• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 3
  • 1
  • Tagged with
  • 10
  • 10
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Numerical Methods for the Microscopic Cardiac Electrophysiology Model

Fokoué, Diane 26 September 2022 (has links)
The electrical activity of the heart is a well studied process. Mathematical modeling and computer simulations are used to study the cardiac electrical activity: several mathematical models exist, among them the microscopic model, which is based on the explicit representation of individual cells. The cardiac tissue is viewed as two separate domains: the intra-cellular and extra-cellular domains, Ωᵢ and Ωₑ, respectively, separated by cellular membranes Γ. The microscopic model consists of a set of Poisson equations, one for each sub-domain, Ωᵢ and Ωₑ, coupled on interfaces Γ with nonlinear transmission conditions involving a system of ODEs. The unusual transmission conditions on Γ make the model challenging to solve numerically. In this thesis, we first focus on the dimensional analysis of the microscopic model. We then reformulate the problem on the interface Γ using a Steklov-Poincaré operator. We discretize the model in space using finite element methods. We prove the existence of a semi-discrete solution using a reformulation of the model as an ODE system on the interface Γ. We derive stability and error estimates for the finite element method. Afterwards, we consider five numerical schemes including the Godunov splitting method, two implicit methods, (Backward Euler (BE) and second order Backward Differentiation Formula (BDF2)), and two semi-implicit methods (Forward Backward Euler (FBE), and second order Semi-implicit Backward Differentiation Formula (SBDF2)). A convergence analysis of the implicit and semi-implicit methods is performed and the results are compared with manufactured solutions that we have proposed. Numerical results are presented to compare the stability, accuracy and efficiency of the methods. CPU times needed to solve the problem over a single cell using FBE, SBDF2 and Godunov splitting methods are reported. The results show that FBE and Godunov splitting methods achieve better numerical accuracy and efficiency than implicit and SBDF2 schemes, for a given computational time. Finally, we solve the model using FBE and Domain Decomposition Method (DDM) for two cells connected to each other by a gap junction. We investigate the influence of the space discretization and we explore the differences between a conforming and nonconforming mesh on Γ. We compare the solutions obtained with both FBE and DDM methods. The results show that both methods give the same solution. Therefore, the DDM is capable of providing an accurate solution with a minimal number of sub-domain iterations.
2

Controlling Traffic With Moving Bottlenecks

Svensson, André, Lenart, Gustav January 2020 (has links)
Traffic shockwaves are a regularly occurring phe-nomenon in traffic that are a source of irritation and delaysfor the road users. One type of shockwave is the stop-and-gowave which forces entering drivers to stop and advance slowlyuntil the wave is passed. This project aims to design a controlalgorithm through the use of models and simulations to increasethe rate at which a stop-and-go wave dissipates. To design themodel and algorithm the Simulation of Urban MObility (SUMO)simulator and the Traffic Control Interface (TraCI) were usedin conjunction with Python. The setup used for simulation wasthat of a one way, two lane highway with an artificially inducedstop-and-go wave.The designed algorithm manages to dissipate a stop-and-go wavecompletely without introducing new ones. / Trafikvågorär ett vanligt förekommandefenomen i trafiken vilketär en orsak till frustration ochförseningar. En typ av vågär startochstop vågen som tvingarförare att stanna och långsamt fortsätta genom vågen tills denpasserat. Målet med detta projektär att utveckla en kontrol-lalgoritm med hjälp av modeller och simuleringar för attökaavtagandet av en sådan våg. För att utveckla modellen ochalgoritmen används simulatorn Simulation of Urban MObility(SUMO) och Traffic Control Interface (TraCI) i kombinationmed programmeringsspråket Python. Simulering gjordes på ettnätverk bestående av en enkelriktad, tvåfilig motorväg med enkonstgjord startochstop våg.En algoritm utvecklades som kan skingra en startochstop vågutan att skapa nya. / Kandidatexjobb i elektroteknik 2020, KTH, Stockholm
3

Résolution de problèmes multicritères (durée/sécurité) pour la conception de plans d'évacuation de personnes / Solving multicriteria problems (duration/safety) in order to design large scale evacuation evacuation planning

Ndiaye, Ismaïla Abderhamane 03 March 2016 (has links)
Les travaux présentés dans cette thèse visent à proposer des méthodes de routage d’une population de masse à travers un réseau perturbé dont les données varient dans le temps pour l’aide à la conception de plan d’évacuation. Ce problème s’illustre parfaitement en cas de catastrophe d’origine humaine ou naturelle où les populations (potentiellement) impactées par ces sinistres doivent quitter leur lieux de vie pour une période pouvant aller d’un à plusieurs jours. Dans la littérature, ces routages de masse sont souvent modélisés comme des problèmes de flots dynamiques dont l’objectif est de minimiser la durée globale du transfert des individus depuis un certain nombre de points de départs dangereux vers des points d’arrivé sûrs. Toutefois, peu de travaux prennent en compte la notion de sécurité durant ce routage et encore moins le déploiement d’agents (policiers, sapeur-pompiers, ambulanciers,...) pouvant sécuriser et/ou faciliter le déplacement des personnes. / The work presented in this thesis aims to propose methods for routing a mass population through a disturbed network whose data vary over time. This problem can be illustrated by disasters due to humans or natural events where people (potentially) affected have to leave their living places for a period of one to several days. In the literature, mass routing are often modeled as dynamic flow problems whose objective is to minimize the overall duration of the evacuation process from a set of gathering points towards another set of shelter locations. However few papers take into account the concept of safety during this routing nor deploying task forces that can secure or facilitate this process. In this context, the safety security can be seen as a danger affecting the quality of life of people we organize the trip. In this context, the safety can be seen as a danger that influence the health of the people we are trying to evacuate. Indeed, this hazardous event can be related to a radioactive cloud, a fire, a tsunami, an earthquake or a flooding which make some of paths becoming dangerous or less usable by evacuees.
4

Uncertainly analysis : towards more accurate predictions for the synthesis of superheavy nuclei / Analyse d'incertitude : vers des prédictions plus précises pour la synthèse des noyaux super-lourds

Cauchois, Bartholome 25 June 2018 (has links)
Les théories de réaction nucléaire décrivant la synthèse des noyaux superlourds ne sont pas fermement établies. Bien qu'un consensus existe sur les caractéristiques qualitatives de la fusion-évaporation, les prédictions quantitatives des modèles disponibles sont encore insatisfaisantes. La section efficace de production est le produit de la section efficace de capture, de la probabilité de formation et de la probabilité de survie. Des études antérieures ont établi que la partie dominante des divergences restantes provenait de notre incapacité à contraindre correctement la probabilité de formation. L'objectif principal de cette thèse est de contraindre théoriquement cette quantité. Celui-ci a été atteint en examinant les incertitudes associées à la section efficace de capture ainsi qu'à la probabilité de survie par le biais de l'analyse de régression. La barrière de fission étant le facteur le plus influent dans les calculs de probabilité de survie, on supposera qu'elle est la seule source de ses incertitudes. Et puisque la différence entre les masses du fondamental et du point-selle définit la barrière de fission, nous avons commencé par étudier les incertitudes d'un modèle de type goutte liquide afin d'obtenir les incertitudes sur les masses. Sur la base de cette analyse, nous avons affiné une méthode permettant de contraindre les énergies de correction de couches. Afin de déterminer les incertitudes sur les barrières de fission, un modèle microscopique-macroscopique simplifié a été utilisé. Les incertitudes sur la phase de capture ont été obtenues à l'aide d'un modèle basé sur une paramétrisation de la distribution de barrières. Les contraintes portant sur la probabilité de formation ont été ensuite déduites à partir de la propagation des incertitudes sur la section efficace de capture et sur la barrière de fission. Par ailleurs, les effets de l'inertie sur la probabilité de formation ont été étudiés en utilisant la théorie des perturbations et un nouveau mécanisme réduisant l'entrave à la fusion a été décrit comme un décalage de la condition initiale dans l'approximation de Smoluchowski. Enfin, sur la base de cette approche, une explication de la dépendance en énergie du point d'injection phénoménologique a été obtenue. / The nuclear reaction theories describing the synthesis of superheavy nuclei are not firmly established. Although, the basic qualitative features of fusion-evaporation have reached a consensus, the quantitative predictions of the available models are still unsatisfactory. The production cross-section is the product of the capture cross-section, the formation probability and survival probability. Previous studies have shown that the dominating part of the remaining discrepancies came from our inability to properly constrain the formation probability. The main goal of this thesis is to theoretically constrain this quantity. This is achieved by examining the uncertainties in the capture cross-section and the survival probability using regression analysis. The fission barrier being the most influential factor in survival probability calculations, it is assumed to be the only source of uncertainties. Since the fission barrier is the difference between the ground-state and saddle-point masses, we started investigating the uncertainties in the liquid drop model. Based on this analysis we have refined a method to constrain the shell correction energies. To determine the uncertainties in the fission barriers, a simplified phenomenological macroscopic-microscopic model was used. The uncertainties in the capture step were determined using a model based on a parametrization of the barrier distribution. From the propagation of the uncertainties in the capture cross-section and fission barrier, the constraints on the formation probability were determined. Separately, the effects of inertia on the formation probability were investigated using perturbation theory and a new mechanism reducing fusion hindrance was described as a shift in the initial condition within the Smoluchowski approximation. Additionally, based on this approach, an explanation for the phenomenological energy dependent parametrization of the injection point was found.
5

Microscopic description of three-body continuum states / Description microscopique des états du continu à trois-corps

Damman, Alix 21 December 2011 (has links)
Durant le milieu des années quatre-vingt, le développement des faisceaux radioactifs a permis l’étude de noyaux exotiques situés à la limite de la stabilité nucléaire. Parmi ceux-ci, l’6He possède une structure particulière constituée d’un cœur α et de deux neutrons de valence faiblement liés. Il fait partie des noyaux à halo. Il s’agit également d’un système possédant au moins un état lié à trois amas (α+n+n) alors qu’aucun des sous-systèmes à deux amas (α+n ou n+n) n’est lié. Un tel système est dit borroméen. Deux autres exemples de systèmes borroméens sont le 9Be=n+α+α et le 12C=α+α+α. Les noyaux borroméens possèdent un ou deux états liés dont les propriétés sont maintenant bien connues. En revanche, les propriétés des états du continu le sont moins. Il existe aussi des systèmes à trois amas non liés mais caractérisés par une ou plusieurs résonances étroites à basse énergie. Par exemple, nous pouvons citer le 6Be=α+p+p et le 9B=p+α+α qui sont les noyaux miroirs de l’6He et du 9Be. L’étude des états du continu à trois corps est un sujet important de la recherche en physique nucléaire actuelle.<p><p>D’un point de vue théorique, les modèles en amas permettent de décrire les noyaux possédant une structure à plusieurs corps. En particulier, les modèles en amas microscopiques tiennent compte de tous les nucléons et le principe de Pauli est traité de manière exacte à l’aide de l’opérateur d’antisymmétrisation. Les modèles microscopiques, plus réalistes, requièrent de longs temps de calculs et sont difficiles à implémenter.<p><p>Dans le présent travail, nous avons développé une méthode de calcul semi-analytique plus rapide et plus précise qu’une méthode purement numérique. Notre modèle est basé sur la méthode des coordonnées génératrices dans le formalisme hypersphérique. Les états du continu sont étudiés à l’aide de la méthode des déphasages. Ces derniers sont obtenus à partir de la méthode de la matrice R microscopique.<p><p>Avec ce modèle, nous avons étudié les effets d’antisymmétrisation dans les noyaux d’6He, 6Be, 9Be, 9B et 12C. Nous avons montré que ces effets restent non négligeables mêmes à grandes distances dans le cas des noyaux 9Be, 9B et du 12C. <p><p>Nous avons ensuite étudié les états du continu du 6He et du 6Be. Nous avons déterminé des valeurs théoriques pour les propriétés des résonances connues expérimentalement. Nos résultats sont en bon accord avec l’expérience. Nous avons également observé des structures larges dans les déphases associés aux états 0+ et 1- de l’6He et 1- du 6Be.<p><p>Finalement, nous avons étudié les états du 12C à travers la collision 8Be+α. Dans notre calcul, le 8Be est considéré comme un système comportant deux amas α. Nous avons montré que les états 2+ et 4+ du 8Be devaient être pris en compte pour une étude appropriée des états 0+, 2+ et 4+ du 12C. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
6

Simulace silniční infrastruktury / Traffic Model

Bilan, Martin January 2009 (has links)
This Master thesis was created as research for project GA 102/09/1897 Security in car traffic - BAD, which is i.a. considers testing of continuousness of traffic with dynamically updated navigation. Main goal of project is simulator of traffic infrastructure creation. Simulators are two. One of them evaluate trafiic flow on bigger network of roads and crossroads. Second one simulate behaviour of cars during passage of crossroads. In this project is as well parsed theory of traffic activity and mentioned theoretical principles on which are built both simulators.
7

De la phénoménologie à la microscopie, une nouvelle approche pour l’évaluation des sections efficaces de fission / Challenging fission cross section simulation with long standing macro-microscopic model of nucleus potential energy surface

Tamagno, Pierre 19 October 2015 (has links)
Les travaux présentés visent à améliorer les modèles de physique nucléaireutilisés dans l’évaluation des sections efficaces neutroniques de fission. Le résultat deces travaux donne les clefs pour une percée significative dans ce domaine et a permisd’étendre fortement les capacités du code d’évaluation CONRAD. Les sections partiellesétant naturellement corrélées entre-elles pour respecter la valeur de la section totale, cesaméliorations bénéficient à l’ensemble des sections partielles. Un cadre solide pour lamodélisation des processus concurrent à la fission a dû être établi sur le modèle du codede référence TALYS. Après s’être assuré de la fiabilité et de la cohérence du cadre, lesinvestigations spécifiques concernant la fission ont pu être réalisées. Les perspectivesd’applications offertes par les modèles macro-microscopiques FRDM et FRLDM ont étéanalysées. Ces modèles ont été implémentés et validés sur des données expérimentaleset des benchmarks. Afin d’obtenir des temps de calcul compatibles avec les besoins del’évaluation, des méthodes numériques sophistiquées ont été sélectionnées et une partiedes calculs a été portée sur GPU. Ces modèles macro-microscopiques peuvent être utiliséspour construire des surfaces d’énergie potentielle qui sont à leur tour traitées afin d’obtenirdes barrières de fission à une dimension, puis des coefficients de transmission fission. Cesderniers sont alors utilisés dans le cadre de modélisation des sections efficaces moyennesdu domaine statistique sur la base d’un modèle Hauser-Feshbach. Les résultats de cetteapproche seront présentés sur le cas du 239Pu(n,f). / The work presented here aims to improve models used in the fission crosssectionevaluation. The results give insights for a significant breakthrough in this fieldand yielded large extensions of the evaluation code CONRAD. Partial cross sections areinherently strongly correlated together as of the competition of the related reactions mustyield the total cross section. Therefore improving fission cross section benefits to all partialcross sections. A sound framework for the simulation of competitive reactions hadto be settled in order to further investigate on the fission reaction; this was implementedusing the TALYS reference code as guideline. After ensuring consistency and consistencyof the framework, focus was made on fission. Perspective resulting from the useof macroscopic-microscopic models such as the FRDM and FRLDM were analyzed; thesemodels have been implemented and validated on experimental data and benchmarks. Tocomply with evaluation requirements in terms of computation time, several specific numericalmethods have been used and parts of the program were written to run on GPU.These macroscopic-microscopic models yield potential energy surfaces that can be used toextract a one-dimensional fission barrier. This latter can then be used to obtained fissiontransmission coefficients that can be used in a Hauser-Feshbach model. This method hasbeen finally tested for the calculation of the average fission cross section for 239Pu(n,f).
8

Transférabilité d'une modélisation-simulation multi-agents : le comportement inter-gares des voyageurs de la SNCF lors des échanges quai-train / Transferability of an agent-based model and simulation : the inter-station passengers behavior of SNCF passengers during platform-train exchanges

Elleuch, Fatma 19 March 2019 (has links)
Les travaux de cette thèse portent sur la définition et la validation d’une méthode de modélisation-simulation de foule permettant le transfert des principes et des mesures établis dans un contexte source d'observations vers des contextes cibles, non observables a priori. A partir de l'observation de comportements de piétons d’un contexte environnemental, social et urbain, nous inférons les règles et des motivations, rendant possible la modélisation et la simulation du comportement individuel de piétons dans ce contexte source, puis à évaluer la transférabilité du modèle dans un autre contexte cible. Nous appuyons nos travaux sur un cas réel. Il s’agit de la simulation du comportement des voyageurs entrants et sortants des trains dans une gare à fort trafic. Après une revue des théories, de modèles de simulation, nous retenons une approche basée sur la simulation microscopique d’agents sociaux, situés, basée sur les motivations. Nous argumentons le choix par le fait que, par rapport à une simulation de foule classique elle, a priori, l’avantage de favoriser la transférabilité. L’objectif de cette simulation est d’étudier, entre autres, les évolutions architecturales des stations permettant de raccourcir les temps d’arrêt des trains. / This thesis focuses on the definition and the validation of a crowd-simulation modeling method. This method allows transferring principles and measurements established in a source observation context to a target one. From the observation of pedestrian behavior in a social and urban context, our approach infers rules and motivations in order to model and simulate the individual pedestrian behavior in this source context. This allows, in a second step, to evaluate the transferability of the model to a given target context. Our work is based on a real case: the simulation of the passenger’s behavior while boarding and alighting trains (platform-train exchange) in a high-traffic station (dense situation). Starting from the state of the art of theories, models and types of simulation, we choose an approach based on the microscopic simulation of social agent’s motivation. This choice relies mainly on the fact that, compared to a classic crowd simulation, it has, a priori, a better transferability potential. The goal of this type of simulation is to study the architectural evolutions of the stations that could allow to control or shorten train dwell times.
9

Microscopic description of magnetic model compounds

Schmitt, Miriam 24 June 2013 (has links) (PDF)
Solid state physics comprises many interesting physical phenomena driven by the complex interplay of the crystal structure, magnetic and orbital degrees of freedom, quantum fluctuations and correlation. The discovery of materials which exhibit exotic phenomena like low dimensional magnetism, superconductivity, thermoelectricity or multiferroic behavior leads to various applications which even directly influence our daily live. For such technical applications and the purposive modification of materials, the understanding of the underlying mechanisms in solids is a precondition. Nowadays DFT based band structure programs become broadly available with the possibility to calculate systems with several hundreds of atoms in reasonable time scales and high accuracy using standard computers due to the rapid technical and conceptional development in the last decades. These improvements allow to study physical properties of solids from their crystal structure and support the search for underlying mechanisms of different phenomena from microscopic grounds. This thesis focuses on the theoretical description of low dimensional magnets and intermetallic compounds. We combine DFT based electronic structure and model calculations to develop the magnetic properties of the compounds from microscopic grounds. The developed, intuitive pictures were challenged by model simulations with various experiments, probing microscopic and macroscopic properties, such as thermodynamic measurements, high field magnetization, nuclear magnetic resonance or electron spin resonance experiments. This combined approach allows to investigate the close interplay of the crystal structure and the magnetic properties of complex materials in close collaboration with experimentalists. In turn, the systematic variation of intrinsic parameters by substitution or of extrinsic factors, like magnetic field, temperature or pressure is an efficient way to probe the derived models. Especially pressure allows a continuous change of the crystal structure on a rather large energy scale without the chemical complexity of substitution, thus being an ideal tool to consistently alter the electronic structure in a controlled way. Our theoretical results not only provide reliable descriptions of real materials, exhibiting disorder, partial site occupation and/or strong correlations, but also predict fascinating phenomena upon extreme conditions. In parts this theoretical predictions were already confirmed by own experiments on large scale facilities. Whereas in the first part of this work the main purpose was to develop reliable magnetic models of low dimensional magnets, in the second part we unraveled the underlying mechanism for different phase transitions upon pressure. In more detail, the first part of this thesis is focused on the magnetic ground states of spin 1/2 transition metal compounds which show fascinating phase diagrams with many unusual ground states, including various types of magnetic order, like helical states exhibiting different pitch angles, driven by the intimate interplay of structural details and quantum fluctuations. The exact arrangement and the connection of the magnetically active building blocks within these materials determine the hybridization, orbital occupation, and orbital orientation, this way altering the exchange paths and strengths of magnetic interaction within the system and consequently being crucial for the formation of the respective ground states. The spin 1/2 transition metal compounds, which have been investigated in this work, illustrate the great variety of exciting phenomena fueling the huge interest in this class of materials. We focused on cuprates with magnetically active CuO4 plaquettes, mainly arranged into edge sharing geometries. The influence of structural peculiarities, as distortion, folding, changed bonding angles, substitution or exchanged ligands has been studied with respect to their relevance for the magnetic ground state. Besides the detailed description of the magnetic ground states of selected compounds, we attempted to unravel the origin for the formation of a particular magnetic ground state by deriving general trends and relations for this class of compounds. The details of the treatment of the correlation and influence of structural peculiarities like distortion or the bond angles are evaluated carefully. In the second part of this work we presented the results of joint theoretical and experimental studies for intermetallic compounds, all exhibiting an isostructural phase transition upon pressure. Many different driving forces for such phase transitions are known like quantum fluctuations, valence instabilities or magnetic ordering. The combination of extensive computational studies and high pressure XRD, XAS and XMCD experiments using synchrotron radiation reveals completely different underlying mechanism for the onset of the phase transitions in YCo5, SrFe2As2 and EuPd3Bx. This thesis demonstrates on a series of complex compounds that the combination of ab-initio electronic structure calculations with numerical simulations and with various experimental techniques is an extremely powerful tool for a successful description of the intriguing quantum phenomena in solids. This approach is able to reduce the complex behavior of real materials to simple but appropriate models, this way providing a deep understanding for the underlying mechanisms and an intuitive picture for many phenomena. In addition, the close interaction of theory and experiment stimulates the improvement and refinement of the methods in both areas, pioneering the grounds for more and more precise descriptions. Further pushing the limits of these mighty techniques will not only be a precondition for the success of fundamental research at the frontier between physics and chemistry, but also enables an advanced material design on computational grounds.
10

Microscopic description of magnetic model compounds: from one-dimensional magnetic insulators to three-dimensional itinerant metals

Schmitt, Miriam 22 November 2012 (has links)
Solid state physics comprises many interesting physical phenomena driven by the complex interplay of the crystal structure, magnetic and orbital degrees of freedom, quantum fluctuations and correlation. The discovery of materials which exhibit exotic phenomena like low dimensional magnetism, superconductivity, thermoelectricity or multiferroic behavior leads to various applications which even directly influence our daily live. For such technical applications and the purposive modification of materials, the understanding of the underlying mechanisms in solids is a precondition. Nowadays DFT based band structure programs become broadly available with the possibility to calculate systems with several hundreds of atoms in reasonable time scales and high accuracy using standard computers due to the rapid technical and conceptional development in the last decades. These improvements allow to study physical properties of solids from their crystal structure and support the search for underlying mechanisms of different phenomena from microscopic grounds. This thesis focuses on the theoretical description of low dimensional magnets and intermetallic compounds. We combine DFT based electronic structure and model calculations to develop the magnetic properties of the compounds from microscopic grounds. The developed, intuitive pictures were challenged by model simulations with various experiments, probing microscopic and macroscopic properties, such as thermodynamic measurements, high field magnetization, nuclear magnetic resonance or electron spin resonance experiments. This combined approach allows to investigate the close interplay of the crystal structure and the magnetic properties of complex materials in close collaboration with experimentalists. In turn, the systematic variation of intrinsic parameters by substitution or of extrinsic factors, like magnetic field, temperature or pressure is an efficient way to probe the derived models. Especially pressure allows a continuous change of the crystal structure on a rather large energy scale without the chemical complexity of substitution, thus being an ideal tool to consistently alter the electronic structure in a controlled way. Our theoretical results not only provide reliable descriptions of real materials, exhibiting disorder, partial site occupation and/or strong correlations, but also predict fascinating phenomena upon extreme conditions. In parts this theoretical predictions were already confirmed by own experiments on large scale facilities. Whereas in the first part of this work the main purpose was to develop reliable magnetic models of low dimensional magnets, in the second part we unraveled the underlying mechanism for different phase transitions upon pressure. In more detail, the first part of this thesis is focused on the magnetic ground states of spin 1/2 transition metal compounds which show fascinating phase diagrams with many unusual ground states, including various types of magnetic order, like helical states exhibiting different pitch angles, driven by the intimate interplay of structural details and quantum fluctuations. The exact arrangement and the connection of the magnetically active building blocks within these materials determine the hybridization, orbital occupation, and orbital orientation, this way altering the exchange paths and strengths of magnetic interaction within the system and consequently being crucial for the formation of the respective ground states. The spin 1/2 transition metal compounds, which have been investigated in this work, illustrate the great variety of exciting phenomena fueling the huge interest in this class of materials. We focused on cuprates with magnetically active CuO4 plaquettes, mainly arranged into edge sharing geometries. The influence of structural peculiarities, as distortion, folding, changed bonding angles, substitution or exchanged ligands has been studied with respect to their relevance for the magnetic ground state. Besides the detailed description of the magnetic ground states of selected compounds, we attempted to unravel the origin for the formation of a particular magnetic ground state by deriving general trends and relations for this class of compounds. The details of the treatment of the correlation and influence of structural peculiarities like distortion or the bond angles are evaluated carefully. In the second part of this work we presented the results of joint theoretical and experimental studies for intermetallic compounds, all exhibiting an isostructural phase transition upon pressure. Many different driving forces for such phase transitions are known like quantum fluctuations, valence instabilities or magnetic ordering. The combination of extensive computational studies and high pressure XRD, XAS and XMCD experiments using synchrotron radiation reveals completely different underlying mechanism for the onset of the phase transitions in YCo5, SrFe2As2 and EuPd3Bx. This thesis demonstrates on a series of complex compounds that the combination of ab-initio electronic structure calculations with numerical simulations and with various experimental techniques is an extremely powerful tool for a successful description of the intriguing quantum phenomena in solids. This approach is able to reduce the complex behavior of real materials to simple but appropriate models, this way providing a deep understanding for the underlying mechanisms and an intuitive picture for many phenomena. In addition, the close interaction of theory and experiment stimulates the improvement and refinement of the methods in both areas, pioneering the grounds for more and more precise descriptions. Further pushing the limits of these mighty techniques will not only be a precondition for the success of fundamental research at the frontier between physics and chemistry, but also enables an advanced material design on computational grounds.:Contents List of abbreviations 1. Introduction 2. Methods 2.1. Electronic structure and magnetic models for real compounds 2.1.1. Describing a solid 2.1.2. Basic exchange and correlation functionals 2.1.3. Strong correlations 2.1.4. Band structure codes 2.1.5. Disorder and vacancies 2.1.6. Models on top of DFT 2.2. X-ray diffraction and x-ray absorption at extreme conditions 2.2.1. Diamond anvil cells 2.2.2. ID09 - XRD under pressure 2.2.3. ID24 - XAS and XMCD under pressure 3. Low dimensional magnets 3.1. Materials 3.1.1 AgCuVO4 - a model compound between two archetypes of Cu-O chains 3.1.2 Li2ZrCuO4 - in close vicinity to a quantum critical point 3.1.3 PbCuSO4(OH)2 -magnetic exchange ruled by H 3.1.4 CuCl2 and CuBr2 - flipping magnetic orbitals by crystal water 3.1.5 Na3Cu2SbO6 and Na2Cu2TeO6 - alternating chain systems 3.1.6 Cu2(PO3)2CH2 - magnetic vs. structural dimers 3.1.7 Cu2PO4OH - orbital order between dimers and chains 3.1.8 A2CuEO6 - an new family of spin 1/2 square lattice compounds 3.2. General trends and relations 3.2.1. Approximation for the treatment of strong correlation 3.2.2. Structural elements 4. Magnetic intermetallic compounds under extreme conditions 115 4.1. Itinerant magnets 4.1.1. YCo5 - a direct proof for a magneto elastic transition by XMCD 4.1.2. SrFe2As2 - symmetry-preserving lattice collapse 4.2. Localized magnets 4.2.1. EuPd3Bx - valence transition under doping and pressure 5. Summary and outlook A. Technical details B. Crystal Structures C. Supporting Material Bibliography List of Publications Acknowledgments

Page generated in 0.0894 seconds