Spelling suggestions: "subject:"microcoils"" "subject:"microcosmic""
1 |
High power rotary microgenerator with multipole and multilayer planar microcoilWu, Tsung-Tien 01 July 2005 (has links)
MEMS process offers many advantages that the microsystem can be downscaled and can be combined with integrated circuit (IC). This technique has been successfully applied to micromotor, micropump, and microelectric apparatus but there has been existing problems of independent and compact power supply system. Hence this study presents an electromagnetic rotary microgenerator, mainly consisting of multilayer planar Cu microcoil and multipolar hard magnet of Nd/Fe/B by sintering. The layout of the microgenerator is 9 9 1 mm3 in volume. The paper also presents design and analysis of a multipolar rotary electromagnetic microgenerator. Theoretical mathematic model is derived to predict the power generation. Experimental results are compared with simulations. The experimental result shows good agreement with simulations. The preliminary experimental result reveals that this microgenerator with eight magnet poles and four-layer Cu planar microcoil generates an output voltage of 569 mV at 213.7 Hz frequency.
|
2 |
Microválvulas destinadas ao controle do fluxo de líquidos em canais microfluídicos. / Microvalves for liquids flow control in microfluidic channels.Reinaldo Lucas dos Santos Rosa 03 May 2017 (has links)
Este trabalho apresenta a modelagem comportamental desenvolvida para diferentes componentes necessários para a construção de uma microválvula eletromagneticamente atuável, associada ao uso de uma membrana flexível. Foram desenvolvidos modelos teóricos para a descrição do fluxo de fluidos em microcanais, especialmente canais com secções transversais retangulares, utilizadas na construção da maioria dos microcanais usados em microfluídica. O modelo para descrição da deformação experimentada por uma microponte de PDMS foi desenvolvido, permitindo estimar a rigidez elástica para diversas membranas desenvolvidas neste trabalho. Além disso um modelo teórico foi desenvolvido com o intuito de estudar as forças produzidas por uma microbobina com enrolamentos em formato espiral quadrado, sobre um imã permanente de NdFeB localizado em posições genéricas em relação à bobina. Utilizando o primeiro modelamento, estudo de microcanais, foi possível estimar a resistência hidráulica oferecida por microcanais com dimensões sub-milimétricas, permitindo avaliar a relação entre pressão de entrada e vazão de saída correspondente. Foi possível verificar analiticamente que para a faixa de trabalho especificada (vazões na faixa de 0,2 a 6 mL/min utilizando pressões na faixa de 0 a 30 kPa), canais com 1 cm de comprimento e 200 ?m de altura, devem possuir a largura variando na faixa de 300 µm a 500 µm de modo a operar na faixa de interesse estabelecida neste trabalho. Utilizando um canal com 2 cm de comprimento e 300 µm, o valor da altura pode estar entre 200 µm a 400 µm, permitindo miniaturizar o dispositivo final, garantindo a faixa de operação desejada. A partir da modelagem realizada com a finalidade de descrever o comportamento da membrana de PDMS, foi possível estimar teoricamente que uma membrana com 2 cm de comprimento, 2 mm de largura e a espessura variando na faixa de 1,6 a 2 mm, exige a realização de uma força na faixa de 10,5 mN a 13 mN (faixa para a força de atuação necessária), de modo a obter a deflexão de interesse neste trabalho (250 µm). Avaliando as microbobinas com base no modelo teórico desenvolvido neste trabalho, foi possível verificar que uma bobina contendo 36 enrolamentos, espaçamento de 80 µm, a uma distância de 1 mm do centro do imã, aplicando-se 10V (considerando uma resistência total de 100 Ohm), utilizando 10 camadas sobrepostas, é possível produzir uma força sobre um imã de NdFeB de até 0,18 N nas regiões de 3 mm a 10 mm afastadas em relação ao eixo x do imã, ainda a uma altura de 1 mm em relação ao plano xOy do imã. Após a fabricação dos componentes mencionados acima, foram propostos arranjos experimentais para a caracterização das respostas associadas a cada componente separadamente. As simulações apresentaram resultados similares aos obtidos experimentalmente, conforme pode ser avaliado visualizando os erros obtidos relacionando os resultados teóricos e experimentais, especialmente para os microcanais. Dispositivos microfluídicos foram fabricados obtendo canais com as seguintes dimensões: comprimento na faixa de 1 a 4 cm, largura na faixa de 100 a 400 µm e alturas na faixa de 200 a 600 µm, correspondentes à construção de 9 dispositivos com diferentes tamanhos, em que os 6 primeiros foram submetidos às análises experimentais sob as mesmas condições, repetidamente. Foi observado que tais microcanais foram capazes de fornecer até 1,41 mL/min a 0,8 kPa. O valor de vazão está dentro da faixa de desempenho do dispositivo (0,2 a 6 mL/min) com foco em sua aplicação na realização de análises químicas, onde as pressões fornecidas podem chegar até 60 kPa, fornecendo flexibilidade na produção de propulsão dos líquidos transportados através dos canais fabricados. Em relação aos resultados obtidos utilizando o modelo teórico para descrição do comportamento fluídico em microcanais, erros menores que 5% relativos aos resultados experimentais foram obtidos, indicando a validação do modelo teórico apresentado. Foram fabricados dispositivos com características comutadoras, normalmente abertas e normalmente fechadas, dependendo do método de fixação da membrana de PDMS ao substrato cerâmico. O projeto para o desenvolvimento de um chanfro na base do substrato cerâmico, na região de contato com a membrana de PDMS, foi desenvolvido com a finalidade de melhorar a selagem do canal com a válvula no estado fechado. Observou-se que para uma pressão de 5 kPa aplicada à entrada da válvula, não houve vazamento para os dispositivos normalmente fechados, e utilizando uma força em torno de 1 N é possível atingir taxas de fluxo de líquido da ordem de 0,45 mL/min, sendo esta superior às vazões necessárias para a aplicação em foco, qual seja, a automatização de microlaboratórios autônomos. Dois processos de montagem dos componentes para confecção das microválvulas foram desenvolvidos. Um deles visou a montagem da membrana de PDMS após a sinterização do sistema microfluídico junto à microbobina, e o outro visou a fixação da membrana antes da união entre o sistema e a bobina, necessitando de uma etapa de soldagem entre estes componentes após a fabricação das membranas junto ao substrato de LTCC. Microbobinas foram fabricadas com o intuito de realizar a atuação das microválvulas, a partir da atração/repulsão relacionada a um imã permanente de NdFeB (neodímio-ferro-boro) fixado à membrana flexível em contato com o canal. As bobinas foram fabricadas utilizando dimensões da ordem de 1 cm x 1 cm x 0,2 mm, apresentando de 15 a 44 enrolamentos, com gaps variando na faixa de 80 a 150 µm e as larguras dos fios condutores presente nos enrolamentos variando na faixa de 60 a 90 µm. Os resultados experimentais preliminares realizados demonstraram que uma bobina plana (uma camada, 36 enrolamentos, gap igual a 80 ?m, seção transversal de 1 cm x 1 cm), submetida a uma diferença de potencial de 1 V, é capaz de produzir uma força de 0,02 N sobre o imã permanente (localizado no centro a uma distância (no eixo z) de 1 mm da bobina). Este valor indica que para uma tensão de 10 V, devido a relação linear entre corrente e força magnética, utilizando até 10 camadas de bobinas sobrepostas, é possível obter esforços da ordem de 1 a 2 N (considerando a espessura do LTCC), permitindo que os dispositivos microfluídicos fabricados sejam acionados. / This work presents the physical modeling and implementation developed for different components necessary for the construction of electromagnetically actuating microvalves using a flexible membrane. Theoretical models were developed for describing the flow of fluids in microchannels, especially channels with rectangular transverse sections, routinely used as microchannels microfluidics. The model for the description of the deformation experienced by a PDMS microbridge was developed, allowing to estimate the elastic stiffness for various membranes developed in this work. In addition, a theoretical model was developed to study the forces produced by a microcoil with planar windings in squared spiral format, on a permanent magnet of NdFeB. Using the microchannel modeling, it was possible to estimate the hydraulic resistance offered by microchannels with micrometric dimensions, allowing to evaluate the relationship between inlet pressure and flow rate. It was possible to verify analytically that for the working range specified (flow rates of 0.2 to 6 mL/min for pressures from 0 to 30 kPa), channels with 1 cm in length and 200 ?m height should have a width varying in the range of 300 ?m to 500 µm in order to operate in the range of interest established in this study. Concerning the PDMS membrane, it was possible to estimate theoretically that a membrane with 2 cm in length, width of 2 mm and a thickness varying in the range of 1.6 to 2 mm, requires the implementation of a force in the range of 10.5 mN to 13 mN (range for the strength of action required) to obtain full deflection (250 µm). Evaluating Furthermore, using the theoretical model developed for the microcoils, it was possible to verify that a coil containing 36 windings, spacing of 80 µm, at a distance of 1 mm from the center of the magnet, and composed of 10 overlapping layers, it is possible to produce a force on a magnet of NdFeB up to 0.18 N in the regions from 3 mm to 10 mm away from the x-axis of the magnet, even at a height of 1 mm in relation to the plane xOy of magnet. The characterization of the responses associated with each component was made separately. The simulations showed similar results to those obtained experimentally, as evidenced from the errors obtained by relating the results of theoretical and experimental studies, especially for the microchannels. Microfluidic channels were manufactured with the following dimensions: length in the range of 1 to 4 cm, width in the range of 100 to 400 µm and heights in the range of 200 to 600 µm, 9 different devices were fabricated. It was observed that such microchannels were able to provide up to 1.41 mL/min to 0.8 kPa. The value of flow rate is within the expected range (0.2 to 6 mL/min) considering their application in chemical analysis, where the pressures provided can reach up to 60 kPa. Errors smaller than 5% for hydraulic resistance were obtained, indicating the validation of the theoretical model presented. Devices for fluidic switching with normally open and normally closed operation were fabricated and characterized with PDMS membranes and LTCC layers. Particularly a chamfer on the base of the ceramic substrates was proposed , in the region of contact with the membrane of PDMS, to better sealing the channel with the valve in a closed state. It has been observed that for a pressure of 5 kPa applied at the inlet of the valve, there was no leakage for the normally closed devices, and using a force around 1 N it is possible to achieve rates of liquid flow in the order of 0.45 mL/min, this being higher than the flow required for the intended application. Two assembling processes were developed for the microfluidic switching devices, one through the assembly of the PDMS membrane after LTCC sintering with the microcoil, and the other before the union between the switching device and the microcoil, requiring a step of welding between these components after the fabrication of membranes. Microcoils were manufactured and integrated with a NdFeB permanent magnet attached to a flexible membrane in contact with the channel. The coils were manufactured using dimensions of approximately 1 cm x 1 cm x 0.2 mm, containing 15 to 44 windings, with gaps ranging from 80 to 150 µm and the widths of the conductive wires in the range from 60 to 90 µm. The preliminary experimental results demonstrated that a planar coil (one layer, 36 windings, gap equal to 80 µm, cross section of 1 cm x 1 cm), subject to a potential difference of 1 Volt, is capable of producing a force of 0.02 N on the permanent magnet (located in the center at a z distance of 1 mm of the coil). This value indicates that at a voltage of 10 V it is possible to obtain a force of approximately 1 to 2 N for a coil with 10 layers, allowing for actuation of the microvalves developed.
|
3 |
Microválvulas destinadas ao controle do fluxo de líquidos em canais microfluídicos. / Microvalves for liquids flow control in microfluidic channels.Rosa, Reinaldo Lucas dos Santos 03 May 2017 (has links)
Este trabalho apresenta a modelagem comportamental desenvolvida para diferentes componentes necessários para a construção de uma microválvula eletromagneticamente atuável, associada ao uso de uma membrana flexível. Foram desenvolvidos modelos teóricos para a descrição do fluxo de fluidos em microcanais, especialmente canais com secções transversais retangulares, utilizadas na construção da maioria dos microcanais usados em microfluídica. O modelo para descrição da deformação experimentada por uma microponte de PDMS foi desenvolvido, permitindo estimar a rigidez elástica para diversas membranas desenvolvidas neste trabalho. Além disso um modelo teórico foi desenvolvido com o intuito de estudar as forças produzidas por uma microbobina com enrolamentos em formato espiral quadrado, sobre um imã permanente de NdFeB localizado em posições genéricas em relação à bobina. Utilizando o primeiro modelamento, estudo de microcanais, foi possível estimar a resistência hidráulica oferecida por microcanais com dimensões sub-milimétricas, permitindo avaliar a relação entre pressão de entrada e vazão de saída correspondente. Foi possível verificar analiticamente que para a faixa de trabalho especificada (vazões na faixa de 0,2 a 6 mL/min utilizando pressões na faixa de 0 a 30 kPa), canais com 1 cm de comprimento e 200 ?m de altura, devem possuir a largura variando na faixa de 300 µm a 500 µm de modo a operar na faixa de interesse estabelecida neste trabalho. Utilizando um canal com 2 cm de comprimento e 300 µm, o valor da altura pode estar entre 200 µm a 400 µm, permitindo miniaturizar o dispositivo final, garantindo a faixa de operação desejada. A partir da modelagem realizada com a finalidade de descrever o comportamento da membrana de PDMS, foi possível estimar teoricamente que uma membrana com 2 cm de comprimento, 2 mm de largura e a espessura variando na faixa de 1,6 a 2 mm, exige a realização de uma força na faixa de 10,5 mN a 13 mN (faixa para a força de atuação necessária), de modo a obter a deflexão de interesse neste trabalho (250 µm). Avaliando as microbobinas com base no modelo teórico desenvolvido neste trabalho, foi possível verificar que uma bobina contendo 36 enrolamentos, espaçamento de 80 µm, a uma distância de 1 mm do centro do imã, aplicando-se 10V (considerando uma resistência total de 100 Ohm), utilizando 10 camadas sobrepostas, é possível produzir uma força sobre um imã de NdFeB de até 0,18 N nas regiões de 3 mm a 10 mm afastadas em relação ao eixo x do imã, ainda a uma altura de 1 mm em relação ao plano xOy do imã. Após a fabricação dos componentes mencionados acima, foram propostos arranjos experimentais para a caracterização das respostas associadas a cada componente separadamente. As simulações apresentaram resultados similares aos obtidos experimentalmente, conforme pode ser avaliado visualizando os erros obtidos relacionando os resultados teóricos e experimentais, especialmente para os microcanais. Dispositivos microfluídicos foram fabricados obtendo canais com as seguintes dimensões: comprimento na faixa de 1 a 4 cm, largura na faixa de 100 a 400 µm e alturas na faixa de 200 a 600 µm, correspondentes à construção de 9 dispositivos com diferentes tamanhos, em que os 6 primeiros foram submetidos às análises experimentais sob as mesmas condições, repetidamente. Foi observado que tais microcanais foram capazes de fornecer até 1,41 mL/min a 0,8 kPa. O valor de vazão está dentro da faixa de desempenho do dispositivo (0,2 a 6 mL/min) com foco em sua aplicação na realização de análises químicas, onde as pressões fornecidas podem chegar até 60 kPa, fornecendo flexibilidade na produção de propulsão dos líquidos transportados através dos canais fabricados. Em relação aos resultados obtidos utilizando o modelo teórico para descrição do comportamento fluídico em microcanais, erros menores que 5% relativos aos resultados experimentais foram obtidos, indicando a validação do modelo teórico apresentado. Foram fabricados dispositivos com características comutadoras, normalmente abertas e normalmente fechadas, dependendo do método de fixação da membrana de PDMS ao substrato cerâmico. O projeto para o desenvolvimento de um chanfro na base do substrato cerâmico, na região de contato com a membrana de PDMS, foi desenvolvido com a finalidade de melhorar a selagem do canal com a válvula no estado fechado. Observou-se que para uma pressão de 5 kPa aplicada à entrada da válvula, não houve vazamento para os dispositivos normalmente fechados, e utilizando uma força em torno de 1 N é possível atingir taxas de fluxo de líquido da ordem de 0,45 mL/min, sendo esta superior às vazões necessárias para a aplicação em foco, qual seja, a automatização de microlaboratórios autônomos. Dois processos de montagem dos componentes para confecção das microválvulas foram desenvolvidos. Um deles visou a montagem da membrana de PDMS após a sinterização do sistema microfluídico junto à microbobina, e o outro visou a fixação da membrana antes da união entre o sistema e a bobina, necessitando de uma etapa de soldagem entre estes componentes após a fabricação das membranas junto ao substrato de LTCC. Microbobinas foram fabricadas com o intuito de realizar a atuação das microválvulas, a partir da atração/repulsão relacionada a um imã permanente de NdFeB (neodímio-ferro-boro) fixado à membrana flexível em contato com o canal. As bobinas foram fabricadas utilizando dimensões da ordem de 1 cm x 1 cm x 0,2 mm, apresentando de 15 a 44 enrolamentos, com gaps variando na faixa de 80 a 150 µm e as larguras dos fios condutores presente nos enrolamentos variando na faixa de 60 a 90 µm. Os resultados experimentais preliminares realizados demonstraram que uma bobina plana (uma camada, 36 enrolamentos, gap igual a 80 ?m, seção transversal de 1 cm x 1 cm), submetida a uma diferença de potencial de 1 V, é capaz de produzir uma força de 0,02 N sobre o imã permanente (localizado no centro a uma distância (no eixo z) de 1 mm da bobina). Este valor indica que para uma tensão de 10 V, devido a relação linear entre corrente e força magnética, utilizando até 10 camadas de bobinas sobrepostas, é possível obter esforços da ordem de 1 a 2 N (considerando a espessura do LTCC), permitindo que os dispositivos microfluídicos fabricados sejam acionados. / This work presents the physical modeling and implementation developed for different components necessary for the construction of electromagnetically actuating microvalves using a flexible membrane. Theoretical models were developed for describing the flow of fluids in microchannels, especially channels with rectangular transverse sections, routinely used as microchannels microfluidics. The model for the description of the deformation experienced by a PDMS microbridge was developed, allowing to estimate the elastic stiffness for various membranes developed in this work. In addition, a theoretical model was developed to study the forces produced by a microcoil with planar windings in squared spiral format, on a permanent magnet of NdFeB. Using the microchannel modeling, it was possible to estimate the hydraulic resistance offered by microchannels with micrometric dimensions, allowing to evaluate the relationship between inlet pressure and flow rate. It was possible to verify analytically that for the working range specified (flow rates of 0.2 to 6 mL/min for pressures from 0 to 30 kPa), channels with 1 cm in length and 200 ?m height should have a width varying in the range of 300 ?m to 500 µm in order to operate in the range of interest established in this study. Concerning the PDMS membrane, it was possible to estimate theoretically that a membrane with 2 cm in length, width of 2 mm and a thickness varying in the range of 1.6 to 2 mm, requires the implementation of a force in the range of 10.5 mN to 13 mN (range for the strength of action required) to obtain full deflection (250 µm). Evaluating Furthermore, using the theoretical model developed for the microcoils, it was possible to verify that a coil containing 36 windings, spacing of 80 µm, at a distance of 1 mm from the center of the magnet, and composed of 10 overlapping layers, it is possible to produce a force on a magnet of NdFeB up to 0.18 N in the regions from 3 mm to 10 mm away from the x-axis of the magnet, even at a height of 1 mm in relation to the plane xOy of magnet. The characterization of the responses associated with each component was made separately. The simulations showed similar results to those obtained experimentally, as evidenced from the errors obtained by relating the results of theoretical and experimental studies, especially for the microchannels. Microfluidic channels were manufactured with the following dimensions: length in the range of 1 to 4 cm, width in the range of 100 to 400 µm and heights in the range of 200 to 600 µm, 9 different devices were fabricated. It was observed that such microchannels were able to provide up to 1.41 mL/min to 0.8 kPa. The value of flow rate is within the expected range (0.2 to 6 mL/min) considering their application in chemical analysis, where the pressures provided can reach up to 60 kPa. Errors smaller than 5% for hydraulic resistance were obtained, indicating the validation of the theoretical model presented. Devices for fluidic switching with normally open and normally closed operation were fabricated and characterized with PDMS membranes and LTCC layers. Particularly a chamfer on the base of the ceramic substrates was proposed , in the region of contact with the membrane of PDMS, to better sealing the channel with the valve in a closed state. It has been observed that for a pressure of 5 kPa applied at the inlet of the valve, there was no leakage for the normally closed devices, and using a force around 1 N it is possible to achieve rates of liquid flow in the order of 0.45 mL/min, this being higher than the flow required for the intended application. Two assembling processes were developed for the microfluidic switching devices, one through the assembly of the PDMS membrane after LTCC sintering with the microcoil, and the other before the union between the switching device and the microcoil, requiring a step of welding between these components after the fabrication of membranes. Microcoils were manufactured and integrated with a NdFeB permanent magnet attached to a flexible membrane in contact with the channel. The coils were manufactured using dimensions of approximately 1 cm x 1 cm x 0.2 mm, containing 15 to 44 windings, with gaps ranging from 80 to 150 µm and the widths of the conductive wires in the range from 60 to 90 µm. The preliminary experimental results demonstrated that a planar coil (one layer, 36 windings, gap equal to 80 µm, cross section of 1 cm x 1 cm), subject to a potential difference of 1 Volt, is capable of producing a force of 0.02 N on the permanent magnet (located in the center at a z distance of 1 mm of the coil). This value indicates that at a voltage of 10 V it is possible to obtain a force of approximately 1 to 2 N for a coil with 10 layers, allowing for actuation of the microvalves developed.
|
4 |
Manufacture and test of a micro-coil based strong gradient field system for nuclear magnetic resonance imagingLiang, Wen-yen 08 September 2004 (has links)
none
|
5 |
A 200-MHz fully-differential CMOS front-end with an on-chip inductor for magnetic resonance imagingAyala, Julio Enqrique, II 25 April 2007 (has links)
Recently, there is a growing interest in applying electronic circuit design for
biomedical applications, especially in the area of nuclear magnetic resonance (NMR).
NMR has been used for many years as a spectroscopy technique for analytical chem-
istry. Previous studies have demonstrated the design and fabrication of planar spiral
inductors (microcoils) that serve as detectors for nuclear magnetic resonance mi-
crospectroscopy.
The goal of this research was to analyze, design, and test a prototype integrated
sensor, which consisted of a similar microcoil detector with analog components to
form a multiple-channel front-end for a magnetic resonance imaging (MRI) system to
perform microspectroscopy. The research has succeeded in producing good function-
ality for a multiple-channel sensor. The sensor met expectations compared to similar
one-channel systems through experiments in channel separation and good signal-to-
noise ratios.
|
6 |
Investigation of Cryo-Cooled Microcoils for MRIGodley, Richard Franklin 2011 August 1900 (has links)
When increasing magnetic resonance imaging (MRI) resolution into the micron scale, image signal-to-noise ratio (SNR) can be maintained by using small radiofrequency (RF) coils in close proximity to the sample being imaged. Micro-scale RF coils (microcoils) can be easily fabricated on chip and placed adjacent to a sample under test. However, the high series resistance of microcoils limits the SNR due to the thermal noise generated in the copper. Cryo-cooling is a potential technique to reduce thermal noise in microcoils, thereby recovering SNR.
In this research, copper microcoils of two different geometries have been cryo-cooled using liquid nitrogen. Quality-factor (Q) measurements have been taken to quantify the reduction in resistance due to cryo-cooling. Image SNR has been compared between identical coils at room temperature and liquid nitrogen temperature. The relationship between the drop in series resistance and the increase in image SNR has been analyzed, and these measurements compared to theory.
While cryo-cooling can bring about dramatic increases in SNR, the extremely low temperature of liquid nitrogen is incompatible with living tissue. In general, the useful imaging region of a coil is approximately as deep as the coil diameter, thus cryo-cooling of coils has been limited in the past to larger coils, such that the thickness of a conventional cryostat does not put the sample outside of the optimal imaging region. This research utilizes a scheme of microfluidic cooling (developed in the Texas A&M NanoBio Systems Lab), which greatly reduces the volume of liquid nitrogen required to cryo-cool the coil. Along with a small gas phase nitrogen gap, this eliminates the need for a bulky cryostat.
This thesis includes a review of the existing literature on cryo-cooled coils for MRI, as well as a review of planar pair coils and spiral microcoils in MR applications. Our methods of fabricating and testing these coils are described, and the results explained and analyzed. An image SNR improvement factor of 1.47 was achieved after cryo-cooling of a single planar pair coil, and an improvement factor of 4 was achieved with spiral microcoils.
|
7 |
Microfluidically Cryo-Cooled Planar Coils for Magnetic Resonance ImagingKoo, Chiwan 16 December 2013 (has links)
High signal-to-noise ratio (SNR) is typically required for higher resolution and faster speed in magnetic resonance imaging (MRI). Planar microcoils as receiver probes in MRI systems offer the potential to be configured into array elements for fast imaging as well as to enable the imaging of extremely small objects. Microcoils, however, are thermal noise dominant and suffer limited SNR. Cryo-cooling for the microcoils can reduce the thermal noise, however conventional cryostats are not optimum for the microcoils because they typically use a thick vacuum gap to keep samples to be imaged to near room temperature during cryo-cooling. This vacuum gap is typically larger than the most sensitive region of the microcoils that defines the imaging depth, which is approximately the same as the diameters of the microcoils.
Here microfluidic technology is utilized to locally cryo-cool the microcoils and minimize the thermal isolation gap so that the imaging surface is within the imaging depth of the microcoils. The first system consists of a planar microcoil with microfluidically cryo-cooling channels, a thin N2 gap and an imaging. The microcoil was locally cryo-cooled while maintaining the sample above 8°C. MR images using a 4.7 Tesla MRI system shows an average SNR enhancement of 1.47 fold. Second, the system has been further developed into a cryo-cooled microcoil system with inductive coupling to cryo-cool both the microcoil and the on-chip microfabricated resonating capacitor to further improve the Q improvement. Here inductive coupling was used to eliminate the physical connection between the microcoil and the tuning network so that a single cryocooling microfluidic channel could enclose both the microcoil and the capacitor with minimum loss in cooling capacity. Q improvement was 2.6 fold compared to a conventional microcoil with high-Q varactors and transmission line connection.
Microfluidically tunable capacitors with the 653% tunability and Q of 1.3 fold higher compared to a conventional varactor have been developed and demonstrated as matching/tuning networks as a proof of concept.
These developed microfluidically cryo-cooling system and tunable capacitors for improving SNR will potentially allow MR microcoils to have high-resolution images over small samples.
|
8 |
Synthesis and Functionalization of Coiled Carbon FilamentsHikita, Muneaki January 2014 (has links)
No description available.
|
9 |
Entwicklung eines integrierten Mikroresonators für die kernmagnetische Resonanzspektroskopie kleinster ProbenvolumenLeidich, Stefan 09 April 2010 (has links) (PDF)
In der vorliegenden Arbeit wird ein Mikroresonator für die kernmagnetische
Resonanzspektroskopie kleinster Probenvolumen entwickelt. Der Resonator
besteht aus einem Mikrodetektor und einer elektrisch steuerbaren Kapazität für
den Resonanzabgleich. Beide Bauteile sind speziell an die Anforderungen des
Messverfahrens angepasst. Der Mikrodetektor, welcher die Funktion der
Erregung der Kernspins und die Detektion des Messsignals erfüllt, weist
aufgrund seiner besonderen Geometrie ein weitgehend homogenes statisches
Magnetfeld im Bereich des Probenvolumens auf. Daraus resultieren eine
Verbesserung der spektralen Auflösung und eine Steigerung der
Empfindlichkeit. Die elektrisch steuerbare Kapazität weist eine hohe elektrische
Güte und eine hohe Spannungsfestigkeit auf, wodurch die Verwendung von
hohen Pulsleistungen möglich ist. Der Nachweis der Funktionalität des Systems
erfolgt durch die Integration des Mikroresonators in einen Probenkopf, welcher
zur Messung von Test- und Referenzsignalen eingesetzt wird. Anhand der
Messwerte wird gezeigt, dass die neue Entwicklung eine sehr hohe
Empfindlichkeit und eine deutlich höhere spektrale Auflösung als andere
Detektorsysteme dieser Art aufweist und somit besonders gut für die Messung
von sehr kleinen Probenvolumen geeignet ist. / The thesis describes the development of a micro resonator for nuclear magnetic resonance (NMR) spectroscopy of very small sample volumes. The resonator consists of a microcoil and an electrically adjustable capacitance for resonance tuning. Both components are specially designed for the purpose of NMR. The microcoil excites the nuclear spins and detects the measurement signal. Due to the special cylindrical geometry, the detector provides a very homogenous spatial distribution of the static magnetic field at the location of the sample. This leads to improved spectral resolution and increased sensitivity. The electrically adjustable capacitance provides a high quality factor and high voltage stability. Hence, short excitation pulses with high bandwidth can be applied. The components are integrated into a specially designed probe. The functionality of the system is demonstrated by test and reference measurements. The measurement results verify the high sensitivity and the high spectral resolution. Hence, the system is applicable and well suited for NMR measurements of small sample volumes.
|
10 |
Entwicklung eines integrierten Mikroresonators für die kernmagnetische Resonanzspektroskopie kleinster ProbenvolumenLeidich, Stefan 26 February 2010 (has links)
In der vorliegenden Arbeit wird ein Mikroresonator für die kernmagnetische
Resonanzspektroskopie kleinster Probenvolumen entwickelt. Der Resonator
besteht aus einem Mikrodetektor und einer elektrisch steuerbaren Kapazität für
den Resonanzabgleich. Beide Bauteile sind speziell an die Anforderungen des
Messverfahrens angepasst. Der Mikrodetektor, welcher die Funktion der
Erregung der Kernspins und die Detektion des Messsignals erfüllt, weist
aufgrund seiner besonderen Geometrie ein weitgehend homogenes statisches
Magnetfeld im Bereich des Probenvolumens auf. Daraus resultieren eine
Verbesserung der spektralen Auflösung und eine Steigerung der
Empfindlichkeit. Die elektrisch steuerbare Kapazität weist eine hohe elektrische
Güte und eine hohe Spannungsfestigkeit auf, wodurch die Verwendung von
hohen Pulsleistungen möglich ist. Der Nachweis der Funktionalität des Systems
erfolgt durch die Integration des Mikroresonators in einen Probenkopf, welcher
zur Messung von Test- und Referenzsignalen eingesetzt wird. Anhand der
Messwerte wird gezeigt, dass die neue Entwicklung eine sehr hohe
Empfindlichkeit und eine deutlich höhere spektrale Auflösung als andere
Detektorsysteme dieser Art aufweist und somit besonders gut für die Messung
von sehr kleinen Probenvolumen geeignet ist. / The thesis describes the development of a micro resonator for nuclear magnetic resonance (NMR) spectroscopy of very small sample volumes. The resonator consists of a microcoil and an electrically adjustable capacitance for resonance tuning. Both components are specially designed for the purpose of NMR. The microcoil excites the nuclear spins and detects the measurement signal. Due to the special cylindrical geometry, the detector provides a very homogenous spatial distribution of the static magnetic field at the location of the sample. This leads to improved spectral resolution and increased sensitivity. The electrically adjustable capacitance provides a high quality factor and high voltage stability. Hence, short excitation pulses with high bandwidth can be applied. The components are integrated into a specially designed probe. The functionality of the system is demonstrated by test and reference measurements. The measurement results verify the high sensitivity and the high spectral resolution. Hence, the system is applicable and well suited for NMR measurements of small sample volumes.
|
Page generated in 0.0574 seconds