• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 207
  • 65
  • 40
  • 23
  • 9
  • 7
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 434
  • 98
  • 62
  • 47
  • 46
  • 43
  • 39
  • 35
  • 30
  • 30
  • 29
  • 28
  • 26
  • 26
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
221

Characterisation and optimisation of the variable frequency microwave technique and its application to microfabrication

Antonio, Christian, n/a January 2006 (has links)
The benefits of microwave technology in materials processing is well documented and researched. It offers many potential advantages over conventional processing such as rapid heating, faster processing times and more consistent product quality. However the actual implementation of this technology has been lacking and the benefits have gone largely unrealised. This is due largely in part to the non-uniform heating obtained in multimode cavities in conventional microwave processing. Recently, a new processing method dubbed the Variable Frequency Microwave (VFM) Technique has been developed to overcome the inherent problems associated with conventional microwave processing. By sweeping through a bandwidth of frequencies, the limitations observed in conventional processing, and specifically the problem of heat uniformity, are avoided. With the increase in research activities in alternative processing methods for new and current materials that will provide better product quality as well as time and cost savings, the VFM technique has the potential to rejuvenate interest in microwave processing. This thesis documents the research work undertaken on the VFM technique with emphasis on its characterization, optimisation and implementation to suitable applications in particular in the upcoming area of Microfabrication. A commercial Variable Frequency Microwave with an operating bandwidth of 2.5-8.0 GHz was investigated through modelling and experimental work to determine the energy distribution within a multimode cavity and to provide an insight of the mechanisms of the method. Modelling was found to be an efficient and cost-effective tool to simulate VFM and to examine the reported advantages of this new technique. Results obtained confirm the superiority of the VFM method over the conventional fixed-frequency processing showing a marked improvement in the heating uniformity achieved. Quantitative analysis of the three major VFM parameters that influence heat uniformity - Sweep Rate, Bandwidth and Central Frequency - indicate that although slight variation in heat uniformity was observed when changing these parameters, these variations are only small which implies that the VFM technique is quite insensitive to changes in the parameters making it quite a robust system. An analytical model of the Variable Frequency Microwave technique was developed and it was found that the heating uniformity could be further optimised using a sweep rate that varies as the inverse of the frequency squared (weighted-sweep). In this study, VFM Technique was successfully extended to the Micro-Electro- Mechanical Systems (MEMS) industry as an alternative method for the processing of a polymer system - negative-tone SU8 photoresist - which is gaining widespread use in Microfabrication. The VFM method was compared to conventional hotplate curing as well as a new hybrid curing method introduced in this work and the product quality assessed optically and by thermal analysis. Results from this work indicate that the Variable Frequency Microwave technique is a viable alternative to the conventional cure currently used in practice. With proper optimisation of the VFM parameters, VFM was found to provide samples that are comparable or better than conventionally cured samples in terms of properties and microstructure quality. Using the VFM method, enhancement in cure rates and drying rates, which are described by others as microwave effects, were observed and investigated. A significant increase on the degree of cure of up to 20% greater than conventional cure was observed when VFM was utilized and an apparent enhancement in solvent evaporation in the thin SU8 films observed. Experiments undertaken show that microwaves irradiation can enhance diffusion rates of cyclopentanone in the SU8 system by approximately 75-100%. The findings signify that SU8 curing at lower temperatures or rapid curing are possible and long drying times could be reduced significantly thus alleviating many of the problems associated with conventional thermal curing. Outcomes of this study demonstrate the ability of the new VFM technique to provide uniform heating which is essential for materials processing. Its application to the emerging field of Microfabrication exhibits its unique advantages over conventional curing methods and establishes itself to be a versatile and robust processing tool. The experimental observations made under microwave irradiation are further proof of the existence of specific microwave effects which is one of the most debatable topics in the Microwave processing field. A mechanism based on the Cage Model by Zwanzig [1983] was put forward to explain the increase in transport rates.
222

Propriétés électromécaniques des nanotubes de carbone multiparois

Lefevre, Roland 16 December 2005 (has links) (PDF)
Dans ce travail de thèse, nous avons cherché d'une part, à répondre à la question du dimensionnement des nanosystèmes électromécaniques (NEMS) à base de nanotube de carbone (NTC) multiparois, à la fois théoriquement et expérimentalement, et d'autre part, à appliquer le savoir-faire développé à la réalisation de composants de types interrupteurs.<br /> Nous avons développé un modèle théorique pour décrire la déflexion d'un nanotube de carbone suspendu soumis à une force d'attraction électrostatique. Notre modèle montre qu'il existe une loi d'échelle reliant la déflexion électrostatique aux paramètres géométriques, électriques, et physiques des NEMS à base de NTC. Ce résultat constitue, en soi, un outil de dimensionnement pour la conception de ces dispositifs, car il permet de prédire leur comportement électromécanique sur une « large » gamme de paramètres opérationnels.<br /> Parallèlement, nous avons mis au point des procédés de fabrication pour réaliser des nanostructures intégrant un NTC suspendu actionnable électrostatiquement. Parmi ces différentes structures, la plus simple a été utilisée pour sonder les propriétés électromécaniques des NTC multiparois. Nous avons développé une méthode basée sur l'utilisation d'un microscope à force atomique pour mesurer la déflexion en fonction de la tension électrique d'actionnement. Les résultats de ces mesures, pour différents NTC (différents diamètre et longueur), montrent clairement, et sans paramètre ajustable, l'existence de la loi d'échelle prédite par notre modèle théorique. À partir de ces mesures, nous avons extrait le module d'Young des NTC. Pour des diamètres inférieurs à 30 nm, celui-ci est constant et vaut en moyenne 400 GPa. Au-delà, nous observons une forte diminution qui pourrait s'expliquer par l'entrée dans un régime de déformation non-linéaire.<br /> Enfin, nous montrons la réalisation d'un interrupteur électromécanique à base de NTC qui présente de bonnes caractéristiques de commutation.
223

Développements de la microscopie électrochimique pour la microfabrication. Application à l'élaboration de surfaces à contraste de mouillage sur des supports fluorés.

Fuchs, Adrien 25 April 2006 (has links) (PDF)
Notre objectif est de fabriquer par microscopie électrochimique (SECM) des motifs hydrophiles sur un support hydrophobe afin de les inclure ultérieurement dans des microsystèmes. Nous avons considéré du point de vue théorique la microgravure de surface par SECM. Pour cela nous avons étudié par simulation numérique l'influence du balayage d'une surface par une microélectrode disque sur la réponse en courant et avons adapté théoriquement et expérimentalement le SECM à une microélectrode bande. Nous avons appliqué ces résultats à la réalisation de motifs de haute énergie en forme de bande sur une surface fluorée (PTFE et verre silanisé). Nous avons évalué la variation de l'énergie de surface liée à la présence de ces motifs par mesure des angles de contact et de la déformation locale de la ligne triple d'un liquide. Cette étude révèle des effets liés à l'hétérogénéité des surfaces utilisées. Dans la perspective de former un film mince liquide sur un motif, nous avons étudié les phénomènes de condensation d'un liquide au niveau d'une modification de surface.
224

Microfabrication of miniature x-ray source and x-ray refractive lens

Ribbing, Carolina January 2002 (has links)
<p>In several x-ray related areas there is a need for high-precision elements for x-ray generation and focusing. An elegant way of realizing x-ray related elements with high precision and low surface roughness is by the use of microfabrication; a combination of semiconductor processing techniques and miniaturization. Photolithographic patterning of silicon followed by deposition, etching, bonding and replication is used for batchwise fabrication of small well-defined structures. This thesis describes microfabrication of a miniature x-ray source and a refractive x-ray lens. A miniature x-ray source with diamond electrodes has been tested for x-ray fluorescence. Another version of the source has been vacuum encapsulated and run at atmospheric pressure. One-dimensionally focusing saw-tooth refractive x-ray lenses in silicon, epoxy, and diamond have been fabricated and tested in a synchrotron set-up. Sub-micron focal lines and gains of up to 40 were achieved. The conclusion of the thesis is that the use of microfabrication for construction of x-ray related components can not only improve the performance of existing components, but also open up for entirely new application areas.</p>
225

Process development of silicon-silicon carbide hybrid structures for micro-engines (January 2002)

Choi, D., Shinavski, R.J., Spearing, S. Mark 01 1900 (has links)
MEMS-based gas turbine engines are currently under development at MIT for use as a button-sized portable power generator or micro-aircraft propulsion sources. Power densities expected for the micro-engines require very high rotor peripheral speeds of 300-600m/s and high combustion gas temperatures of 1300-1700K. These harsh requirements for the engine operation induce very high stress levels in the engine structure, and thus call for qualified refractory materials with high strength. Silicon carbide (SiC) has been chosen as the most promising material for use due to its high strength and chemical inertness at elevated temperatures. However, the state-of-the art microfabrication techniques for single-crystal SiC are not yet mature enough to achieve the required level of high precision of micro-engine components. To circumvent this limitation and to take advantage of the well-established precise silicon microfabrication technologies, silicon-silicon carbide hybrid turbine structures are being developed using chemical vapor deposition (CVD) of thick SiC (up to ~70µm) on silicon wafers and wafer bonding processes. Residual stress control of thick SiC layers is of critical importance to all the silicon-silicon carbide hybrid structure fabrication steps since a high level of residual stresses causes wafer cracking during the planarization, as well as excessive wafer bow, which is detrimental to the subsequent planarization and bonding processes. The origins of the residual stress in CVD SiC layers have been studied. SiC layers (as thick as 30µm) with low residual stresses (on the order of several tens of MPa) have been produced by controlling CVD process parameters such as temperature and gas ratio. Wafer-level SiC planarization has been accomplished by mechanical polishing using diamond grit and bonding processes are currently under development using CVD silicon dioxide as an interlayer material. This paper reports on the work that has been done so far under the MIT micro-engine project. / Singapore-MIT Alliance (SMA)
226

Microfabrication of miniature x-ray source and x-ray refractive lens

Ribbing, Carolina January 2002 (has links)
In several x-ray related areas there is a need for high-precision elements for x-ray generation and focusing. An elegant way of realizing x-ray related elements with high precision and low surface roughness is by the use of microfabrication; a combination of semiconductor processing techniques and miniaturization. Photolithographic patterning of silicon followed by deposition, etching, bonding and replication is used for batchwise fabrication of small well-defined structures. This thesis describes microfabrication of a miniature x-ray source and a refractive x-ray lens. A miniature x-ray source with diamond electrodes has been tested for x-ray fluorescence. Another version of the source has been vacuum encapsulated and run at atmospheric pressure. One-dimensionally focusing saw-tooth refractive x-ray lenses in silicon, epoxy, and diamond have been fabricated and tested in a synchrotron set-up. Sub-micron focal lines and gains of up to 40 were achieved. The conclusion of the thesis is that the use of microfabrication for construction of x-ray related components can not only improve the performance of existing components, but also open up for entirely new application areas.
227

Fabrication and chemical modifications of photonic crystals produced by multiphoton lithography

Chen, Vincent W. 11 November 2011 (has links)
This thesis is concerned with the fabrication methodology of polymeric photonic crystals operating in the visible to near infrared regions and the correlation between the chemical deposition morphologies and the resultant photonic stopband enhancements of photonic crystals. Multiphoton lithography (MPL) is a powerful approach to the fabrication of polymeric 3D micro- and nano-structures with a typical minimum feature size ~ 200 nm. The completely free-form 3D fabrication capability of MPL is very well suited to the formation of tailored photonic crystals (PCs), including structures containing well defined defects. Such structures are of considerable current interest as micro-optical devices for their filtering, stop-band, dispersion, resonator, or waveguiding properties. More specifically, the stop-band characteristics of polymer PCs can be finely controlled via nanoscale changes in rod spacings and the chemical functionalities at the polymer surface can be readily utilized to impart new optical properties. Nanoscale features as small as 65 ± 5 nm have been formed reproducibly by using 520 nm femtosecond pulsed excitation of a 4,4'-bis(di-n-butylamino)biphenyl chromophore to initiate crosslinking in a triacrylate blend. Dosimetry studies of the photoinduced polymerization were performed on chromophores with sizable two-photon absorption cross-sections at 520 and 730 nm. These studies show that sub-diffraction limited line widths are obtained in both cases with the lines written at 520 nm being smaller. Three-dimensional multiphoton lithography at 520 nm has been used to fabricate polymeric woodpile photonic crystal structures that show stop bands in the visible to near-infrared spectral region. 85 ± 4 nm features were formed using swollen gel photoresist by 730 nm excitation MPL. An index matching oil was used to induce chemical swelling of gel resists prior to MPL fabrication. When swollen matrices were subjected to multiphoton excitation, a similar excitation volume is achieved as in normal unswollen resins. However, upon deswelling of the photoresist following development a substantial reduction in feature size was obtained. PCs with high structural fidelity across 100 µm × 100 µm × 32 layers exhibited strong reflectivity (>60% compared to a gold mirror) in the near infrared region. The positions of the stop-bands were tuned by varying the swelling time, the exposure power (which modifies the feature sizes), and the layer spacing between rods. Silver coatings have been applied to PCs with a range of coverage densities and thicknesses using electroless deposition. Sparse coatings resulted in enhanced reflectivity for the stop band located at ~5 µm, suggesting improved interface reflectivity inside the photonic crystal due to the Ag coating. Thick coatings resulted in plasmonic bandgap behavior with broadband reflectivity enhancement and PC lattice related bandedge at 1.75 µm. Conformal titania coatings were grown onto the PCs via a surface sol-gel method. Uniform and smooth titania coatings were achieved, resulting in systematically red-shifted stopbands from their initial positions with increasing thicknesses, corresponding to the increased effective refractive index of the PC. High quality titania shell structures with modest stopbands were obtained after polymer removal. Gold replica structures were obtained by electroless deposition on the silica cell walls of naturally occurring diatoms and the subsequent silica removal. The micron-scaled periodic hole lattice originated from the diatom resulted in surface plasmon interferences when excited by infrared frequencies. The hole patterns were characterized and compared with hexagonal hole arrays fabricated by focused ion beam etching of similarly gold plated substrate. Modeling of the hole arrays concluded that while diatom replicas lack long-ranged periodicity, the local hole to hole spacings were sufficient to generate enhanced transmission of 13% at 4.2 µm. The work presented herein is a step towards the development of PCs with new optical and chemical functionalities. The ability to rapidly prototype polymeric PCs of various lattice parameters using MPL combined with facile coating chemistries to create structures with the desired optical properties offers a powerful means to produce tailored high performance photonic crystal devices.
228

Développement de PVDF micro et nanostructures pour des études de culture cellulaire

Lhoste, Kévin 30 November 2012 (has links) (PDF)
L'ingénierie tissulaire vise à réparer les tissus endommagés et à récupérer les fonctions biologiques correspondantes. Afin de restaurer un tissu endommagé tel que le système nerveux, la conception et la fabrication de nouveaux types d'échafaudages tissulaires sont nécessaires. Dans ce travail, nous avons développé plusieurs techniques de microfabrication pour le polyfluorure de vinylidène (PVDF), un fluoropolymère thermoplastique, non réactif et piézoélectrique, qui peut être utilisé pour la culture cellulaire et l'ingénierie tissulaire. Nous avons tout d'abord étudié l'adhésion et la croissance cellulaire sur des substrats en PVDF avec des motifs micro et nanométriques en utilisant différentes techniques de fabrication telles que la micro-photolithographie, la lithographie douce, l'impression par microcontact, etc. L'influence de la micro-structuration sur les activités piézo-électriques du PVDF a été caractérisée par différentes méthodes d'analyses de surface (FTIR, XRD). Par la suite, nous avons effectué une étude systématique sur la fabrication de nanofibres de PVDF et leur compatibilité avec la culture cellulaire. Enfin, nous avons démontré la possibilité de doper ces nanofibres avec des nanoparticules magnétiques ce qui les rends excitables à distance par un champ magnétique.
229

Dynamique de la fermeture des trous épithéliaux en utilisant des techniques de micromécanique et de microfabrication

Anon, Ester 05 October 2012 (has links) (PDF)
Les cellules peuvent migrer sous différentes conditions qui dépendent de l'environnement biochimique ou mécanique. Connaître les mécanismes de la migration, les protéines impliquées et leur régulation est essentiel pour comprendre les processus de morphogénèse ou certaines situations pathologiques. Dans ce contexte, la migration collective des cellules est un processus clé qui intervient pendant le développement ainsi que dans la vie adulte. Elle joue un rôle très important pour la formation et l'entretien des couches épithéliales, notamment au cours du développement embryonnaire et pendant la cicatrisation des trous épithéliaux résultant, par exemple, d'une blessure. Lorsque l'épithélium présente une discontinuité, des mécanismes actifs qui impliquent une migration coordonnée des cellules sont nécessaires pour préserver l'intégrité des tissus. Dans ce travail, nous avons étudié les mécanismes impliqués dans la fermeture des trous dans un épithélium. Pour des blessures de faible taille, le mode de fermeture dit de purse string est souvent évoqué, impliquant la contraction d'un anneau contractile d'acto-myosine qui ferme la blessure. Pour des blessures de tailles plus importantes, il est courant d'observer un mécanisme différent conduisant { la migration active des cellules du bord qui couvrent la surface "libre".Pour étudier ces aspects de manière quantitative et reproductible, nous avons développé une nouvelle méthode basée sur des techniques de microfabrication et de lithographie dite " molle " qui permet de faire une étude quantitative de la fermeture des trous épithéliaux. Nous avons fabriqué des substrats de micropiliers de diamètre et de forme variés dans les quels les cellules sont libres de pousser entre les microstructures. Lorsqu'elles sont parvenues à confluence, on retire le substrat qui laisse apparaître des trous contrôlés.De cette manière, nous avons observé que les cellules épithéliales forment des lamellipodes pour la fermeture de ces trous. Le mécanisme de fermeture dépend de la taille des trous et nous avons pu observer différents régimes en fonction de diamètre des piliers. Les trous petits (de la taille d'une seule cellule) sont fermés par un mécanisme passif alors que la fermeture de trous plus larges nécessite un mécanisme actif de migration conduisant à la formation de lamellipodes et à des modes de migration collective. Par la suite, nous nous sommes intéressés à l'aspect mécanique de la fermeture des trous épithéliaux. Pour cela, nous avons utilisé un système d'ablation laser pour rompre quelques cellules dans une monocouche épithéliale. Nous avons alors mesuré les forces de traction que les cellules exercent au substrat et leur évolution temporelle et spatiale. Nous avons pu mettre en évidence différents modes de traction: au début, les cellules exercent des forces de traction importantes sur leur substrat pour laisser place à des contraintes mécaniques qui sont davantage issues d'un processus collectif au travers de la formation d'un câble multicellulaire qui les relie les cellules de bord entre elles. En conclusion, ce travail nous a permis d'obtenir des informations sur les mécanismes dynamiques de fermeture des tissus épithéliaux qui sont évidemment impliqués dans la cicatrisation des blessures mais aussi dans certains problèmes de malformations congénitales lors l'embryogenèse.
230

Development of Colloid Displacement Lithography Platforms for Sensor Applications

Thugu, Mahesh 01 August 2013 (has links)
In this work, Poly (diallyldimethylammonium) chloride - (PDDA) was used as a base layer for developing colloid displacement lithography platforms for sensor applications. Previous work shows that glass coated with PDDA and exposed to gold acts as a good platform for colloid displacement lithography. However, for actual sensor applications, electrical isolation of individual sensor sections must be achieved. This is attempted by laying down a 40 μm stripe of PDDA on a cleaned substrate and coating that stripe with gold colloid. The size of 40 μm or less in width is set as the target to fit within the scan window of the AFM. Stripes wider than about 40 μm would be difficult to efficiently pattern with colloid displacement lithography. While the goal of 40 μm wide stripes was achieved with sufficiently diluted PDDA solution, it was found to be difficult to adsorb sufficient amounts of gold colloid on those stripes before the stripes were lost from the glass substrate. Further, electroless deposition was found to produce only a small amount of gold on the PDDA surface without colloid nucleation sites being present.

Page generated in 0.1207 seconds