-sonde qui semblent suggérer l’existence, sous forte densité d’excitation, d’un processus de recombinaison Auger des excitons. Un deuxième axe de recherche fut de mettre en cavité des couches de certaines pérovskites. Avec les pérovskites PEPI et PEPC, nous avons montré que la réalisation de microcavités présentant un facteur de qualité de l'ordre de la dizaine suffit à obtenir, à température ambiante, le régime de couplage fort en absorption et en émission avec des dédoublements de Rabi pouvant atteindre 220 meV. Un goulet d’étranglement dans la relaxation des polaritons a été clairement mis en évidence pour la microcavité PEPI. Nous avons d’autre part montré que les pérovskites pouvaient également être associées à des semi-conducteurs inorganiques dans des microcavités dites "hybrides". Selon Agranovich et al., ces dernières pourraient, dans le cadre de la problématique du laser à polaritons, constituer une alternative à l'augmentation du facteur de qualité des microcavités. Dans cette optique, le couple ZnO/MFMPB semble particulièrement prometteur. / The research work which is reported in this manuscript focuses on 2D perovskites and their use to obtain microcavities working in the strong coupling regime. Perovskite structure forms a multi-quantum wells in which the excitonic states have a high oscillator strength and a large binding energy (a few 100 meV) due to quantum and dielectric confinement effects. A first axis of this work was to collect information on the excitonic properties of these materials. On a particular perovskite (PEPI), we performed photoluminescence and pump-probe measurements, which seem to suggest the existence, under high excitation density, a process of Auger recombination of excitons. A second research axis was to put in cavity thin layers of some perovskites. With PEPI and PEPC perovskites, we have shown that the realization of microcavities with a quality factor of the order of ten is sufficient to obtain at room temperature, the strong coupling regime in absorption and emission with Rabi splitting up to 220 meV. A bottleneck effect has been clearly demonstrated for the PEPI microcavity. We have also shown that perovskites could be associated with inorganic semiconductors in “hybrid” microcavities. According Agranovich et al., these microcavities could present polariton lasing with lower quality factors. To this end, the ZnO/MFMPB association seems particularly promising.

Page generated in 0.0598 seconds