• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 39
  • 13
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 65
  • 27
  • 21
  • 21
  • 19
  • 17
  • 17
  • 17
  • 15
  • 14
  • 14
  • 13
  • 13
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Lasing of Tamm states in highly efficient organic devices based on small-molecule organic semiconductors

Brückner, R., Lyssenko, V. G., Hofmann, S., Leo, K. 02 December 2019 (has links)
We discuss approaches to increase the light outcoupling efficiency in organic microcavity (MC) lasers and organic light-emitting diodes (OLEDs). We find that the introduction of metals into the cavities leads to additional Tamm-plasmon polariton modes, while the corrugation of metal contacts, such as perforated m-size holes or a periodic array of metal stripes, leads to 2D confinement of the cavity modes, which in turn reduces the lasing threshold in MCs. Furthermore, we elucidate light loss mechanisms in OLEDs and reveal how external dielectric layers and periodic gratings can be used to enhance outcoupling from the OLED cavity.
52

Controlling Light in Organic Microcavities

Mischok, Andreas 16 June 2016 (has links)
This thesis deals with the use of microcavity resonators for the control of light in organic active materials. In addition to the vertical confinement provided by highly reflecting mirrors in a vertical cavity surface emitting laser (VCSEL), in-plane patterning facilitates additional ways to manipulate the cavity dispersion and enables the observation of novel photonic modes in highly confined systems and an improved performance of organic solid state lasers. Furthermore, organic microcavities are employed for efficient spectrally sensitive photodetection in the near infrared. In microcavities comprising two dielectric distributed Bragg reflectors sandwiching an organic active blend of the matrix molecule Alq3 and the laser dye DCM, optically pumped lasing is investigated, exhibiting a broad spectral tunability over 90 nm due to the large gain bandwith of the laser dye. To directly influence the microcavity dispersion, different interlayers are introduced into the system, facilitating a red-shift of the cavity resonance due to the formation of Tamm-plasmon-polariton states (when using plasmonic Ag interlayers) or an increase of the optical cavity thickness (when using non-absorbing layers such as SiO2). Both concepts are explored and enable strong spectral shifts on the order of 10 meV-100 meV when using interlayers of only few tens of nm in thickness. In order to enhance the optical quality of metal-organic microcavities, the growth of noble metal layers on top of organic films can be improved by the use of diffusion barriers, stopping the diffusion of metal atoms into the organics, and seed layers which provide an improved surface wetting. Both concepts in total lead to an enhancement of the quality factor of such devices by a factor of two. The manipulation of the cavity resonance using different interlayers provides the ability to structure the photon energy landscape in the device plane on the microscale. Using photolithography, photonic wires and dots are fabricated to laterally restrict the photons in potential wells, leading to the observation of discretised energy spectra in two and three dimensions. To facilitate an in-depth investigation, dispersion tomography is utilised and yields the angle resolved emission of multi-dimensionally confined photons in all directions. In metal-organic photonic dots and triangular wedges, such three-dimensional trapping is exploited to reduce parasitic modes, leading to reduced thresholds of an organic microlaser by one order of magnitude. Complex transversal modes are observed in the device emission as a result of the strong lateral confinement that is achieved by such patterning. The manipulation of the photon energy landscape can not only be utilised for enhanced confinement but also for the introduction of photonic lattices. By adding periodic stripes of either Ag or SiO2 into an organic microcavity, an optical Kronig-Penney potential is realised, directly showing the formation of photonic Bloch states in the microcavity dispersion. Utilising a modified Kronig-Penney theory, photons are assigned a polarisation-dependent effective mass, facilitating a quantitative allocation of calculated and observed modes and explaining the emergence of zero and pi-phase coupling of spatially extended supermodes. Finally, by utilising an two-beam excitation geometry, direct control over lasing from multiple discretised states can be exerted, enabling spectral and angular tunability of devices on the microscale. In an alternative concept, a full microcavity stack is deposited onto a periodic grating which couples the waveguided (WG) modes in the active cavity layer to the vertical emission. Coherent interaction between linear WG and parabolic vertical modes is indicated by anti-crossing points where the dispersion of both overlaps. In this hybrid system, novel lasing modes arise not only at the position of the VCSEL parabola apex but also at points of hybridization, showing a drastically enhanced in-plane spatial coherence of at least 50 micrometer. Finally, the concept of organic microcavities is applied towards efficient and spectrally sensitive photodetectors. Making use of the intermolecular charge transfer (CT) state in donor-acceptor blends of organic solar cells, the strong field enhancement of a microcavity is exploited to significantly increase the external quantum efficiency of the initially weak CT absorption at resonance. Consequently, near-infrared photodetection is enabled by cavity-enhanced CT state absorption, leading to devices showing competitive specific detectivities without the need of an external voltage and an EQE above 20% (18% at 950 nm) with a full width at half maximum of significantly below 50 nm. The detectors are shown to be tunable in a broad spectral range via the angular dispersion of the optical microcavity or a thickness variation of the electron and hole transport layers in the solar cell. These findings not only facilitate interesting applications but also enable the direct excitation and observation of the CT state that is integral to the working principles of organic solar cells. / Die vorliegende Dissertation beschäftigt sich mit der Kontrolle über Emission und Absorption organischer aktiver Materialien mittels Mikrokavitätsresonatoren. Zusätzlich zum vertikalen Einschluss der Photonen zwischen hochreflektierenden Spiegeln in oberflächenemittierenden Mikrokavitäten (VCSEL, s.o.) werden Strukturierungen in der Bauteilebene hinzugefügt, um eine direkte Manipulation der Photonendispersion zu ermöglichen. Resultierend aus diesen Ergebnissen sind die Beobachtung neuartiger photonischer Moden sowie verbesserte Betriebseigenschaften von organischen Festkörperlasern. Desweiteren wird das Konzept der organischen Mikrokavität zur effizienten und spektral sensitiven Detektion von Nahinfrarot-Photonen angewendet. In Mikrokavitäten aus zwei dielektrischen Bragg-Spiegeln (DBR), welche eine organische aktive Schicht aus dem Matrixmaterial Alq3 und dem Laserfarbstoff DCM einschliessen, wird optisch gepumptes Lasing beobachtet. Dabei ist die Emission spektral über einen weiten Bereich von 90 nm stufenlos einstellbar, was durch die hohe optische Gewinnbandbreite des Laserfarbstoffs ermöglicht wird. Um die Dispersion von Photonen in Mikrokavitäten direkt beeinflussen zu können, werden verschiedene Zwischenschichten in den Laser eingebracht, welche eine Rotverschiebung der Emission nach sich ziehen. In metall-organischen Kavitäten kann dieser Effekt durch die Bildung von Tamm-Plasmon-Polariton Quasiteilchen erklärt werden, die durch die Interaktion der optischen Moden mit den Plasmonen in einer dünnen Silberschicht entstehen. Alternativ werden nichtabsorbierende SiO2-Zwischenschichten eingefügt, welche die optische Kavitätsdicke vergrössern und ähnliche starke Rotverschiebungen der Emission von 10 meV-100 meV nach sich ziehen. Um die optische Qualität metall-organischer Kavitäten zu verbessern, wird das Wachstum der edlen Ag-Schicht auf amorphen organischen Schichten mithilfe von Diffusionsbarrieren und Keimschichten kontrolliert. Die Kombination beider Konzepte ermöglicht eine Verbesserung des Qualitätsfaktors solcher Bauteile um den Faktor 2. Durch die Manipulation der Photonendispersion mithilfe dielektrischer und plasmonischer Zwischenschichten wird eine Strukturierung der photonischen Potentiallandschaft in der Bauteilebene auf Mikrometer-Skala ermöglicht. Mittels Photolithographie werden Photonische Drähte und Punkte hergestellt, welche das Licht auch lateral in Potentialtöpfen einschliessen und zur Beobachtung von diskretisierten Emissionspektren in zwei und drei Dimensionen führen. Um diese Untersuchungen zu erweitern, wird eine tomographische Methode entwickelt, um die winkelaufgelöste Dispersion dieser mehrdimensional eingeschlossenen Photonen in allen Richtungen aufzunehmen. Die Ergebnisse dieser Untersuchung werden in metall-organischen photonischen Punkten und Dreieck-Strukturen ausgenutzt und führen dabei zu einer Verringerung der Laserschwelle von bis zu einer Grössenordnung. Die dabei entstehenden komplexen Transversalmoden sind ein Zeichen für die starke Konzentration des Lichts in solchen Strukturen. Die laterale Strukturierung organischer Mikrokavitäten kann nicht nur für den vollständigen Einschluss von Licht ausgenutzt werden, sondern ermöglicht weiterhin die Beobachtung von photonischen Bandstrukturen in periodischen Gittern. Solch periodische Strukturen bestehend entweder aus Silber oder SiO2 ermöglichen die Realisierung eines optischen Kronig-Penney Potentials in Mikrokavitäten was schlussendlich zur Beobachtung optischer Bloch-Zustände in der Dispersion führt. Durch eine Modifizierung der Kronig-Penney Theorie, bei der unter anderem den Photonen eine polarisationsabhängige effektive Masse zugewiesen wird, ist eine quantitative Berechnung der Modenpositionen in solchen Systemen möglich. In Theorie und experimentellen Untersuchungen wird dabei das Auftreten von 0- oder pi-phasengekoppelten räumlich ausgedehnten Supermoden erklärt. Mithilfe der Anregung durch zwei interferierende Laserstrahlen kann desweiteren eine direkte Kontrolle über die Wellenlänge sowie den Auskopplungswinkel der stimulierten Emission ausgeübt werden. In einem alternativen Konzept der lateralen Strukturierung werden organische Mikrokavitäten auf periodische Gitter aufgedampft, was zu einer kohärenten Kopplung von Wellenleitermoden der aktiven Schicht in die vertikale Emission führt. Diese Moden treten als lineare Dispersion in winkelaufgelösten Spektren auf und zeigen eine direkte Interaktion mit der parabolischen Dispersion der VCSEL-Mode an (Anti-)Kreuzungspunkten. In diesem hybriden System lassen sich neuartige Lasermoden beobachten, welche nicht nur am Scheitelpunkt der Kavitätsparabel auftreten, sondern auch an Punkten, die durch die Hybridisierung beider Systeme entstehen. Diese Kopplung von vertikalen und lateralen Lasermoden zeigt eine drastisch erhöhte Kohärenzlänge von mindestens 50 Mikrometern in der Probenebene. Schließlich wird das Konzept einer organischen Mikrokavität noch in absorbierenden Systemen eingesetzt. Durch das Einbringen einer organischen Solarzelle in eine optische Kavität wird eine starke Erhöhung des Felds im spektralen Bereich des sonst nur schwach absorbierenden intermolekularen Ladungstransferzustands in Donator-Akzeptor Mischschichten ermöglicht. Die Ausnutzung dieses Zustands ermöglicht eine spektral scharfe (Halbwertsbreite deutlich unter 50 nm) Detektion von Nahinfrarotphotonen mit einer externen Quanteneffizienz von über 20% (18% für 950 nm) und einer konkurrenzfähigen spezifischen Detektivität. In weiteren Untersuchungen zeigen sich diese Detektoren als spektral durchstimmbar, zum Einen durch die parabolische Dispersion der Mikrokavität, zum Anderen durch die Variation der Dicken der Elektron- und Lochtransportschichten. Diese Ergebnisse ermöglichen nicht nur interessante Anwendungen, sondern auch die direkte Beobachtung und Anregung des Ladungstransferzustandes, welcher eine zentrale Rolle in der Funktion organischer Solarzellen spielt.
53

Photon-plasmon coupling in optoplasmonic microtube cavities

Yin, Yin 27 March 2018 (has links)
Optoplasmonic microtube cavities, the combination of dielectric microcavities and noble metal layers, allow for the interactions between photonic modes and surface plasmons, leading to several novel phenomena and promising applications. In this thesis, the hybrid modes with different plasmon-types of evanescent field in the optoplasmonic microtube cavities are discussed. The basic physical mechanism for the generation of plasmon-type field is comprehensively investigated based on an effective potential approach. In particular, when the cavity wall becomes ultra-thin, the plasmon-type field can be greatly enhanced, and the hybrid modes are identified as strong photon-plasmon hybrid modes which are experimentally demonstrated in the metal-coated rolled-up microtube cavities. By designing a metal nanocap onto microtube cavities, angle-dependent tuning of hybrid photon-plasmon modes are realized, in which TE and TM polarized modes exhibit inverse tuning trends due to the polarization match/mismatch. And a novel sensing scheme is proposed relying on the intensity ratio change of TE and TM modes instead of conventionally used mode shift. In addition, localized surface plasmon resonances coupled to resonant light is explored by designing a vertical metal nanogap on microtube cavities. Selective coupling of high-order axial modes is demonstrated depending on spatial-location of the metal nanogap. A modified quasi-potential well model based on perturbation theory is developed to explain the selective coupling mechanism. These researches systematically explore the design of optoplasmonic microtube cavities and the mechanism of photon-plasmon coupling therein, which provide a novel platform for the study of both fundamental and applied physics such as the enhanced light-matter interactions and label-free sensing.
54

Terahertz oscillation and stimulated emission from planar microcavities

Gehlhaar, Robert 17 July 2007 (has links)
In the past decades, the miniaturization in optics led to new devices with structural sizes in the range of the light wavelength, where the photonic modes are con- fined and the number of states is limited. In the smallest microcavities, i.e. micrometer sized optical resonators, the propagation of only one mode is permitted that is simultaneously amplified internally. This particularly strong enhancement of the electric field is directly related to the quality factor of the cavity. By introducing an optical dipole into a high-Q microcavity, the spontaneous emission is amplified at the cavity mode frequency enabling stimulated emission in an inverted system. Although some of theses cavity e®ects can only be understood by quantum elec- trodynamic theory, most mechanisms are accessible by classical and semi-classical approaches. In this thesis, one-dimensional planar microcavities with quality factors up to 4500 have been fabricated by physical vapor deposition of dielectric thin films and organic active materials. A new cavity design based on anisotropic dielectric mirrors grown by oblique angle deposition microcavities with two energetically shifted orthogonally polarized modes is presented. The application of these anisotropic structures for terahertz di®erence signal generation is demonstrated in spectrally and time resolved transmission experiments, where optical beats with repetition rates in the terahertz range are observed. Optically pumped organic vertical cavity surface emitting lasers (VCSELs) have been realized by applying an organic solid state laser compound and high reflectance distributed Bragg reflectors. These lasers combine a very low laser threshold with small beam divergence and good stability. A transfer of the anisotropic design towards an organic VCSEL results in the generation of two perpendicularly polarized laser modes with a splitting adjustable by the fabrication conditions. The observation of an oscillation of two laser modes in a photomixing experiment proves a phase coupling mechanism. This demonstrates the potential of the anisotropic cavity design for a passive or active component in a terahertz radiation source or frequency generator. Furthermore, microcavities with two and three coupled resonators are investigated. By the application of time-resolved transmission experiments, spatial oscil- lations of the internal electric field - photonic Bloch oscillations - are successfully demonstrated. In combination with the anisotropic microcavities, this is a second concept for the modulation of transmitted light with terahertz frequencies. All experiments are accompanied by numerical or analytical models. Transmission experiments of continuously incident light and single laser pulses are compared with transfer matrix simulations and Fourier transform based approaches. For the modeling of emission experiments, a plane wave expansion method is successfully used. For the analysis of the organic VCSEL dynamics, we apply a set of rate equations that explains the gain switching process.
55

Silicon based microcavity enhanced light emitting diodes

Potfajova, Jaroslava 07 December 2009 (has links)
Realising Si-based electrically driven light emitters in a process technology compatible with mainstream microelectronics CMOS technology is key requirement for the implementation of low-cost Si-based optoelectronics and thus one of the big challenges of semiconductor technology. This work has focused on the development of microcavity enhanced silicon LEDs (MCLEDs), including their design, fabrication, and experimental as well as theoretical analysis. As a light emitting layer the abrupt pn-junction of a Si diode was used, which was fabricated by ion implantation of boron into n-type silicon. Such forward biased pn-junctions exhibit room-temperature EL at a wavelength of 1138 nm with a reasonably high power efficiency of 0.1%. Two MCLEDs emitting light at the resonant wavelength about 1150 nm were demonstrated: a) 1-lambda MCLED with the resonator formed by 90 nm thin metallic CoSi2 mirror at the bottom and semitransparent distributed Bragg reflector (DBR) on the top; b) 5.5-lambda MCLED with the resonator formed by high reflecting DBR at the bottom and semitransparent top DBR. Using the appoach of the 5.5-lambda MCLED with two DBRs the extraction efficiency is enhanced by about 65% compared to the silicon bulk pn-junction diode.
56

Laterally modified microcavity systems containing organic emitters

Langner, Maik 07 April 2011 (has links)
The scope of this work is an in-depth investigation of dielectric mirror microcavities with central organic dye layers, which are preferably modified in at least one lateral dimension. The large quality factor of the planar resonator in conjunction with comparatively stable and spectrally broad emitting molecules allows for a detailed analysis of several aspects of microresonator systems. Their optical properties are analyzed both with transmission and luminescence measurements as well as in the lasing regime. The first part presents the resonant mode properties of planar and laterally structured microcavities. With the help of a high-resolution imaging micro-photoluminescence setup, working either in the spatial (near field) or vectorial (far field) regime, the polarization splitting is studied in a detuned microcavity, containing the dye 4,4'-bis[(N-carbazole)styryl]biphenyl (BSB-Cz) in a matrix of 4,4'-di(N-carbazolyl)- biphenyl (CBP). With the help of a thickness gradient, a relation between the large spectral distance of the cross-polarized states and the mode position within the stop band is investigated. In shadow-mask prepared, laterally restricted devices (5x5 µm2 square boxes), the three-dimensional confinement introduces sets of discrete modes, which experience a similar polarization splitting. The origin in this case is a different phase shift of electromagnetic waves during internal total reflection at a boundary. By using a concentration gradient planar microcavity sample of the dye 4-(dicyanomethylene)-2-methyl-6-(4-(dimethylamino)styryl)-4H-pyran (DCM) in a tris-(8-hydroxyquinoline)aluminum (Alq3) matrix, the influence of the number of emitters on the lasing characteristics is subsequently analyzed. Depending on the pumping conditions, and thus the involvement of the Förster resonant energy transfer, an optimal composition is identified. After a qualitative evaluation of the long-term stability upon various excitation energies, the attention is focussed to the modification of the stimulated emission properties of photonic boxes. The stronger field concentration and altered density of states leads to a significant improvement of the values for the coupling factor fi and the threshold levels. Furthermore, new properties arise, namely simultaneous multimode and off-axis laser emission. With an inhomogeneous excitation of the box, it is possible to selectively excite single modes above the threshold. The work ends with experimental results of metal structures as additional optical element in the organic microcavity layer. Here, the aim is is to understand the passive influence of these possible contact- devices on the lasing performance. For this purpose, the lasing is studied at an interface of an areal thin metal layer, which is incorporated in the organic layer.:List of publication Introduction Optical properties of dielectric microresonator systems Sample fabrication and characterization Resonant mode properties of dielectric mirror microcavities Lasing from laterally modified organic cavity systems Conclusion and outlook Bibliography
57

White Top-Emitting OLEDs on Metal Substrates

Freitag, Patricia 18 April 2011 (has links)
This work focusses on the development of top-emitting white organic light-emitting diodes (OLEDs), which can be fabricated on metal substrates. Bottom-emitting OLEDs have been studied intensively over the years and show promising perspectives for future commercial applications in general lighting. The development of top-emitting devices has fallen behind despite the opportunities to produce these devices also on low-cost opaque substrates. This is due to the challenges of top-light-emission concerning the achievement of a broad and well-balanced white emission spectrum in presence of a strong microcavity. The following work is a further step towards the detailed understanding and optimization of white top-emitting OLEDs. First, the available metal substrates and the deposited silver electrodes are examined microscopically to determine their surface characteristics and morphology in order to assess their applicability for thin-film organic stacks of OLEDs. The examination shows the suitability for untreated Alanod metal substrates, which display low surface roughness and almost no surface defects. For the deposited silver anodes, investigations via AFM show a strong influence of the deposition rate on the surface roughness. In the main part of the work top-emissive devices with both hybrid and all-phosphorescent architecture are investigated, in which three or four emitter materials are utilized to achieve maximum performance. The feasibility for top-emitting white OLEDs in first and second order devices is investigated via optical simulations, using the example of a three-color hybrid OLED. Here, the concept of a dielectric capping layer on top of the cathode is an essential criterion for broadband and nearly angle independent light emission. The main focus concerning the investigation of fabricated devices is the optimization of the organic stacks to achieve high efficiencies as well as excellent color quality of warm white emission. The optimization of the hybrid layer structure based on three emitter materials using a combined aluminum-silver anode mirror resulted in luminous efficacies up to 13.3 lm/W and 5.3 % external quantum efficiency. Optical analysis by means of simulation revealed a superior position concerning internal quantum efficiency compared to bottom-emitting devices with similar layer structure. The devices show an enhanced emission in forward direction compared to an ideal Lambertian emitter, which is highly preferred for lighting applications. The color quality - especially for devices based on a pure Al anode - is showing excellent color coordinates near the Planckian locus and color rending indices up to 77. The introduction of an additional yellow emitter material improves the luminous efficacy up to values of 16.1 lm/W and external quantum efficiencies of 5.9 %. With the choice of a all-phosphorescent approach, using orange-red, light blue and green emitter materials, luminous efficacies of 21.7 lm/W are realized with external quantum efficiencies of 8.5 %. Thereby, color coordinates of (x, y) = (0.41, 0.45) are achieved. Moreover, the application of different crystalline capping layers and alternative cathode materials aim at a scattering of light that further reduces the angular dependence of emission. Experiments with the crystallizing material BPhen and thin carbon nanotube films (CNT) are performed. Heated BPhen capping layer with a thickness of 250 nm show a lower color shift compared to the NPB reference capping layer. Using CNT films as cathode leads to a broadband white emission at a cavity thickness of 160 nm. However, due to very high driving voltages needed, the device shows low luminous efficacy. Finally, white top-emitting organic LEDs are successfully processed on metal substrates. A comparison of three and four color based hybrid devices reveal similar performance for the devices on glass and metal substrate. Only the devices on metal substrate show slightly higher leakaged currents. During repeated mechanical bending experiments with white devices deposited on 0.3 mm thin flexible Alanod substrates, bending radii up to 1.0 cm can be realized without device failure. / Diese Arbeit richtet ihren Schwerpunkt auf die Entwicklung von top-emittierenden weißen organischen Leuchtdioden (OLEDs), welche auch auf Metallsubstraten gefertigt werden können. Im Laufe der letzten Jahre wurden bottom-emittierende OLEDs sehr intensiv studiert, da sie vielversprechende Perspektiven für zukünftige kommerzielle Anwendungen in der Allgemeinbeleuchtung bieten. Trotz der Möglichkeit, OLEDs auch auf kostengünstigen lichtundurchlässigen Substraten fertigen zu können, blieb die Entwicklung von top-emittierenden Bauteilen dabei allerdings zurück. Dies läßt sich auf die enormen Herausforderungen von top-emittierenden OLEDs zurückführen, ein breites und ausgeglichenes weißes Abstrahlungsspektrum in Gegenwart einer Mikrokavität zu generieren. Die folgende Arbeit liefert einen Beitrag zum detaillierten Verständnis und der Optimierung von weißen top-emittierenden OLEDs. Zunächst werden die verfügbaren Metallsubstrate und abgeschiedenen Silberelektroden auf ihre Oberflächeneigenschaften und Morphologie mikroskopisch untersucht, um damit ihre Verwendbarkeit für organische Dünnfilmstrukturen in OLEDs einzuschätzen. Die Untersuchung zeigt eine Eignung von unbehandelten Alanod Metallsubstraten auf, welche eine niedrige Oberflächenrauigkeit und fast keine Oberflächendefekte besitzen. Bei den abgeschiedenen Silberelektroden zeigen Untersuchungen mit dem Rasterkraftmikroskop eine starke Beeinflussung der Oberflächenrauigkeit durch die Aufdampfrate. Im Hauptteil der Arbeit werden top-emittierende Dioden mit hybrid und voll-phosphoreszenter Architektur untersucht, in welcher drei oder vier Emittermaterialien verwendet werden, um eine optimale Leistungscharakteristik zu erreichen. Die Realisierbarkeit von top-emittierenden weißen OLEDs in Dioden erster und zweiter Ordnung wird durch optische Simulation am Beispiel einer dreifarb-OLED mit Hybridstruktur ermittelt. Dabei ist das Konzept der dielektrischen Deckschicht - aufgebracht auf die Kathode - ein essenzielles Kriterium für breitbandige und annähernd winkelunabhängige Lichtemission. Der Schwerpunkt im Hinblick auf die Untersuchung von hergestellten Dioden liegt in der Optimierung der organischen Schichtstrukturen, um hohe Effizienzen sowie exzellente warmweiße Farbqualität zu erreichen. Im Rahmen der Optimierung von hybriden Schichtstrukturen basierend auf drei Emittermaterialien resultiert die Verwendung eines kombinierten Aluminium-Silber Anodenspiegels in einer Lichtausbeute von 13.3 lm/W und einer externen Quanteneffizienz von 5.3 %.Eine optische Analyse mit Hilfe von Simulationen zeigt eine überlegene Stellung hinsichtlich der internen Quanteneffizient verglichen mit bottom-emittierenden Dioden ähnlicher Schichtstruktur. Die Dioden zeigen eine verstärkte vorwärts gerichtete Emission im Vergleich zu einem idealen Lambertschen Emitter, welche in hohem Maße für Beleuchtungsanwendungen erwünscht ist. Es kann eine ausgezeichnete Farbqualität erreicht werden - insbesondere für Dioden basierend auf einer reinen Aluminiumanode - mit Farbkoordinaten nahe der Planckschen Strahlungskurve und Farbwiedergabeindizes bis zu 77. Die weitere Einführung eines zusätzlichen gelben Emittermaterials verbessert die Lichtausbeute auf Werte von 16.1 lm/W und die externe Quanteneffizient auf 5.9 %. Mit der Wahl eines voll-phosphoreszenten Ansatzes unter der Verwendung eines orange-roten, hellblauen und grünen Emittermaterials werden Lichtausbeuten von 21.7 lm/W und externe Quanteneffizienten von 8.5 % erzielt. Damit werden Farbkoordinaten von (x, y) = (0.41, 0.45) erreicht. Darüberhinaus zielt die Verwendung von verschiedenen kristallinen Deckschichten und alternativen Kathodenmaterialien auf eine Streuung des ausgekoppelten Lichts ab, was die Winkelabhängigkeit der Emission vermindern soll. Experimente mit dem kristallisierenden Material BPhen und dünnen Filmen aus Kohlenstoffnanoröhren werden dabei durchgeführt. Geheizte BPhen Deckschichten mit einer Schichtdicke von 250 nm zeigen eine geringere Farbverschiebung verglichen mit einer NPB Referenzdeckschicht. Die Verwendung von Kohlenstoffnanoröhren als Kathode führt zu einer breitbandigen weißen Emission bei einer Kavitätsschichtdicke von 160 nm. Schließlich werden weiße top-emittierende organische Leuchtdioden erfolgreich auf Metallsubstraten prozessiert. Ein Vergleich von drei- und vierfarb-basierten hybriden Bauteilen zeigt ähnliche Leistungsmerkmale für Dioden auf Glas- und Metallsubstraten. Während wiederholten mechanischen Biegeexperimenten mit weißen Dioden auf 0.3 mm dicken flexiblen Alanodsubstraten können Biegeradien bis zu 1.0 cm ohne Bauteilausfall realisiert werden.
58

Electrical investigations of hybrid OLED microcavity structures with novel encapsulation methods

Meister, Stefan, Brückner, Robert, Fröb, Hartmut, Leo, Karl 30 August 2019 (has links)
An electrical driven organic solid state laser is a very challenging goal which is so far well beyond reach. As a step towards realization, we monolithically implemented an Organic Light Emitting Diode (OLED) into a dielectric, high quality microcavity (MC) consisting of two Distributed Bragg Reflectors (DBR). In order to account for an optimal optical operation, the OLED structure has to be adapted. Furthermore, we aim to excite the device not only electrically but optically as well. Different OLED structures with an emission layer consisting of Alq3:DCM (2 wt%) were investigated. The External Quantum Efficiencies (EQE) of this hybrid structures are in the range of 1-2 %, as expected for this material combination. Including metal layers into a MC is complicated and has a huge impact on the device performance. Using Transfer-Matrix-Algorithm (TMA) simulations, the best positions for the metal electrodes are determined. First, the electroluminescence (EL) of the adjusted OLED structure on top of a DBR is measured under nitrogen atmosphere. The modes showed quality factors of Q = 60. After the deposition of the top DBR, the EL is measured again and the quality factors increased up to Q = 600. Considering the two 25-nm-thick-silver contacts a Q-factor of 600 is very high. The realization of a suitable encapsulation method is important. Two approaches were successfully tested. The first method is based on the substitution of a DBR layer with a layer produced via Atomic Layer Deposition (ALD). The second method uses a 0.15-mm-thick cover glass glued on top of the DBR with a 0.23-µm-thick single-component glue layer. Due to the working encapsulation, it is possible to investigate the sample under ambient conditions.
59

Fluctuations quantiques et effets non-linéaires dans les condensats de Bose-Einstein : des ondes de choc dispersives au rayonnement de Hawking acoustique / Quantum fluctuations and nonlinear effects in Bose-Einstein condensates : From dispersive shock waves to acoustic Hawking radiation

Larré, Pierre-Élie 20 September 2013 (has links)
Cette thèse est dédiée à l'étude de l'analogue du rayonnement de Hawking dans les condensats de Bose-Einstein. Le premier chapitre présente de nouvelles configurations d'intérêt expérimental permettant de réaliser l'équivalent acoustique d'un trou noir gravitationnel dans l'écoulement d'un condensat atomique unidimensionnel. Nous donnons dans chaque cas une description analytique du profil de l'écoulement, des fluctuations quantiques associées et du spectre du rayonnement de Hawking. L'analyse des corrélations à deux corps de la densité dans l'espace des positions et des impulsions met en évidence l'émergence de signaux révélant l'effet Hawking dans nos systèmes. En démontrant une règle de somme vérifiée par la matrice densité à deux corps connexe, on montre que les corrélations à longue portée de la densité doivent être associées aux modifications diagonales de la matrice densité à deux corps lorsque l'écoulement du condensat présente un horizon acoustique. Motivés par des études expérimentales récentes de profils d'onde générés dans des condensats de polaritons en microcavité semi-conductrice, nous analysons dans un second chapitre les caractéristiques superfluides et dissipatives de l'écoulement autour d'un obstacle localisé d'un condensat de polaritons unidimensionnel obtenu par pompage incohérent. Nous examinons la réponse du condensat dans la limite des faibles perturbations et au moyen de la théorie de Whitham dans le régime non-linéaire. On identifie un régime dépendant du temps séparant deux types d'écoulement stationnaire et dissipatif : un principalement visqueux à faible vitesse et un autre caractérisé par un rayonnement de Cherenkov d'ondes de densité à grande vitesse. Nous présentons enfin des effets de polarisation obtenus en incluant le spin des polaritons dans la description du condensat et montrons dans le troisième chapitre que des effets similaires en présence d'un horizon acoustique pourraient être utilisés pour démontrer expérimentalement le rayonnement de Hawking dans les condensats de polaritons. / This thesis is devoted to the study of the analogue of Hawking radiation in Bose-Einstein condensates. The first chapter presents new configurations of experimental interest making it possible to realize the acoustic equivalent of a gravitational black hole in the flow of a one-dimensional atomic condensate. In each case we give an analytical description of the flow pattern, the associated quantum fluctuations, and the spectrum of Hawking radiation. Analysis of the two-body density correlations in position and momentum space emphasizes the occurrence of signals revealing the Hawking effect in our systems. By demonstrating a sum rule verified by the connected two-body density matrix we show that the long-range density correlations have to be associated to the diagonal modifications of the two-body density matrix when the flow of the condensate presents an acoustic horizon. Motivated by recent experimental studies of wave patterns generated in semiconductor microcavity polariton condensates we analyze in a second chapter superfluid and dissipative characteristics of the flow of a nonresonantly pumped one-dimensional polariton condensate past a localized obstacle. We examine the response of the condensate in the weak-perturbation limit and by means of Whitham theory in the nonlinear regime. We identify a time-dependent regime separating two types of stationary and dissipative flow: a mostly viscous one at low velocity and another one characterized by Cherenkov radiation of density waves at large velocity. Finally we present polarization effects obtained by including the spin of polaritons in the description of the condensate and show in the third chapter that similar effects in the presence of an acoustic horizon could be used to experimentally demonstrate Hawking radiation in polariton condensates.
60

White Top-Emitting OLEDs on Metal Substrates / Weiße top-emittierende OLEDs auf Metallsubstraten

Freitag, Patricia 19 July 2011 (has links) (PDF)
This work focusses on the development of top-emitting white organic light-emitting diodes (OLEDs), which can be fabricated on metal substrates. Bottom-emitting OLEDs have been studied intensively over the years and show promising perspectives for future commercial applications in general lighting. The development of top-emitting devices has fallen behind despite the opportunities to produce these devices also on low-cost opaque substrates. This is due to the challenges of top-light-emission concerning the achievement of a broad and well-balanced white emission spectrum in presence of a strong microcavity. The following work is a further step towards the detailed understanding and optimization of white top-emitting OLEDs. First, the available metal substrates and the deposited silver electrodes are examined microscopically to determine their surface characteristics and morphology in order to assess their applicability for thin-film organic stacks of OLEDs. The examination shows the suitability for untreated Alanod metal substrates, which display low surface roughness and almost no surface defects. For the deposited silver anodes, investigations via AFM show a strong influence of the deposition rate on the surface roughness. In the main part of the work top-emissive devices with both hybrid and all-phosphorescent architecture are investigated, in which three or four emitter materials are utilized to achieve maximum performance. The feasibility for top-emitting white OLEDs in first and second order devices is investigated via optical simulations, using the example of a three-color hybrid OLED. Here, the concept of a dielectric capping layer on top of the cathode is an essential criterion for broadband and nearly angle independent light emission. The main focus concerning the investigation of fabricated devices is the optimization of the organic stacks to achieve high efficiencies as well as excellent color quality of warm white emission. The optimization of the hybrid layer structure based on three emitter materials using a combined aluminum-silver anode mirror resulted in luminous efficacies up to 13.3 lm/W and 5.3 % external quantum efficiency. Optical analysis by means of simulation revealed a superior position concerning internal quantum efficiency compared to bottom-emitting devices with similar layer structure. The devices show an enhanced emission in forward direction compared to an ideal Lambertian emitter, which is highly preferred for lighting applications. The color quality - especially for devices based on a pure Al anode - is showing excellent color coordinates near the Planckian locus and color rending indices up to 77. The introduction of an additional yellow emitter material improves the luminous efficacy up to values of 16.1 lm/W and external quantum efficiencies of 5.9 %. With the choice of a all-phosphorescent approach, using orange-red, light blue and green emitter materials, luminous efficacies of 21.7 lm/W are realized with external quantum efficiencies of 8.5 %. Thereby, color coordinates of (x, y) = (0.41, 0.45) are achieved. Moreover, the application of different crystalline capping layers and alternative cathode materials aim at a scattering of light that further reduces the angular dependence of emission. Experiments with the crystallizing material BPhen and thin carbon nanotube films (CNT) are performed. Heated BPhen capping layer with a thickness of 250 nm show a lower color shift compared to the NPB reference capping layer. Using CNT films as cathode leads to a broadband white emission at a cavity thickness of 160 nm. However, due to very high driving voltages needed, the device shows low luminous efficacy. Finally, white top-emitting organic LEDs are successfully processed on metal substrates. A comparison of three and four color based hybrid devices reveal similar performance for the devices on glass and metal substrate. Only the devices on metal substrate show slightly higher leakaged currents. During repeated mechanical bending experiments with white devices deposited on 0.3 mm thin flexible Alanod substrates, bending radii up to 1.0 cm can be realized without device failure. / Diese Arbeit richtet ihren Schwerpunkt auf die Entwicklung von top-emittierenden weißen organischen Leuchtdioden (OLEDs), welche auch auf Metallsubstraten gefertigt werden können. Im Laufe der letzten Jahre wurden bottom-emittierende OLEDs sehr intensiv studiert, da sie vielversprechende Perspektiven für zukünftige kommerzielle Anwendungen in der Allgemeinbeleuchtung bieten. Trotz der Möglichkeit, OLEDs auch auf kostengünstigen lichtundurchlässigen Substraten fertigen zu können, blieb die Entwicklung von top-emittierenden Bauteilen dabei allerdings zurück. Dies läßt sich auf die enormen Herausforderungen von top-emittierenden OLEDs zurückführen, ein breites und ausgeglichenes weißes Abstrahlungsspektrum in Gegenwart einer Mikrokavität zu generieren. Die folgende Arbeit liefert einen Beitrag zum detaillierten Verständnis und der Optimierung von weißen top-emittierenden OLEDs. Zunächst werden die verfügbaren Metallsubstrate und abgeschiedenen Silberelektroden auf ihre Oberflächeneigenschaften und Morphologie mikroskopisch untersucht, um damit ihre Verwendbarkeit für organische Dünnfilmstrukturen in OLEDs einzuschätzen. Die Untersuchung zeigt eine Eignung von unbehandelten Alanod Metallsubstraten auf, welche eine niedrige Oberflächenrauigkeit und fast keine Oberflächendefekte besitzen. Bei den abgeschiedenen Silberelektroden zeigen Untersuchungen mit dem Rasterkraftmikroskop eine starke Beeinflussung der Oberflächenrauigkeit durch die Aufdampfrate. Im Hauptteil der Arbeit werden top-emittierende Dioden mit hybrid und voll-phosphoreszenter Architektur untersucht, in welcher drei oder vier Emittermaterialien verwendet werden, um eine optimale Leistungscharakteristik zu erreichen. Die Realisierbarkeit von top-emittierenden weißen OLEDs in Dioden erster und zweiter Ordnung wird durch optische Simulation am Beispiel einer dreifarb-OLED mit Hybridstruktur ermittelt. Dabei ist das Konzept der dielektrischen Deckschicht - aufgebracht auf die Kathode - ein essenzielles Kriterium für breitbandige und annähernd winkelunabhängige Lichtemission. Der Schwerpunkt im Hinblick auf die Untersuchung von hergestellten Dioden liegt in der Optimierung der organischen Schichtstrukturen, um hohe Effizienzen sowie exzellente warmweiße Farbqualität zu erreichen. Im Rahmen der Optimierung von hybriden Schichtstrukturen basierend auf drei Emittermaterialien resultiert die Verwendung eines kombinierten Aluminium-Silber Anodenspiegels in einer Lichtausbeute von 13.3 lm/W und einer externen Quanteneffizienz von 5.3 %.Eine optische Analyse mit Hilfe von Simulationen zeigt eine überlegene Stellung hinsichtlich der internen Quanteneffizient verglichen mit bottom-emittierenden Dioden ähnlicher Schichtstruktur. Die Dioden zeigen eine verstärkte vorwärts gerichtete Emission im Vergleich zu einem idealen Lambertschen Emitter, welche in hohem Maße für Beleuchtungsanwendungen erwünscht ist. Es kann eine ausgezeichnete Farbqualität erreicht werden - insbesondere für Dioden basierend auf einer reinen Aluminiumanode - mit Farbkoordinaten nahe der Planckschen Strahlungskurve und Farbwiedergabeindizes bis zu 77. Die weitere Einführung eines zusätzlichen gelben Emittermaterials verbessert die Lichtausbeute auf Werte von 16.1 lm/W und die externe Quanteneffizient auf 5.9 %. Mit der Wahl eines voll-phosphoreszenten Ansatzes unter der Verwendung eines orange-roten, hellblauen und grünen Emittermaterials werden Lichtausbeuten von 21.7 lm/W und externe Quanteneffizienten von 8.5 % erzielt. Damit werden Farbkoordinaten von (x, y) = (0.41, 0.45) erreicht. Darüberhinaus zielt die Verwendung von verschiedenen kristallinen Deckschichten und alternativen Kathodenmaterialien auf eine Streuung des ausgekoppelten Lichts ab, was die Winkelabhängigkeit der Emission vermindern soll. Experimente mit dem kristallisierenden Material BPhen und dünnen Filmen aus Kohlenstoffnanoröhren werden dabei durchgeführt. Geheizte BPhen Deckschichten mit einer Schichtdicke von 250 nm zeigen eine geringere Farbverschiebung verglichen mit einer NPB Referenzdeckschicht. Die Verwendung von Kohlenstoffnanoröhren als Kathode führt zu einer breitbandigen weißen Emission bei einer Kavitätsschichtdicke von 160 nm. Schließlich werden weiße top-emittierende organische Leuchtdioden erfolgreich auf Metallsubstraten prozessiert. Ein Vergleich von drei- und vierfarb-basierten hybriden Bauteilen zeigt ähnliche Leistungsmerkmale für Dioden auf Glas- und Metallsubstraten. Während wiederholten mechanischen Biegeexperimenten mit weißen Dioden auf 0.3 mm dicken flexiblen Alanodsubstraten können Biegeradien bis zu 1.0 cm ohne Bauteilausfall realisiert werden.

Page generated in 0.0804 seconds