• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 39
  • 13
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 65
  • 27
  • 21
  • 21
  • 19
  • 17
  • 17
  • 17
  • 15
  • 14
  • 14
  • 13
  • 13
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Ultra-small open access microcavities for enhancement of the light-matter interaction

Dolan, Philip R. January 2012 (has links)
The design, construction and characterisation of a novel, arrayed, open-access optical microcavity is described. Included in this thesis are the precise fabrication details, making use of the focused ion beam. A technique for analysing and optimising the microcavities constructed, making use of an atomic force microscope is also included. Results from the optical characterisation of the fabricated microcavities are presented, including quality factors of around 104, and fitnesses of around 400. The optical analysis then progressed onto coupling colloidal semiconductor nanocrystals to the microcavity modes. This yielded room temperature Purcell enhancements, single particle sensing, and also allowed for the characterisation of a second iteration of cavities. This improved set was shown to achieve fitnesses in excess of 1800 and quality factors with a lower limit of 15000. The optical identification of single NV centres in nanodiamond is discussed, along with the development of an optical apparatus to couple them to microcavities at cryogenic temperatures. Finally several results from finite difference time domain simulations will be presented, showing ultimate mode volumes of less than 0.5 cubic wavelengths are possible for this approach.
32

Vers la fabrication d’échantillons permettant la condensation Bose-Einstein de polaritons excitoniques dans des cristaux d’anthracène en microcavités

Robert, Mathieu 08 1900 (has links)
Nous investiguons dans ce travail la création d'échantillons permettant l'étude du comportement des polaritons excitoniques dans les matériaux semi-conducteurs organiques. Le couplage fort entre les états excités d'électrons et des photons impose la création de nouveaux états propres dans le milieu. Ces nouveaux états, les polaritons, ont un comportement bosonique et sont donc capables de se condenser dans un état fortement dégénéré. Une occupation massive de l'état fondamental permet l'étude de comportements explicables uniquement par la mécanique quantique. La démonstration, au niveau macroscopique, d'effets quantiques promet d'éclairer notre compréhension de la matière condensée. De plus, la forte localisation des excitons dans les milieux organiques permet la condensation des polaritons excitoniques organiques à des températures beaucoup plus hautes que dans les semi-conducteurs inorganiques. À terme, les échantillons proposés dans ce travail pourraient donc servir à observer une phase cohérente macroscopique à des températures facilement atteignables en laboratoire. Les cavités proposées sont des résonateurs Fabry-Perot ultraminces dans lesquels est inséré un cristal unique d'anthracène. Des miroirs diélectriques sont fabriqués par une compagnie externe. Une couche d'or de 60 nanomètres est ensuite déposée sur leur surface. Les miroirs sont ensuite mis en contact, or contre or, et compressés par 2,6 tonnes de pression. Cette pression soude la cavité et laisse des espaces vides entre les lignes d'or. Une molécule organique, l'anthracène, est ensuite insérée par capillarité dans la cavité et y est cristallisée par la suite. Dans leur état actuel, les cavités présentent des défauts majeurs quant à la planarité des miroirs et à l'uniformité des cristaux. Un protocole détaillé est présenté et commenté dans ce travail. Nous y proposons aussi quelques pistes pour régler les problèmes courants de l'appareil. / In this work we investigate the creation of samples for the study of the behavior of excitonic polaritons in organic semiconductor materials. The strong coupling between the excited states of electrons and photons implies the creation new eigenstates in the medium. These new states, called polaritons, are composite bosons and are therefore capable of condensing in a strongly degenerated state. A massive occupation of the ground state allows the study of behaviors that are only explainable by quantum mechanics. A macroscopic demonstration of quantum effects offers a rare opportunity for scientific research and discoveries. The strong localization of excitons in organic materials allows condensation of exciton polaritons at temperatures much higher than in inorganic semiconductors. Therefore the samples proposed in this work could ultimately be used to observe a macroscopic coherent phase at temperatures easily attainable in a laboratory. The cavities proposed in this work are Fabry-Perot resonators in which anthracene is inserted and crystalized. The mirrors used in the resonator are dielectric reflectors made by a external company according to our specifications. A gold layer of 60 nm is deposited on their surface. The mirrors are then brought into contact, gold against gold, and compressed by 2.6 tons of pressure. This pressure seals the cavity and leaves voids between the gold lines. An organic molecule, anthracene, is then inserted in by capillary inside the cavity voids and subsequently crystallized by controlled cooling. In their current state cavities have defects regarding the planarity of the mirrors and the uniformity of the crystals. A detailed protocol is presented and discussed in this work.
33

Electron and nuclear spin dynamics in GaAs microcavities / Dynamique de spin des électrons et des noyaux dans les microcavités GaAs

Giri, Rakshyakar 18 June 2013 (has links)
Nous avons obtenu des angles de rotation Faraday (RF) allant jusqu'à 19° par orientation optique d'un gaz d'électrons dans GaAs de type n inclus dans une microcavité (Q=19000), sans champ magnétique. Cette forte rotation est obtenue en raison des multiples allers-retours de la lumière dans la cavité. Nous avons également démontré la commutation optique rapide de la RF à l'échelle sub-microseconde en échantillonnant le signal de RF sous excitation impulsionnelle mono-coup. De la dépolarisation de la RF en champ magnétique transverse, nous avons déduit un temps de relaxation de spin de 160 ns. Le concept de section efficace de RF, coefficient de proportionnalité entre l'angle RF, la densité de spin électronique, et le chemin parcouru, a été introduit. La section efficace de RF, qui définit l'efficacité du gaz d'électrons à produire une RF, a été estimée quantitativement, et comparée avec la théorie. Nous avons également démontré la possibilité de mesurer de manière non destructive l'aimantation nucléaire dans GaAs-n, via la RF amplifiée par la cavité. Contrairement aux méthodes existantes, cette détection ne nécessite pas la présence d'électrons hors équilibre. Par cette technique nous avons étudié la dynamique de spin nucléaire dans GaAs-n avec différents dopages. Contrairement à ce qu'on pourrait attendre, le déclin de la RF nucléaire est complexe et consiste en deux composantes ayant des temps de relaxation très différents. Deux effets à l'origine de la RF nucléaire sont identifiés: le splitting de spin de la bande de conduction, et la polarisation en spin des électrons localisés, tous deux induits par le champ Overhauser. Le premier effet domine la RF nucléaire dans les deux échantillons étudiés, tandis que la RF induite par les électrons localisés n'a été observée que dans l'échantillon métallique. / We obtained Faraday rotation (FR) up to 19° by using optical orientation of electron gas in n-doped bulk GaAs confined in a microcavity (Q=19000), in the absence of magnetic field. This strong rotation is achieved because the light makes multiple round trips in the microcavity. We also demonstrated fast optical switching of FR in sub-microsecond time scale by sampling the FR in a one-shot experiment under pulsed excitation. From the depolarization of FR by a transverse magnetic field, we deduce electron spin relaxation time of about 160 ns. A concept of FR cross-section as a proportionality coefficient between FR angle, electron spin density and optical path is introduced. This FR cross-section which defines the efficiency of spin polarized electrons in producing FR was estimated quantitatively and compared with theory. We also demonstrated non-destructive measurement of nuclear magnetization in n-GaAs via cavity enhanced FR. In contrast with the existing optical methods, this detection scheme does not require the presence of detrimental out-of-equilibrium electrons. Using this technique, we studied nuclear spin dynamics in n-GaAs with different doping concentrations. Contrary to simple expectation, the nuclear FR is found to be complex, and consists of two components with vastly different time constants. Two effects at the origin of FR have been identified: the conduction band spin splitting and the localized electron spin polairzation both induced by the Overhauser field. The first effect dominates the FR in both studied samples, while the FR induced by the localized electrons has been observed only in the metallic sample.
34

Lasing and strong coupling in inorganic and organic photonic structures

Höfner, Michael 18 May 2016 (has links)
Diese Arbeit beschäftigt sich mit der Untersuchung der starken Kopplung und Laseremission in Strukturen, die ZnO, ZnCdO oder organische Moleküle als aktives Material enthalten. Die ZnCdO basierten Vielfachquantengräben erreichen ihre Laserschwelle durch optische Ruckkopplung an streuenden Luftlöchern. Diese Emitter nennt man random laser. Die Dynamik ihrer Emission unter quasi-stationären Bedingungen ist der hier gezeigte Fokus. Hoch reproduzierbare Anregungen werden verwendet um sowohl die Dynamik eines einzelnen Beschusses aber auch die Unterschiede verschiedener Anregungen zu untersuchen. Die experimentellen Daten werden durch numerische Simulation qualitativ reproduziert und mit Methoden der Netzwerktheorie interpretiert. Die verbreitetere optische Rückkopplung durch einen Resonator wird in der Untersuchung des Moleküls L4P und seiner Spiro-derivate benutzt. Zwei identische Braggspiegel umschließen die aktive Schicht aus L4P-SP2, das in eine Polymermatrix eingebettet ist, eine Dicke von 12 Mikrometer hat und in einer einzelnen Mode lasert (schwache Kopplung). Durch Verringerung der aktiven Schicht auf die Hälfte der Resonanzwellenlänge wird das System in den Bereich der starken Kopplung gebracht. Eine Rabi-Aufspaltung von 90 meV wird zu beiden vibronischen Resonanzen beobachtet. Die energetische Position in Resonanz zu ZnO macht dieses Molekül zu einem guten Kandidaten für die Fertigung einer hybriden Mikrokavität im Bereich der starken Kopplung. Dies wurde in einer teilweise epitaktisch gewachsenen Mikrokavität angewandt, die aus einem ZnMgO basierten Braggspiegel und sechs Quantengräben besteht. Darauf folgt eine aufgeschleuderte Schicht von L4P in der Polymermatrix. Der Resonator wird mit einem dielektrischen Spiegel fertiggestellt. Tieftemperatur Reflektion zeigt eine deutlichen ausweichen und eine gleichverteilte Mischung der drei Resonanz im mittleren Polaritonzweig. / This thesis presents the investigation of strong coupling and lasing in structures using ZnO, ZnCdO or organic molecules as active material. The ZnCdO based multi quantum well structures reach the lasing threshold by using scattering at air holes as the optical feedback. Such emitters are called random lasers. The dynamics of their emission under quasi-stationary condition is the point of interest presented. Highly reproducible excitations are used to investigate the single shot dynamics and their shot to shot differences. The experimental data is qualitatively reproduced by numerical simulation and interpreted by means of network theory. The more common optical feedback by a cavity is applied in the investigation of the molecule L4P and its spiro-derivatives. Using two identical SiO2/ZrO2 based Bragg reflectors surrounding an active layer of L4P-SP2 in a polymer matrix of approximately 12 microns thickness reached single mode lasing (weak coupling). Reducing the active layer thickness to half the resonance wavelength pushes the system into the strong coupling regime. Angular resolved reflectivity shows the anticrossing of the tuned cavity resonance to two vibronic transitions of the molecule. The Rabi-splitting to both vibronic resonances reaches around 90 meV. The energetic position in resonance to ZnO makes this molecule a promising candidate for a hybrid inorganic/organic microcavity in the strong coupling regime. This is used in a partially epitaxially grown microcavity composed of a ZnMgO based Bragg reflector (alternating layers of different Mg content) and six quantum wells. This is followed by a spincoated layer of L4P in a polymer matrix. The cavity is finished by a dielectric mirror. Low temperature reflectivity shows a clear anticrossing reaching an equal mixing of all resonances for the middle branch.
35

Terahertz oscillation and stimulated emission from planar microcavities

Gehlhaar, Robert 20 July 2007 (has links) (PDF)
In the past decades, the miniaturization in optics led to new devices with structural sizes in the range of the light wavelength, where the photonic modes are con- fined and the number of states is limited. In the smallest microcavities, i.e. micrometer sized optical resonators, the propagation of only one mode is permitted that is simultaneously amplified internally. This particularly strong enhancement of the electric field is directly related to the quality factor of the cavity. By introducing an optical dipole into a high-Q microcavity, the spontaneous emission is amplified at the cavity mode frequency enabling stimulated emission in an inverted system. Although some of theses cavity e®ects can only be understood by quantum elec- trodynamic theory, most mechanisms are accessible by classical and semi-classical approaches. In this thesis, one-dimensional planar microcavities with quality factors up to 4500 have been fabricated by physical vapor deposition of dielectric thin films and organic active materials. A new cavity design based on anisotropic dielectric mirrors grown by oblique angle deposition microcavities with two energetically shifted orthogonally polarized modes is presented. The application of these anisotropic structures for terahertz di®erence signal generation is demonstrated in spectrally and time resolved transmission experiments, where optical beats with repetition rates in the terahertz range are observed. Optically pumped organic vertical cavity surface emitting lasers (VCSELs) have been realized by applying an organic solid state laser compound and high reflectance distributed Bragg reflectors. These lasers combine a very low laser threshold with small beam divergence and good stability. A transfer of the anisotropic design towards an organic VCSEL results in the generation of two perpendicularly polarized laser modes with a splitting adjustable by the fabrication conditions. The observation of an oscillation of two laser modes in a photomixing experiment proves a phase coupling mechanism. This demonstrates the potential of the anisotropic cavity design for a passive or active component in a terahertz radiation source or frequency generator. Furthermore, microcavities with two and three coupled resonators are investigated. By the application of time-resolved transmission experiments, spatial oscil- lations of the internal electric field - photonic Bloch oscillations - are successfully demonstrated. In combination with the anisotropic microcavities, this is a second concept for the modulation of transmitted light with terahertz frequencies. All experiments are accompanied by numerical or analytical models. Transmission experiments of continuously incident light and single laser pulses are compared with transfer matrix simulations and Fourier transform based approaches. For the modeling of emission experiments, a plane wave expansion method is successfully used. For the analysis of the organic VCSEL dynamics, we apply a set of rate equations that explains the gain switching process.
36

Vers la fabrication d’échantillons permettant la condensation Bose-Einstein de polaritons excitoniques dans des cristaux d’anthracène en microcavités

Robert, Mathieu 08 1900 (has links)
Nous investiguons dans ce travail la création d'échantillons permettant l'étude du comportement des polaritons excitoniques dans les matériaux semi-conducteurs organiques. Le couplage fort entre les états excités d'électrons et des photons impose la création de nouveaux états propres dans le milieu. Ces nouveaux états, les polaritons, ont un comportement bosonique et sont donc capables de se condenser dans un état fortement dégénéré. Une occupation massive de l'état fondamental permet l'étude de comportements explicables uniquement par la mécanique quantique. La démonstration, au niveau macroscopique, d'effets quantiques promet d'éclairer notre compréhension de la matière condensée. De plus, la forte localisation des excitons dans les milieux organiques permet la condensation des polaritons excitoniques organiques à des températures beaucoup plus hautes que dans les semi-conducteurs inorganiques. À terme, les échantillons proposés dans ce travail pourraient donc servir à observer une phase cohérente macroscopique à des températures facilement atteignables en laboratoire. Les cavités proposées sont des résonateurs Fabry-Perot ultraminces dans lesquels est inséré un cristal unique d'anthracène. Des miroirs diélectriques sont fabriqués par une compagnie externe. Une couche d'or de 60 nanomètres est ensuite déposée sur leur surface. Les miroirs sont ensuite mis en contact, or contre or, et compressés par 2,6 tonnes de pression. Cette pression soude la cavité et laisse des espaces vides entre les lignes d'or. Une molécule organique, l'anthracène, est ensuite insérée par capillarité dans la cavité et y est cristallisée par la suite. Dans leur état actuel, les cavités présentent des défauts majeurs quant à la planarité des miroirs et à l'uniformité des cristaux. Un protocole détaillé est présenté et commenté dans ce travail. Nous y proposons aussi quelques pistes pour régler les problèmes courants de l'appareil. / In this work we investigate the creation of samples for the study of the behavior of excitonic polaritons in organic semiconductor materials. The strong coupling between the excited states of electrons and photons implies the creation new eigenstates in the medium. These new states, called polaritons, are composite bosons and are therefore capable of condensing in a strongly degenerated state. A massive occupation of the ground state allows the study of behaviors that are only explainable by quantum mechanics. A macroscopic demonstration of quantum effects offers a rare opportunity for scientific research and discoveries. The strong localization of excitons in organic materials allows condensation of exciton polaritons at temperatures much higher than in inorganic semiconductors. Therefore the samples proposed in this work could ultimately be used to observe a macroscopic coherent phase at temperatures easily attainable in a laboratory. The cavities proposed in this work are Fabry-Perot resonators in which anthracene is inserted and crystalized. The mirrors used in the resonator are dielectric reflectors made by a external company according to our specifications. A gold layer of 60 nm is deposited on their surface. The mirrors are then brought into contact, gold against gold, and compressed by 2.6 tons of pressure. This pressure seals the cavity and leaves voids between the gold lines. An organic molecule, anthracene, is then inserted in by capillary inside the cavity voids and subsequently crystallized by controlled cooling. In their current state cavities have defects regarding the planarity of the mirrors and the uniformity of the crystals. A detailed protocol is presented and discussed in this work.
37

Laterally modified microcavity systems containing organic emitters

Langner, Maik 21 April 2011 (has links) (PDF)
The scope of this work is an in-depth investigation of dielectric mirror microcavities with central organic dye layers, which are preferably modified in at least one lateral dimension. The large quality factor of the planar resonator in conjunction with comparatively stable and spectrally broad emitting molecules allows for a detailed analysis of several aspects of microresonator systems. Their optical properties are analyzed both with transmission and luminescence measurements as well as in the lasing regime. The first part presents the resonant mode properties of planar and laterally structured microcavities. With the help of a high-resolution imaging micro-photoluminescence setup, working either in the spatial (near field) or vectorial (far field) regime, the polarization splitting is studied in a detuned microcavity, containing the dye 4,4'-bis[(N-carbazole)styryl]biphenyl (BSB-Cz) in a matrix of 4,4'-di(N-carbazolyl)- biphenyl (CBP). With the help of a thickness gradient, a relation between the large spectral distance of the cross-polarized states and the mode position within the stop band is investigated. In shadow-mask prepared, laterally restricted devices (5x5 µm2 square boxes), the three-dimensional confinement introduces sets of discrete modes, which experience a similar polarization splitting. The origin in this case is a different phase shift of electromagnetic waves during internal total reflection at a boundary. By using a concentration gradient planar microcavity sample of the dye 4-(dicyanomethylene)-2-methyl-6-(4-(dimethylamino)styryl)-4H-pyran (DCM) in a tris-(8-hydroxyquinoline)aluminum (Alq3) matrix, the influence of the number of emitters on the lasing characteristics is subsequently analyzed. Depending on the pumping conditions, and thus the involvement of the Förster resonant energy transfer, an optimal composition is identified. After a qualitative evaluation of the long-term stability upon various excitation energies, the attention is focussed to the modification of the stimulated emission properties of photonic boxes. The stronger field concentration and altered density of states leads to a significant improvement of the values for the coupling factor fi and the threshold levels. Furthermore, new properties arise, namely simultaneous multimode and off-axis laser emission. With an inhomogeneous excitation of the box, it is possible to selectively excite single modes above the threshold. The work ends with experimental results of metal structures as additional optical element in the organic microcavity layer. Here, the aim is is to understand the passive influence of these possible contact- devices on the lasing performance. For this purpose, the lasing is studied at an interface of an areal thin metal layer, which is incorporated in the organic layer.
38

Commutation tout optique ultra-rapide de micropiliers semi-conducteurs : propriétés fondamentales et applications dans le domaine de l'optique quantique / All-optical ultrafast switching of semiconductor micropillar cavities : basics and applications to quantum optics

Peinke, Emanuel Thomas 05 April 2016 (has links)
Il est possible de modifier en quelques picosecondes les fréquences de résonance d’une microcavité optique semiconductrice en injectant optiquement des porteurs de charge dans le semiconducteur. Dans cette thèse, nous étudions en détail de tels évènements de commutation tout-optique pour des cavités planaires et des cavités en forme de micropilier à base de GaAs/AlAs, en utilisant l’émission de boîtes quantiques intégrées dans ces cavités comme source interne de lumière pour sonder la fréquence des modes résonnants en fonction du temps. Des décalages en fréquence très conséquents, de l’ordre de 34 fois la largeur du mode considéré, sont obtenus après optimisation. Nous réalisons une commutation différentielle des modes d’un micropilier en injectant les porteurs de manière très localisée, et modélisons les comportements observés en prenant en compte la distribution des porteurs injectés ainsi que leur diffusion et leur recombinaison en fonction du temps. Nous étudions par ailleurs deux applications potentielles importantes de la commutation ultrarapide de cavité. D’une part, nous modélisons le changement de couleur qui est induit sur de la lumière piégée dans un mode de cavité lors d’un évènement de commutation. Nous montrons que pour une cavité planaire optimisée, une telle conversion de fréquence peut être réalisée de façon très efficace. D’autre part, la commutation de cavité peut aussi être employée pour contrôler en temps réel l’émission spontanée d’émetteurs intégrés, et plus généralement tous les effets d’électrodynamique quantique en cavité. Nous présentons la génération d’impulsions de lumière incohérente de quelques picosecondes seulement, en utilisant l’émission spontanée de boîtes quantiques dans un micropilier commuté. Nous montrons aussi par une étude théorique qu’il est possible de donner une forme choisie aux impulsions à un photon émises par une boîte quantique, ce qui ouvre des applications intéressantes dans le domaine des liens optiques quantiques et du traitement quantique photonique de l’information. / The resonance wavelengths of semiconductor optical microcavities can be changed within few picoseconds through the optical injection of free charge carriers. In this PhD thesis, we study in detail such “cavity switching” events for GaAs/AlAs planar and micropillar cavities, using the spontaneous emission of embedded QDs as an internal light source to probe the time-dependent frequencies of the cavity modes. Switching amplitudes as large as 34 mode linewidths are observed for optimized pumping conditions. Differential switching of micropillar modes is achieved by performing a localized injection of charge carriers, and modeled by taking into account their injection profile, diffusion and recombination processes. We investigate two important potential applications of cavity switching in the field of quantum optics. On one hand, we model the frequency conversion of light trapped in a cavity mode, which is induced by a switching event, and show that adiabatic and highly efficient frequency conversion can be achieved in properly designed planar cavities. On the other hand, cavity switching appears as a powerful resource to control in real-time the spontaneous emission of embedded emitters and more generally CQED effects. As a first example, we demonstrate the generation of few picosecond short pulses of incoherent light, using the spontaneous emission of switched QD-micropillars. We also show theoretically that cavity switching can be used to shape the time-envelope of single photon pulses emitted by a single QD, which is highly desirable for quantum-optical links and photonic quantum information processing.
39

Optique quantique avec des atomes artificiels semiconducteurs / Quantum Optics with Semiconducting Artificial Atoms

Valente, Daniel 15 October 2012 (has links)
Cette thèse porte sur les effets d'optique quantique avec des atomes artificiels semiconducteurs. Dans un premiers temps, on fait une étude théorique où un émetteur unique est couplé à un guide d'onde unidimensionnel. Ce système permets la propagation libre de la lumière en préservent la sensitivité au niveau d'un photon unique, ce que a motivé des propositions pour faire des portes logiques et des transistors au photon unique. Un schéma pour observer l'émission stimulée au niveau d'un photon unique dans cet environnement unidimensionnel est proposé, en utilisant un émetteur excité (e.g. une boîte quantique) et une pompage classique (laser). On montre que l'émission se produit dans le mode stimulée et que la population atomique fait des oscillations de Rabi classiques. Ensuite, la dynamique complètement quantique est décrite, où un paquet avec un seul photon interagit avec l'atome initialement excité. Dans cette nouvelle condition, la stimulation est irréversible, i.e., les populations atomiques ne réalisent pas des oscillations. Cet effet est optimal dans le cas où le paquet est trois fois plus court qu'un paquet spontanément émis par le même atome. On démontre comment utiliser l'émission stimulée irréversible optimale pour produire des clones quantiques universels. Le même dispositif peut être utilisé aussi bien pour produire des paires des photons complètement intriqués, si le paquet du photon initial est suffisamment étendu. Dans un deuxième moment, nous nous sommes intéressés aussi au spectre d'émission spontanée d'une boîte quantique semiconductrice en couplage faible avec une microcavité. Ce système mets en évidence l'effet d'alimentation de la cavité, où la boîte émet spontanément à la fréquence de la cavité, même si cela est bien désaccordé. L'influence des phonons pour le mécanisme d'alimentation de la cavité est analysée. Une importante distorsion du spectre apparent de la cavité, induit pour la présence des phonons, est démontrée. Les effets étudiés sont topiques et peuvent être implémenté avec des dispositifs semiconducteurs de l'état de l'art. / The thesis focuses on quantum optical effects in semiconducting artificial atoms. We first investigate theoretically a single emitter coupled to a one-dimensional waveguide. This system allows for light propagation while preserving sensitivity at the single-photon level, which has motivated proposals for quantum gates and single-photon transistors. A scheme to monitor stimulated emission at the single-photon level in this one-dimensional open space is proposed, using an excited emitter (e.g. a quantum dot) and a classical pump (laser). We show that light is emitted in the stimulating mode and that the atom performs classical Rabi oscillation. The fully quantum dynamics is also explored, where a single-photon packet interacts with an initially excited emitter. In contrast with the case of a classical pump, stimulation by a single photon is irreversible, i.e., no oscillation takes place. Stimulation is optimal for a packet three times shorter than the spontaneously emitted one. We show how this optimal irreversible stimulated emission can be applied to perform universal quantum cloning. The same device provides either optimal quantum cloning or maximally entangled photon pairs, depending only on the size of the incoming packet. In the second part of the thesis, we investigate the spontaneous emission spectrum of a semiconducting quantum dot weakly coupled to a microcavity. In particular, we address the problem of cavity feeding, where the quantum dot spontaneously emits photons at the frequency of an off-resonance cavity. The influence of phonons in the cavity feeding mechanism is analysed. An important distortion of the apparent cavity peak induced by the presence of phonons is demonstrated. These effects are topical and can be implemented in state-of-the-art semiconducting devices.
40

Micro-dispositifs accordables pour la conversion de fréquences optiques

Kusiaku, Koku 04 October 2012 (has links)
L'absence de source continue monochromatique Térahertz (THz) appropriée constitue un handicap majeur pour le développement des applications associées à cette gamme de longueur d’ondes. En effet, les technologies électroniques et optiques actuelles ne permettent de couvrir qu’une part réduite du spectre électromagnétique THz (0,3-10 THz). Dans ce contexte, la conversion de fréquences optiques, et plus précisément le photo –mélange, est une voie prometteuse pour la génération de signal THz de haute pureté spectrale sur toute la fenêtre du spectre THz. Le photomélange consiste à pomper un dispositif optoélectronique ultrarapide par deux signaux lasers dont les fréquences sont séparées par quelques THz (0,3 à 5 THz). Dans ce travail, nous proposons un nouveau micro-résonateur photonique bifréquence à cavité verticale et monolithique pour la réalisation de source laser bifréquence pour le photomélange. Ce nouveau résonateur est basé sur le couplage de deux résonateurs photoniques, un cristal photonique membranaire résonant d’une part et une cavité Fabry Pérot verticale d’autre part, accordés spectralement, pour réaliser un composant bifréquence. Le couplage optique résultant de l’association de ces deux éléments permet la génération de deux modes hybrides dont la différence de fréquence peut être ajustée en fonction du taux de couplage et donc de la position du cristal photonique dans le micro-résonateur. Le présent travail de thèse porte sur la conception, la fabrication de ce nouveau dispositif bifréquence et son application à la réalisation d’une source laser bi-mode semiconductrice fonctionnant à 1.55dm. / The lack of suitable monochromatic continuous-wave terahertz source consists of one the majors hurdles for terahertz spectrum applications development in various domains. Both electronic and optic technologies don’t allow covering all terahertz electromagnetic spectrum (0.3-10 THz). In this context and in order to generate high spectral purity wave over all THz spectrum window, a well-established technique consists in the photo-mixing procedure, where an ultrafast optoelectronic device is pumped by two laser signals whose frequencies are separated by an offset in the 0.3-5 THz window. In this work, we propose a novel dual-wavelength photonic micro resonator to provide a dual-mode monolithic semiconductor laser for THz generation by photo-mixing instead of the basic photo-mixing approach based on the use of two independent lasers. The novel photonic microresonator associates a vertical Fabry Perot (FP) cavity and photonic crystal membrane (PCM)resonators. A PCM exhibiting a resonant mode at normal incidence is inserted in a FP cavity with a resonant vertical mode at the same wavelength λ0. The resulting strong optical coupling leads to the generation of two mixed modes separated by a frequency difference which can be tuned through the loss rate of the PCM and its position inside the FP cavity. The work of this thesis focuses on the design, the micro-fabrication and the characterization of the dual-frequency resonator and its application to the realization of a single compact and flexible dual-mode semiconductor laser source around 1.55μm.

Page generated in 0.0488 seconds