• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 7
  • 5
  • 4
  • Tagged with
  • 34
  • 8
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Micromechanical modeling of imperfect interfaces and applications

Raffa, Maria Letizia 27 November 2015 (has links)
Le rôle crucial des interfaces solides dans les problèmes de structures dans de nombreux domaines de l'Ingénierie est désormais bien connue et c'est certainement un sujet de grand intérêt scientifique. Aujourd'hui, la modélisation analytique et numérique des interfaces structurelles représentent un défi du fait desphénomènes physiques très complexes qu'il faut prendre en compte (tels que adhésion, contact non-conforme,microfissuration, frottement, contact unilatéral) autant que le besoin d'avoir des méthodes numériques qui soient capables de traiter à la fois la faible épaisseur des zones d'interface et les sauts dans les champs physiques concernés. Cette thèse vise à développer un outil analytique cohérent et général qui soit capable de dépasser les limitations des stratégies existantes et concernant la modélisation des interfaces emph{soft} et emph{hard} caractérisées par une microfissuration évolutive. Une nouvelle approche, appelée emph{Imperfect Interface Approach} (IIA), est proposée. Elle couple de manière cohérente arguments de théorie asymptotique et techniques d'homogénéisation pour les milieux microfissurés dans le cadre de la emph{Non-Interacting Approximation} (NIA). Dans le cadre de l'élasticité linéaire, l'IIA est employée avec succès pour obtenir un ensemble de modèles d'interfaces imparfaites.En généralisant la méthode de développement asymptotique à la théorie élastique des déformations finies, un modèle d'interface soft non-linéaire a été dérivé. Comme une nouvelle application, l'IIA est appliquée afin de formuler un modèle de contact non-conforme à raideurs equivalents. Simulations numériques appliquées à la maçonnerie ont été effectuées. / The crucial role of solid interfaces in structural problems in several engineering fields is well-established and they represent certainly a scientific topic of great interest. Nowadays, analytical and numerical modeling of structural interfaces are challenging tasks, due to the complex physical phenomena to take into account (such as adhesion, non-conforming contact, microcracking, friction, unilateral contact), as well as to the need of numerical methods suitable for treating small thickness of the interface zones and jumps in the physically relevant fields.Present PhD thesis aims to develop a consistent and general analytical tool able to overcome some modeling shortcomings of available modeling strategies accounting for soft and hard interfaces, and characterized by evolving microcracking. A novel approach, referred to as emph{Imperfect Interface Approach} (IIA), is proposed. It consistently couples asymptotic arguments and homogenization techniques for microcracked media in the framework of the Non-Interacting Approximation (NIA). In the context of linear elasticity, the IIA is successfully employed to derive a set of imperfect interface. By generalizing the matched asymptotic expansion method to finite strains, a nonlinear soft interface model has been derived. As a new general application, the IIA is applied to formulate a spring-type model for non-conforming contact. Finally, numerical simulations applying the soft interface models obtained in both linear and nonlinear cases to masonry structures, are carried out, showing effectiveness and soundness of the proposed formulation.
22

Thermal Expansion And Related Studies In Cordierite Ceramics And Relaxor Ferroelectrics

Sai Sundar, V V S S 09 1900 (has links) (PDF)
The following investigations have been carried out in this thesis 1)Cordierite is already well known for its low thermal expansion behaviour. Chemical substitutions at various octahedral and tetrahedral sites have been done and their thermal expansion characteristics have been studied Synthesis of cordierite in more reactive environment provided by AlF3 used as sintering aid has been attempted 2) Diffuse ferroelectric phase transition of lead based perovskite materials leads to low expansion region. Solid solutions of lead iron niobate with lead titanate is investigated to increase the structural distortion and see it this low expansion region can be extended to wider temperature Preparation of materials with higher tetragonal distortion In PbTi03- BlFeO3 system is undertaken to study the thermal expansion anisotropy. 3) Composites between lead iron niobate(+(x) and lead titanate (-(x below Tc) has been undertaken to prepare low expansion hulk over a wide temperature range 4) Acoustic emission has been employed as a tool to detect the microcracking in solid solutions between PFN1-x, PTx, and PT1-x, ,BFx, It is hoped to understand relation between magnitude of lattice distortion transition temperature and microcracking in ceramics of the class of materials.
23

Evaluation of Portable Devices for Monitoring Microcracking of Cement-Treated Base Layers

Hope, Charles A. 17 March 2011 (has links) (PDF)
A relatively new method used to reduce the amount of cement-treated base (CTB) shrinkage cracking is microcracking of the CTB shortly after construction. Three portable instruments used in this study for monitoring the microcracking process include the heavy Clegg impact soil tester (CIST), portable falling-weight deflectometer (PFWD), and soil stiffness gauge (SSG). The specific objectives of this research were 1) to evaluate the sensitivity of each of the three portable instruments to microcracking, and 2) to compare measurements of CTB stiffness reduction obtained using the three devices. The test locations included in this study were Redwood Drive and Dale Avenue in Salt Lake City, Utah; 300 South in Spanish Fork, Utah; and a private access road in Wyoming. Experimental testing in the field consisted of randomized stationing at each site; sampling the CTB immediately after the cement was mixed into the reclaimed base material; compacting specimens for laboratory testing; and testing the CTB immediately after construction, immediately before microcracking, immediately after each pass of the vibratory roller during the microcracking process, and, in some instances, three days after microcracking. Several linear regression analyses were performed after data were collected using the CIST, PFWD, and SSG during the microcracking process to meet the objectives of this research. Results from the statistical analyses designed to evaluate the sensitivity of each of the three portable instruments to microcracking indicate that the PFWD and SSG are sensitive to microcracking, while the CIST is insensitive to microcracking. Results from the statistical analyses designed to compare measurements of CTB stiffness reduction demonstrate that neither of the instrument correlations involving the CIST are statistically significant. Only the correlation between the PFWD and SSG was shown to be statistically significant. Given the results of this research, engineers and contractors should utilize the PFWD or SSG for monitoring microcracking of CTB layers. The heavy CIST is unsuitable for monitoring microcracking and should not be used. For deriving target CTB stiffness reductions measured using either the PFWD or SSG from specified targets measured using the other, engineers and contractors should utilize the correlation chart developed in this research.
24

Damage mechanisms in SiC/SiC composite tubes : three-dimensional analysis coupling tomography imaging and numerical simulation / Mécanismes d'endommagement des tubes composites SiC/SiC : analyse tridimensionnelle couplée par imagerie tomographique et simulation numérique

Chen, Yang 22 November 2017 (has links)
Du fait de leurs propriétés physiques et chimiques exceptionnelles à haute température par rapport aux métaux, les composites de carbure de silicium (SiC) sont étudiés comme éventuel matériau de gainage du combustible nucléaire dans les réacteurs de fusion ou fission avancée futurs, ainsi que, depuis plus récemment, dans les réacteurs à eau légère existants. Les tubes composites SiC/SiC tressés en 2D, fabriqués par procédé d'infiltration chimique en phase vapeur (CVI), présentent un comportement mécanique anisotrope, faiblement déformable (~ 1%). La maîtrise des relations entre la microstructure, l’endommagement et le comportement macroscopique est essentielle pour optimiser précisément le dimensionnement structurel de ce matériau pour les applications envisagées. Un paramètre de fabrication important est l'angle de tressage, angle entre les torons de fibres et l'axe du tube. L'objectif de ce travail est de fournir une compréhension détaillée de la relation endommagement-microstructure, en particulier des effets de l'angle de tressage sur les mécanismes d’endommagement. Dans ce but, une étude combinant observations expérimentales à macro et micro-échelle et simulations numériques est menée. Les tubes composites sont d’abord étudiés par des essais de traction in situ sous tomographie par rayons X. Les expériences ont été réalisées sur la ligne PSICHE du synchrotron SOLEIL sous faisceau rose polychromatique. Les images tridimensionnelles sont analysées par la technique de corrélation d’image volumique (DVC), complétée par une série d'algorithmes de traitement d'image originaux, développés spécifiquement pour analyser les microstructures 3D, mesurer les déformations à travers l'épaisseur du tube, détecter et caractériser quantitativement le réseau de microfissures créées par le chargement mécanique. De plus, les microstructures réelles, décrites par les images de haute résolution issues des tests in situ, sont utilisées dans les simulations numériques multi-échelle. Les champs de contrainte à l’échelle microstructurale sont calculés en régime élastique par une technique utilisant la transformée de Fourier rapide (FFT). Ils permettent de mieux comprendre l'initiation des fissures et d’interpréter les observations expérimentales par une comparaison directe. Ces approches expérimentales et numériques sont appliquées à trois tubes présentant différents angles de tressage (30 °, 45 ° et 60 °). L’influence de l'angle de tressage sur l'initiation et l'évolution de l’endommagement à cœur des composites est ainsi mise en évidence / Because of their outstanding physical and chemical properties at high temperature, in comparison with metals, silicon carbide (SiC) composite materials are studied as possible nuclear fuel cladding materials either for future advanced fission/fusion reactors, or more recently, for the currently existing light water reactors. 2D-braided SiC/SiC composite tubes, manufactured by chemical vapor infiltration (CVI), exhibit an anisotropic, hardly deformable (~1%) mechanical behavior. Understanding the relations between the microstructure, the damage mechanisms and the macroscopic behavior is essential to optimize the structural design of this material for the considered applications. One important manufacturing parameter is the braiding angle, i.e. the angle between the fiber tows and the tube axis. The objective of this work is to provide a comprehensive understanding of the damage-microstructure relations, in particular of the effects of the braiding angle on the damage mechanisms. For this purpose, an investigation combining experimental observations at macro and micro-scale and numerical simulations is developed. The composite tubes are first studied through in situ tensile testing under X-ray computed tomography. Experiments were carried out on the PSICHE beamline at synchrotron SOLEIL using a pink polychromatic beam. The recorded 3D images are processed using the digital volume correlation (DVC) technique, extended by a series of advanced image processing algorithms specifically developed in order to analyze the 3D microstructures, to measure the deformations through the tube thickness, and to detect and quantitatively characterize the network of micro-cracks created by the mechanical loading. In addition, numerical simulations are performed on the real microstructures as observed in the high-resolution images recorded during the in situ tests. Stress fields are calculated at the microstructural scale in the elastic regime using a numerical tool based on the Fast Fourier Transform (FFT). They help to better understand crack initiation and interpret the experimental observations within one-to-one comparisons. Both the experimental and numerical approaches are applied to three tubes with different braiding angles (30°, 45° and 60°). The effect of the braiding angle on the initiation and evolution of damage in the bulk of the composite materials can thus be highlighted
25

Análise do microfissuramento em rochas no ensaio de compressão diametral por meio da técnica de emissão acústica / Analysis of microcracking in rocks in diametral compression tests through the acoustic emission technique

Rodríguez Saavedra, Patricia Carolina Alejandra 08 December 2015 (has links)
Em nível microscópico, as rochas apresentam microdefeitos que agem como concentradores locais de tensão, favorecendo a ocorrência de ruptura frágil. O entendimento desse processo requer análises experimentais em rochas submetidas a tensões de tração. O ensaio de compressão diametral é uma alternativa apropriada, pois não apresenta as dificuldades envolvidas no ensaio de tração direta. A propagação de microfissuramento em materiais frágeis produz liberação de energia na forma de ondas elásticas chamadas de emissões acústicas (EA). O monitoramento com EA permite acompanhar a propagação de dano no corpo de prova (CP), sem perturbá-lo. Nesta pesquisa, CPs de mármore e monzogranito são submetidos a ensaios de compressão diametral com deslocamentos monotônicos e cíclicos, com controle de deslocamento. Aplica-se a técnica de EA, em conjunto com análises petrográficas, análises das curvas de força versus deslocamento e exame visual, para caracterizar o seu processo de microfissuramento. A localização tridimensional das fontes de EA foi realizada inicialmente utilizando-se o software AEwin® da PASA. Foi desenvolvido um programa de localização aprimorado que incorpora o cálculo da velocidade de propagação das ondas (vp) média para cada instante em que uma fonte é localizada. O novo programa (Crack Location by Acoustic emission with P Wave Velocity determination, CLAPWaVe) mostra um claro decréscimo da velocidade de propagação com o aumento do dano. O programa desenvolvido (CLAPWaVe) mostrou melhor ajuste e maior coerência com a literatura e com a condição final rompida dos CPs do que o software AEwin. Em mármore e monzogranito o microfissuramento se inicia a 25-30% e 75-85% do carregamento de pico, respectivamente, e localiza-se na vizinhança do centro do CP. Em ambas as rochas se acumulou, também, dano na região dos apoios do CP, associado à transferência de carregamento do berço ao CP. Antes do pico de carregamento, o microfissuramento tornou-se mais denso e localizado no centro e nos apoios do CP, embora a região central ainda concentre a maior parte. Após o pico, o microfissuramento acumulou-se em uma das faces do CP, progredindo até a outra face. O monzogranito apresentou ruptura progressiva do CP, enquanto que no mármore a maior parte da superfície de ruptura já está desenvolvida imediatamente após o pico. Durante o ensaio em ambas as rochas, no núcleo central foram registradas as menores velocidades vp do CP. Na região dos apoios, embora tenha havido microfissuramento, registraram-se as maiores velocidades vp no CP, pois o confinamento produzido pelo contato com o berço aumentou localmente a rigidez do CP. A distribuição não homogênea de vp no CP revelou que a consideração desse parâmetro como constante e igual à condição intacta ao longo do ensaio, como comumente encontrado na literatura, não representa a condição real do CP danificado. O microfissuramento no monzogranito se propaga principalmente através dos cristais de quartzo, seguindo um caminho tortuoso subparalelo à direção de carregamento e liberando altos níveis de energia absoluta. No mármore, a propagação segue os planos de clivagem da calcita, liberando níveis baixos de energia absoluta. Os histogramas da distribuição espacial da resistência em ambas as rochas mostraram bom ajuste a uma distribuição de Weibull, porém o monzogranito mostrou melhor ajuste e menor variabilidade que o mármore. As análises dos sinais no domínio das frequências mostraram que o microfissuramento é caracterizado por emissões de banda larga. / At microscopic level, rocks exhibit microflaws, which act as local stress concentrators, favoring the occurrence of brittle failure. The understanding of this process requires experimental analyses of rock specimens under tensile stresses. The diametral compression test is an adequate alternative for such a studies, because it does not present the difficulties of direct tension tests. Crack propagation in brittle materials releases energy as transient elastic waves known as acoustic emission (AE). Monitoring with AE enables an insight into the cracking process without affecting the integrity of the sample. In this work, marble and monzogranite specimens were subjected to monotonic and cyclic displacementcontrolled diametral compression tests. The AE monitoring technique was applied in conjunction with petrographic analyses, interpretation of the load versus displacement curves and visual examination of the samples for the characterization of their cracking process. The three-dimensional localization of the AE sources was initially carried out by using the software AEwin® from PASA. An improved localization software, which considers the P-wave velocity variation along the damage process (vp) for each AE source was developed. The developed software (Crack Location by Acoustic emission with P Wave Velocity determination, CLAPWaVe) has shown greater consistency with literature and the final cracked samples and better accuracy than AEwin. Microcracking in monzogranite and marble initiated at 25-30% and 75-80% of the peak load, respectively, and is located at the center of the specimen. In addition, both rocks showed concentrated microcracking close to the region of contact between the specimen and the loading platens, related to the loading transference along the loading edge. Before peak load, microcracking becomes denser and localized at the center and the contact region of the specimen, although, the central region still concentrates the main portion of the damage. After the peak load, new microcracks were first concentrated on one of the faces at the center of the specimen and then propagated through its thickness all the way to the other face. The progressive failure in monzogranite extended through to the end of the test, while in marble the main portion of the failure surface of the specimen developed just after peak. During the whole test in both rocks, the lowest velocities (vp) of the specimen were recorded in the central core. Although microcracking was induced at the contact region, the highest velocities vp of the specimen were registered there, because of the confinement effect produced by the platens, which lead to a local increase in the stiffness of the specimen. The non-homogeneous distribution of vp in the specimen has revealed that the utilization of this parameter as a constant and equal to the value measured in the specimen before testing (as usually adopted in the literature), does not represent the real condition of the damaged specimen. In monzogranite, microcracks propagate mainly through quartz crystals, following a tortuous path subparallel to the loading direction, by releasing high-level of absolute energy, while in marble the propagation of microcracks follows the cleavage planes of calcite, by releasing low-level of absolute energy. The histograms of spatial strength distribution in both rocks have shown good adjustment to a Weibull distribution, but monzogranite exhibited a more accurate adjustment with lower variability than marble. The analysis of signals in the frequency domain showed that the microcracking is characterized by wide band emissions.
26

Microfabrication of a MEMS piezoresistive flow sensor - materials and processes

Aiyar, Avishek R. 11 July 2008 (has links)
Microelectromechanical systems (MEMS) based artificial sensory hairs for flow sensing have been widely explored, but the processes involved in their fabrication are lithography intensive, making the process quite expensive and cumbersome. Most of these devices are also based on silicon MEMS, which makes the fabrication of out-of plane 3D flow sensors very challenging. This thesis aims to develop new fabrication technologies based on Polymer MEMS, with minimum dependence on lithography for the fabrication of piezoresistive 3D out-of-plane artificial sensory hairs for sensing of air flow. Moreover, the fabrication of a flexible sensor array is proposed and new materials are also explored for the sensing application. Soft lithography based approaches are first investigated for the fabrication of an all elastomer device that is tested in a bench top wind tunnel. Micromolding technologies allow for the mass fabrication of microstructures using a single, reusable mold master that is fabricated by SU-8 photolithography, reducing the need for repetitive processing. Polydimethylsiloxane (PDMS) is used as the device material and sputter deposited gold is used as both the piezoresistive as well as the electrode material for collection of device response. The fabrication results of PDMS to PDMS metal transfer micromolding (MTM) are shown and the limitations of the process are also discussed. A dissolving mold metal transfer micromolding process is then proposed and developed, which overcomes the limitations of the conventional MTM process pertinent to the present application. Testing results of devices fabricated using the dissolving mold process are discussed with emphasis on the role of micro-cr  acking as one failure mode in elastomeric devices with thin film metal electrodes. Finally, a laser microfabrication based approach using thin film Kapton as the device material and an electrically conductive carbon-black elastomer composite as the piezoresistor is proposed and demonstrated. Laminated sheets of thick and thin Kapton form the flexible substrate on which the conductive elastomer piezoresistors are stencil printed. Excimer laser ablation is used to make the micro-stencil as well as to release the Kapton cantilevers. The fluid-structure interaction is improved by the deposition of a thin film of silicon dioxide, which produces a stress-gradient induced curvature, strongly enhancing the device sensitivity. This new approach also enables the fabrication of backside interconnects, thereby addressing the commonly observed problem of flow intrusion while using conventional interconnection technologies like wire-bonding. Devices with varying dimensions of the sensing element are fabricated and the results presented, with smallest devices having a width of 400 microns and a length of 1.5 mm with flow sensitivities as high as 60 Ohms/m/s. Recommendations are also proposed for further optimization of the device.
27

Análise do microfissuramento em rochas no ensaio de compressão diametral por meio da técnica de emissão acústica / Analysis of microcracking in rocks in diametral compression tests through the acoustic emission technique

Patricia Carolina Alejandra Rodríguez Saavedra 08 December 2015 (has links)
Em nível microscópico, as rochas apresentam microdefeitos que agem como concentradores locais de tensão, favorecendo a ocorrência de ruptura frágil. O entendimento desse processo requer análises experimentais em rochas submetidas a tensões de tração. O ensaio de compressão diametral é uma alternativa apropriada, pois não apresenta as dificuldades envolvidas no ensaio de tração direta. A propagação de microfissuramento em materiais frágeis produz liberação de energia na forma de ondas elásticas chamadas de emissões acústicas (EA). O monitoramento com EA permite acompanhar a propagação de dano no corpo de prova (CP), sem perturbá-lo. Nesta pesquisa, CPs de mármore e monzogranito são submetidos a ensaios de compressão diametral com deslocamentos monotônicos e cíclicos, com controle de deslocamento. Aplica-se a técnica de EA, em conjunto com análises petrográficas, análises das curvas de força versus deslocamento e exame visual, para caracterizar o seu processo de microfissuramento. A localização tridimensional das fontes de EA foi realizada inicialmente utilizando-se o software AEwin® da PASA. Foi desenvolvido um programa de localização aprimorado que incorpora o cálculo da velocidade de propagação das ondas (vp) média para cada instante em que uma fonte é localizada. O novo programa (Crack Location by Acoustic emission with P Wave Velocity determination, CLAPWaVe) mostra um claro decréscimo da velocidade de propagação com o aumento do dano. O programa desenvolvido (CLAPWaVe) mostrou melhor ajuste e maior coerência com a literatura e com a condição final rompida dos CPs do que o software AEwin. Em mármore e monzogranito o microfissuramento se inicia a 25-30% e 75-85% do carregamento de pico, respectivamente, e localiza-se na vizinhança do centro do CP. Em ambas as rochas se acumulou, também, dano na região dos apoios do CP, associado à transferência de carregamento do berço ao CP. Antes do pico de carregamento, o microfissuramento tornou-se mais denso e localizado no centro e nos apoios do CP, embora a região central ainda concentre a maior parte. Após o pico, o microfissuramento acumulou-se em uma das faces do CP, progredindo até a outra face. O monzogranito apresentou ruptura progressiva do CP, enquanto que no mármore a maior parte da superfície de ruptura já está desenvolvida imediatamente após o pico. Durante o ensaio em ambas as rochas, no núcleo central foram registradas as menores velocidades vp do CP. Na região dos apoios, embora tenha havido microfissuramento, registraram-se as maiores velocidades vp no CP, pois o confinamento produzido pelo contato com o berço aumentou localmente a rigidez do CP. A distribuição não homogênea de vp no CP revelou que a consideração desse parâmetro como constante e igual à condição intacta ao longo do ensaio, como comumente encontrado na literatura, não representa a condição real do CP danificado. O microfissuramento no monzogranito se propaga principalmente através dos cristais de quartzo, seguindo um caminho tortuoso subparalelo à direção de carregamento e liberando altos níveis de energia absoluta. No mármore, a propagação segue os planos de clivagem da calcita, liberando níveis baixos de energia absoluta. Os histogramas da distribuição espacial da resistência em ambas as rochas mostraram bom ajuste a uma distribuição de Weibull, porém o monzogranito mostrou melhor ajuste e menor variabilidade que o mármore. As análises dos sinais no domínio das frequências mostraram que o microfissuramento é caracterizado por emissões de banda larga. / At microscopic level, rocks exhibit microflaws, which act as local stress concentrators, favoring the occurrence of brittle failure. The understanding of this process requires experimental analyses of rock specimens under tensile stresses. The diametral compression test is an adequate alternative for such a studies, because it does not present the difficulties of direct tension tests. Crack propagation in brittle materials releases energy as transient elastic waves known as acoustic emission (AE). Monitoring with AE enables an insight into the cracking process without affecting the integrity of the sample. In this work, marble and monzogranite specimens were subjected to monotonic and cyclic displacementcontrolled diametral compression tests. The AE monitoring technique was applied in conjunction with petrographic analyses, interpretation of the load versus displacement curves and visual examination of the samples for the characterization of their cracking process. The three-dimensional localization of the AE sources was initially carried out by using the software AEwin® from PASA. An improved localization software, which considers the P-wave velocity variation along the damage process (vp) for each AE source was developed. The developed software (Crack Location by Acoustic emission with P Wave Velocity determination, CLAPWaVe) has shown greater consistency with literature and the final cracked samples and better accuracy than AEwin. Microcracking in monzogranite and marble initiated at 25-30% and 75-80% of the peak load, respectively, and is located at the center of the specimen. In addition, both rocks showed concentrated microcracking close to the region of contact between the specimen and the loading platens, related to the loading transference along the loading edge. Before peak load, microcracking becomes denser and localized at the center and the contact region of the specimen, although, the central region still concentrates the main portion of the damage. After the peak load, new microcracks were first concentrated on one of the faces at the center of the specimen and then propagated through its thickness all the way to the other face. The progressive failure in monzogranite extended through to the end of the test, while in marble the main portion of the failure surface of the specimen developed just after peak. During the whole test in both rocks, the lowest velocities (vp) of the specimen were recorded in the central core. Although microcracking was induced at the contact region, the highest velocities vp of the specimen were registered there, because of the confinement effect produced by the platens, which lead to a local increase in the stiffness of the specimen. The non-homogeneous distribution of vp in the specimen has revealed that the utilization of this parameter as a constant and equal to the value measured in the specimen before testing (as usually adopted in the literature), does not represent the real condition of the damaged specimen. In monzogranite, microcracks propagate mainly through quartz crystals, following a tortuous path subparallel to the loading direction, by releasing high-level of absolute energy, while in marble the propagation of microcracks follows the cleavage planes of calcite, by releasing low-level of absolute energy. The histograms of spatial strength distribution in both rocks have shown good adjustment to a Weibull distribution, but monzogranite exhibited a more accurate adjustment with lower variability than marble. The analysis of signals in the frequency domain showed that the microcracking is characterized by wide band emissions.
28

Studies on the Modeling of Fatigue Crack Growth and Damage in Concrete : A Thermodynamic Approach

Khatoon, Pervaiz Fathima M January 2014 (has links) (PDF)
Fatigue in concrete is a complex phenomenon involving formation of microcracks, their coalescence into major crack and simultaneous formation of the fracture process zone ahead of the crack tip. Complex phenomena are best dealt through an energy approach and hence it is reasonable to use the theory of thermodynamics. Fracture mechanics and damage mechanics are two theories that are based on physically sound principles and are used to describe failure processes in materials. The former deals with the study of macroscopic cracks, whereas the latter defines the state of microcracking. In this study, the concepts from these theories are utilized to improve our understanding and modeling of fatigue process in concrete. In this thesis, a closed form expression for the thermodynamic function entropy is proposed and examined for its size independency and its use as a material property to characterize failure of concrete under fatigue. In the thermodynamic formalism, dissipative phenomena are described by a dissipation potential or its dual, from which evolution laws for internal variables could be defined. In this work, closed form expressions for dual of dissipation potential are derived using concepts of dimensional analysis and self-similarity within the framework of fracture mechanics and damage mechanics. Consequently, a fatigue crack propagation law and a fatigue damage evolution law are proposed respectively. A method is proposed in this study to correlate fracture mechanics and damage mechanics theories by equating the potentials obtained in each theory. Through this equivalence, a crack could be transformed into an equivalent damage zone and vice versa. Also, damage state corresponding to a given crack in a member can be quantified in terms of a damage index. An analytical way of computing size independent S-N curves is proposed, using a nonlocal damage theory by including aggregate size and specimen size in the formulation. It is realized from this study that fracture mechanics and damage mechanics theories should be used in a unified manner in order to accurately model the process of fatigue in concrete. Furthermore, based on the models developed in this study, several damage indicators for fatigue of concrete are proposed. The advantages and limitations of each of these indices are presented such that, the relevant damage index could be used, based on available parameters. Additionally, deterministic sensitivity studies are carried out to determine the most important parameters influencing fatigue life of a concrete member.
29

Effect of Micro-Particle Addition on Frictional Energy Dissipation and Strength of Concrete : Experiments and Modelling / Effet de l'addition de micro-particules sur la dissipation d'énergie et la résistance mécanique du béton : Essais et modélisation

Scerrato, Daria 07 November 2014 (has links)
Si un béton classique est constitué d'éléments de granulométrie décroissante, en commençant par les granulats, le spectre granulométrique se poursuit avec la poudre de ciment puis parfois avec un matériau de granulométrie encore plus fine comme une fumée de silice (récupérée par exemple au niveau des filtres électrostatiques dans l'industrie de l'acier). L'obtention d'un spectre granulométrique continu et étendu vers les faibles granulométries permet d'améliorer la compacité, donc les performances mécaniques. L'idée de base de cette thèse a été d'utiliser comme éléments de granulométrie fine des fillers à base de calcaire. Ces fillers ont des granulométries très fines qui leur permettent de remplir les micro-fissure généralement présentes à l'intérieur du béton. La surface rugueuse des grains de ces fillers permet de modifier le coefficient de frottement entre les lèvres de chaque fissure. Le résultat souhaité est celui de produire un béton qui dissipe par frottement plus d'énergie par rapport à un béton standard. Un béton de ce type pourrait avoir des applications importantes dans l'ingénierie civile, surtout pour ce qui concerne l'absorption des vibrations dans la ville et les constructions en régions séismiques. Les théories des milieux continus généralisés permettent de tenir compte de l’effet de la microstructure des matériaux sur leur comportement macroscopique et, en particulier, de décrire la dissipation d’énergie dans le béton sujet à des chargements cycliques. Un modèle continu généralisé avec une variable cinématique supplémentaire a été développé dans le cadre de cette thèse qui permet de décrire le glissement relatif des lèvres des fissures dans le béton à l'échelle microscopique. La relation entre ces micro-mouvements au niveau des lèvres de fissures et la dissipation d'énergie observée à l'échelle macroscopique a ensuite été étudiée. Les équations en forme forte qui dérivent de cette modélisation continue sont obtenues à l'aide d'un principe variationnel de Hamilton-Rayleigh dans lequel on a intégré la nature dynamique du problème ainsi que la possibilité de décrire des phénomènes de dissipation au niveau microscopique. Le modèle obtenu permet de décrire les cycles d'hystérésis typiques du béton sujet à des chargement cycliques et ses paramètres ont été calés sur des essais menés au LGCIE de l'INSA de Lyon. Des études paramétriques concernant les paramètres reliés à la microstructure du matériau ont permis d'identifier l'effet que l'addition des micro-fillers a sur le comportement mécanique global du béton lorsque il est sujet à des chargement dynamiques. / In this thesis, a two-degrees-of-freedom, non-linear model is introduced aiming to describe internal friction phenomena which have been observed in some modified concrete specimens undergoing slow dynamic compression loads and having various amplitudes but never inducing large strains. The motivation for the theoretical effort presented here arose because of the experimental evidence described in some papers in which dissipation loops for concrete-type materials are shown to have peculiar characteristics. Since viscoelastic models –linear or non-linear– do not seem suitable to describe either qualitatively or quantitatively the measured dissipation loops, it is proposed to introduce a micro-mechanism of Coulomb-type internal dissipation associated to the relative motion of the faces of the micro-cracks present in the material. In addition, numerical simulations, showing that the proposed model is suitable to describe some of the available experimental evidences, is presented. These numerical simulations motivate further developments of the considered model and supply a tool for the design of subsequent experimental campaigns. Furthermore, the effect of micro-particle additives such as calcium carbonate on internal dissipation of concrete was experimentally investigated. The damping performance of concrete can be improved by adding to the mixture different kinds of micro-particles with suitable size which fill the pores of the matrix and change the contact interaction between internal surfaces of voids. It was determined that the energy dissipation of the concrete increases with the increasing content of micro particles at least when the concrete matrix is “soft” enough to allow microscopic motions. On the other hand, the increasing percentage of micro-particles addition can affect the mechanical strength of the material. Thus, there is a reasonable compromise in incorporating these micro-particles to obtain higher damping with- out weakening the mechanical properties. Several concrete mixes were prepared by mixing cement powder with different percentages of micro-fillers. A concrete mix without addition of micro-particles was molded as a reference material for the sake of comparison. All these specimens were tested under cyclic loading in order to evaluate energy dissipation starting from the area of a dissipation loop detected in the diagram relative to a representative cycle. The experimental determination of the dissipated energy shows a significant increase in the damping capability of the cement-based materials with micro-filler compared to the standard concrete. The experimental results presented seem to indicate that the proposed model is suitable to describe the mechanical behavior of modified and unmodified concrete, provided that the introduced parameters are suitably tuned in order to best fit the available experimental data.
30

Studies on Fracture and Fatigue Behavior of Cementitious Materials- Effects of Interfacial Transition Zone, Microcracking and Aggregate Bridging

Keerthy, M Simon January 2015 (has links) (PDF)
The microstructure of concrete contains random features over a wide range of length scales in which each length scale possess a new random composite. The influence of individual material constituents at different scales and their mutual interactions are responsible for the formation of fracture process zone (FPZ). The presence of the FPZ and the various toughening mechanism occurring in it, influences the fatigue and fracture behavior of concrete which also gets influenced by the geometry, spacial distribution and material properties of individual material constituents and their mutual interactions. Hence, in order to study the influence of interfacial transition zone, microcrack and aggregate bridging on the fracture and fatigue behavior of concrete, a multiscale analysis becomes necessary. This study aims at developing a linearized model which helps in understanding the fracture and fatigue behavior of cementitious materials by considering the predominant fracture process zone (FPZ) mechanisms such as microcracking and aggregate bridging. This is achieved by quantifying the critical microcrack length and the bridging resistance offered by the aggregates. Further, the moment carrying capacity of a cracked concrete beam is determined by considering the effect of aggregate bridging. A modified stress intensity factor (SIF) is derived based on linear elastic fracture mechanics (LEFM) approach by considering the material behavior at different scales through a multiscale approach. The model predicts the entire crack growth curve for plain concrete by considering these process zone mechanisms. Furthermore, the fracture and fatigue response of concrete is studied through the development of analytical models which include the properties of the mix constituents using the multiscale based SIF. The effect of the interfacial transition zone, microcracks and resistance offered through aggregate bridging on the resistance to crack initiation and propagation are studied. A fatigue crack growth law is proposed using the concepts of dimensional analysis and self-similarity. Through sensitivity analyses, the influence of different parameters on the overall fracture and fatigue behavior are studied. In addition, studies related to concrete-concrete bi-material interfaces are conducted in order to understand the influence of repair materials on the service life of damaged concrete structures when subjected to fatigue loading. An analytical model is proposed in this study to predict the crack growth curve using the concepts of dimensional analysis and self-similarity in conjunction with the human population growth model. It is seen that a repair done with a patch having similar elastic properties as those of the parent concrete will have a larger fatigue life.

Page generated in 0.0519 seconds