21 |
Deformações geométricas de curvas no plano Minkowski / Geometric deformations of curves in the Minkowski planeFrancisco, Alex Paulo 16 April 2019 (has links)
Neste trabalho, estendemos o método desenvolvido em (SALARINOGHABI, 2016),(SALARINOGHABI; TARI, 2017) para curvas no plano Minkowski. Tal método propõe um modo de estudar deformações de curvas planas levando em consideração a geometria das mesmas juntamente com suas singularidades. Abordamos detalhadamente todos os fenômenos locais que ocorrem genericamente em famílias de curvas a 2-parâmetros. Em cada caso, obtemos a geometria da curva deformada, ou seja, informações a respeito de inflexões, vértices e pontos lightlike. Obtemos também o comportamento da evoluta/cáustica de uma curva em pontos especiais e as bifurcações que podem aparecer ao deformá-la. Além disso, a fim de obter as deformações genéricas em uma inflexão lightlike de ordem 2, também classificamos submersões de R3 em R por meio de difeomorfismos na fonte que preservam a swallowtail e, utilizando tal classificação, estudamos a geometria plana da swallowtail, a qual provém de seu contato com planos, o qual por sua vez é medido pelas singularidades da função altura sobre a swallowtail. / In this work, we extend the method developed in (SALARINOGHABI, 2016),(SALARINOGHABI; TARI, 2017) to curves in the Minkowski plane. The method proposes a way to study deformations of plane curves taking into consideration their geometry as well as their singularities. We deal in detail with all local phenomena that occur generically in 2-parameters families of curves. In each case, we obtain the geometry of the deformed curve, that is, information about inflections, vertices and lightlike points. We also obtain the behavior of the evolute/caustic of a curve at special points and the bifurcations that can occur when the curve is deformed. Moreover, in order to obtain the generic deformations at a lightlike inflection point of order 2, we also classify submersions from R3 to R by diffeomorphisms in the source that preserve the swallowtail and, using such classification, we study the flat geometry of the swallowtail, which comes from its contact with planes, which in turn is measured by the singularities of the height function on the swallowtail.
|
22 |
Antenas impressas compactas para sistemas WIMAX. / Small patch antennas for WIMAX systems.Moraes, Leonardo Bastos 13 September 2012 (has links)
Alcançar altas taxas de dados em comunicações sem fio é difícil. Altas taxas de dados para redes locais sem fio tornou-se comercialmente um sucesso por volta do ano de 2000. Redes de longa distância sem fio ainda são projetados e utilizados principalmente para serviços de voz em baixas taxas. Apesar de muitas tecnologias promissoras, a realidade de uma rede de área ampla que atenda muitos usuários com altas taxas de dados e largura de banda e consumo de energia razoáveis, além de uma boa cobertura e qualidade no serviço ainda é um desafio. O objetivo do IEEE 802.16 é projetar um sistema de comunicação sem fio para obter uma internet de banda larga para usuários móveis em uma área metropolitana. É importante perceber que o sistema WIMAX tem que enfrentar desafios semelhantes aos existentes sistemas celulares e seu desempenho eventual será delimitado pelas mesmas leis da física e da teoria da informação. Em muitas áreas da engenharia elétrica, tem-se direcionado atenção à miniaturização de componentes e equipamentos. Em particular, antenas não são exceções. Desde que Wheeler iniciou estudos sobre os limites fundamentais de miniaturização de antenas, o assunto tem sido discutido por muitos estudiosos e várias contribuições nesse sentido foram feitas desde então. Os avanços das últimas décadas na área de microeletrônica permitiram a miniaturização dos demais componentes empregados no desenvolvimento de equipamentos eletrônicos e disponibilizaram o uso de aparelhos compactos, leves e com diversas funcionalidades e aplicações comerciais. No entanto, ainda que a integração de circuitos seja uma realidade, a integração completa de um sistema de comunicação sem fio, incluindo a antena, é ainda um dos grandes desafios tecnológicos. No caso de antenas impressas procura-se continuamente desenvolver antenas que, além de compactas, apresentem maior largura de banda, ou operação em múltiplas bandas dada sua inerente característica de banda estreita em projetos convencionais. Neste trabalho, o foco está na miniaturização de antenas impressas através da aplicação de fractais. São apresentadas comparações entre antenas fractais quadradas de Minkowski e fractais triangulares de Koch. Inicialmente, antenas 6 impressas com geometrias convencionais quadradas e triangulares foram projetadas para ter a mesma frequência de ressonância. Depois disso, as estruturas fractais de Minkowski Island e Koch Loop foram implementadas nas antenas quadrada e triangular, respectivamente, até a terceira iteração. As frequências escolhidas foram as de 2,4 GHz, 3,5 GHz, 5,0 GHz e 5,8 GHz. Diversos protótipos foram construídos em dois substratos de permissividade diferentes, o FR-4 e o DUROID 5870. Para validar os resultados foram construídas antenas na frequência de 3,5 GHz para as geometrias quadrada e triangular e suas iterações fractais. A contribuição deste trabalho está na análise sobre as vantagens e desvantagens de cada uma das estruturas propostas. Dependendo dos requisitos de um projeto, a opção pode ser por antenas miniaturizadas com maior largura de banda, como normalmente acontece em alguns projetos comerciais. Entretanto, o interesse por bandas estreitas muitas vezes pode ser um requisito, principalmente para emprego militar, onde por vezes a máxima discrição na transmissão é uma exigência. Além disso, também foi feita uma análise sobre as geometrias que atingiram maior miniaturização. / Achieving high data rates in wireless communication is difficult. High data rates for wireless local area networks became commercially successful only around 2000. Wide area wireless networks are still designed and used primarily for low rate voice services. Despite many promising technologies, the reality of a wide area network that services many users at high data rates with reasonable bandwidth and power consumption, while maintaining high coverage and quality of service has not been achieved. The goal of the IEEE 802.16 was to design a wireless communication system processing to achieve a broadband internet for mobile users over a wide or metropolitan area. It is important to realize that WIMAX system have to confront similar challenges as existing cellular systems and their eventual performance will be bounded by the same laws of physics and information theory. In many areas of electrical engineering, miniaturization has been an important issue. Antennas are not an exception. After Wheeler initiated studies on the fundamental limits for miniaturization of antennas, this subject has been extensively discussed by several scholars and many contributions have been made. The advances of recent decades in the field of microelectronics enabled the miniaturization of components and provided the use of compact, lightweight, equipments with many features in commercial applications. Although circuit integration is a reality, the integration of a complete system, including its antenna, is still one of the major technological challenges. In the case of patch antennas, the search is for compact structures with increased bandwidth, due to the inherent narrowband characteristic of this type of antenna. In this work the focus is on a comparison between the Minkowski and the Koch Fractal Patch Antennas. Initially, patch antennas with conventional square and triangular geometries were simulated to present the same resonance frequency. After that, fractal Minkowski and Koch Island Loop antennas were implemented in the square and triangular geometries, respectively, to the third iteration. A comparison was made for two substrates of different permittivities FR-4 and DUROID 5870 at the frequencies of 2,4 GHz; 3,5 GHz; 5,0 GHz and 5,8 GHz. 8 Prototype antennas were built using FR-4 and DUROID 5870 to resonate at a frequency of 3,5 GHz to validate simulation results. The contribution of this work is the analysis of the advantages and disadvantages of each proposed fractal structure. According to the project requirements, the best option can be use a miniaturized antenna with a wider band, as in commercial projects. Particularly in military applications, a narrow band antenna can be a requirement, as sometimes maximum discretion in transmission is a paramount. An additional analysis was performed to verify which of the geometries fulfilled the miniaturization criteria of Hansen.
|
23 |
Aspectos da teoria invariante e equivariante para a ação do grupo de Lorentz no espaço de Minkowski / Aspects of the invariant and equivariant theory for the action of the Lorentz group in Minkowski spaceOliveira, Leandro Nery de 30 June 2017 (has links)
Neste trabalho, introduzimos a teoria invariante e equivariante para a ação do grupo de Lorentz no espaço de Minkowski. Na teoria clássica, muitos resultados são válidos somente para a ação de grupos compactos em espaços Euclideanos. Continuamos o estudo para alguns subgrupos de Lorentz compactos e apresentamos uma forma de calcular as involuções de Lorentz em O(n;1). Fazemos uma empolgante discussão sobre uma classe de matrizes centrossimétricas polinomiais com aplicações em teoria invariante, estabelecendo um rumo para a pesquisa em subgrupos de Lorentz não compactos. Por fim, apresentamos alguns resultados da teoria equivariante para subgrupos de Lorentz. / In this work, we introduce the invariant and equivariant theory for the Lorentz group on the Minkowski space. In the classical theory, many results are valid only for compact groups on Euclidean spaces. We continue the study of some compact Lorentz subgroups and present a way of calculating the Lorentz involutions in O(n;1). We make an exciting discussion about a class of polynomial centrosymmetric matrices with applications in invariant theory, setting a course for research in non-compact Lorentz groups. Finally, we present some results for the equivariant theory of Lorentz subgroups.
|
24 |
Corpos abelianos reais e forma quadrática / Real abelian fields and quadratic formGarcia Tosti, Naísa Camila [UNESP] 17 February 2017 (has links)
Submitted by NAÍSA CAMILA GARCIA null (naisacamila@hotmail.com) on 2017-02-23T13:24:13Z
No. of bitstreams: 1
Dissertação de Mestrado Naísa.pdf: 926270 bytes, checksum: e0ef770d876850618bb4fff10a0da639 (MD5) / Approved for entry into archive by LUIZA DE MENEZES ROMANETTO (luizamenezes@reitoria.unesp.br) on 2017-03-02T14:21:45Z (GMT) No. of bitstreams: 1
tosti_ncg_me_sjrp.pdf: 926270 bytes, checksum: e0ef770d876850618bb4fff10a0da639 (MD5) / Made available in DSpace on 2017-03-02T14:21:45Z (GMT). No. of bitstreams: 1
tosti_ncg_me_sjrp.pdf: 926270 bytes, checksum: e0ef770d876850618bb4fff10a0da639 (MD5)
Previous issue date: 2017-02-17 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / O propósito deste trabalho é estudar alguns corpos abelianos, mais especificamente, as extensões reais maximais contidas nos corpos ciclotômicos de grau 8 e, os subcorpos dos corpos ciclotômicos Q(ζ_7) e Q(ζ_17). Em tais corpos, determinamos base integral, discriminante, grupo de Galois e construimos submódulos de posto máximo do anel dos inteiros algébricos com sua respectiva representação geométrica. Além disso, calculamos a densidade de centro destes reticulados. / The purpose of this work is to investigate some Abelian Number Fields, especifically the maximal extension contained in the cyclotomic fields of degree 8, and the subfields of the cyclotomic fields Q(ζ_7) and Q(ζ_17). In such fields, we compute: integral bases, discriminant, Galois group and submoduli with maximal rank in the ring of algebraic integers, its geometrical realization with the respective center density.
|
25 |
Antenas impressas compactas para sistemas WIMAX. / Small patch antennas for WIMAX systems.Leonardo Bastos Moraes 13 September 2012 (has links)
Alcançar altas taxas de dados em comunicações sem fio é difícil. Altas taxas de dados para redes locais sem fio tornou-se comercialmente um sucesso por volta do ano de 2000. Redes de longa distância sem fio ainda são projetados e utilizados principalmente para serviços de voz em baixas taxas. Apesar de muitas tecnologias promissoras, a realidade de uma rede de área ampla que atenda muitos usuários com altas taxas de dados e largura de banda e consumo de energia razoáveis, além de uma boa cobertura e qualidade no serviço ainda é um desafio. O objetivo do IEEE 802.16 é projetar um sistema de comunicação sem fio para obter uma internet de banda larga para usuários móveis em uma área metropolitana. É importante perceber que o sistema WIMAX tem que enfrentar desafios semelhantes aos existentes sistemas celulares e seu desempenho eventual será delimitado pelas mesmas leis da física e da teoria da informação. Em muitas áreas da engenharia elétrica, tem-se direcionado atenção à miniaturização de componentes e equipamentos. Em particular, antenas não são exceções. Desde que Wheeler iniciou estudos sobre os limites fundamentais de miniaturização de antenas, o assunto tem sido discutido por muitos estudiosos e várias contribuições nesse sentido foram feitas desde então. Os avanços das últimas décadas na área de microeletrônica permitiram a miniaturização dos demais componentes empregados no desenvolvimento de equipamentos eletrônicos e disponibilizaram o uso de aparelhos compactos, leves e com diversas funcionalidades e aplicações comerciais. No entanto, ainda que a integração de circuitos seja uma realidade, a integração completa de um sistema de comunicação sem fio, incluindo a antena, é ainda um dos grandes desafios tecnológicos. No caso de antenas impressas procura-se continuamente desenvolver antenas que, além de compactas, apresentem maior largura de banda, ou operação em múltiplas bandas dada sua inerente característica de banda estreita em projetos convencionais. Neste trabalho, o foco está na miniaturização de antenas impressas através da aplicação de fractais. São apresentadas comparações entre antenas fractais quadradas de Minkowski e fractais triangulares de Koch. Inicialmente, antenas 6 impressas com geometrias convencionais quadradas e triangulares foram projetadas para ter a mesma frequência de ressonância. Depois disso, as estruturas fractais de Minkowski Island e Koch Loop foram implementadas nas antenas quadrada e triangular, respectivamente, até a terceira iteração. As frequências escolhidas foram as de 2,4 GHz, 3,5 GHz, 5,0 GHz e 5,8 GHz. Diversos protótipos foram construídos em dois substratos de permissividade diferentes, o FR-4 e o DUROID 5870. Para validar os resultados foram construídas antenas na frequência de 3,5 GHz para as geometrias quadrada e triangular e suas iterações fractais. A contribuição deste trabalho está na análise sobre as vantagens e desvantagens de cada uma das estruturas propostas. Dependendo dos requisitos de um projeto, a opção pode ser por antenas miniaturizadas com maior largura de banda, como normalmente acontece em alguns projetos comerciais. Entretanto, o interesse por bandas estreitas muitas vezes pode ser um requisito, principalmente para emprego militar, onde por vezes a máxima discrição na transmissão é uma exigência. Além disso, também foi feita uma análise sobre as geometrias que atingiram maior miniaturização. / Achieving high data rates in wireless communication is difficult. High data rates for wireless local area networks became commercially successful only around 2000. Wide area wireless networks are still designed and used primarily for low rate voice services. Despite many promising technologies, the reality of a wide area network that services many users at high data rates with reasonable bandwidth and power consumption, while maintaining high coverage and quality of service has not been achieved. The goal of the IEEE 802.16 was to design a wireless communication system processing to achieve a broadband internet for mobile users over a wide or metropolitan area. It is important to realize that WIMAX system have to confront similar challenges as existing cellular systems and their eventual performance will be bounded by the same laws of physics and information theory. In many areas of electrical engineering, miniaturization has been an important issue. Antennas are not an exception. After Wheeler initiated studies on the fundamental limits for miniaturization of antennas, this subject has been extensively discussed by several scholars and many contributions have been made. The advances of recent decades in the field of microelectronics enabled the miniaturization of components and provided the use of compact, lightweight, equipments with many features in commercial applications. Although circuit integration is a reality, the integration of a complete system, including its antenna, is still one of the major technological challenges. In the case of patch antennas, the search is for compact structures with increased bandwidth, due to the inherent narrowband characteristic of this type of antenna. In this work the focus is on a comparison between the Minkowski and the Koch Fractal Patch Antennas. Initially, patch antennas with conventional square and triangular geometries were simulated to present the same resonance frequency. After that, fractal Minkowski and Koch Island Loop antennas were implemented in the square and triangular geometries, respectively, to the third iteration. A comparison was made for two substrates of different permittivities FR-4 and DUROID 5870 at the frequencies of 2,4 GHz; 3,5 GHz; 5,0 GHz and 5,8 GHz. 8 Prototype antennas were built using FR-4 and DUROID 5870 to resonate at a frequency of 3,5 GHz to validate simulation results. The contribution of this work is the analysis of the advantages and disadvantages of each proposed fractal structure. According to the project requirements, the best option can be use a miniaturized antenna with a wider band, as in commercial projects. Particularly in military applications, a narrow band antenna can be a requirement, as sometimes maximum discretion in transmission is a paramount. An additional analysis was performed to verify which of the geometries fulfilled the miniaturization criteria of Hansen.
|
26 |
Algorithmic approaches to Siegel's fundamental domain / Approches algorithmiques du domaine fondamental de SiegelJaber, Carine 28 June 2017 (has links)
Siegel détermina un domaine fondamental à l'aide de la réduction de Minkowski des formes quadratiques. Il donna tous les détails concernant ce domaine pour le genre 1. C'est la détermination du domaine fondamental de Minkowski présentée comme deuxième condition et la condition maximal height présentée comme troisième condition, qui empêchent la précision exacte de ce domaine pour le cas général. Les derniers résultats ont été obtenus par Gottschling pour le genre 2 en 1959. Elle est depuis restée inexplorée et mal comprise notamment les différents domaines de Minkowski. Afin d'identifier ce domaine fondamental pour le genre 3, nous présentons des résultats concernant sa troisième condition. Chaque fonction abélienne peut être écrite en termes de fonctions rationnelles des fonctions thêta et de leurs dérivées. Cela permet l'expression de la solution des systèmes intégrables en fonction des fonctions thêta. Ces solutions sont pertinentes dans la description de surfaces de vagues d'eau, de l'optique non linéaire. Deconinck et Van Hoeij ont éveloppé et mis en oeuvre des algorithmes pour construire la matrice de Riemann et Deconinck et al. ont développé le calcul des fonctions thêta correspondantes. Deconinck et al. ont utilisé l'algorithme de Siegel pour atteindre approximativement le domaine fondamental de Siegel et ont adopté l'algorithme LLL pour trouver le vecteur le plus court. Alors que nous utilisons ici un nouvel algorithme de réduction de Minkowski jusqu'à dimension 5 et une détermination exacte du vecteur le plus court pour des dimensions supérieures. / Siegel determined a fundamental domain using the Minkowski reduction of quadratic forms. He gave all the details concerning this domain for genus 1. It is the determination of the Minkowski fundamental domain presented as the second condition and the maximal height condition, presented as the third condition, which prevents the exact determination of this domain for the general case. The latest results were obtained by Gottschling for the genus 2 in 1959. It has since remained unexplored and poorly understood, in particular the different regions of Minkowski reduction. In order to identify Siegel's fundamental domain for genus 3, we present some results concerning the third condition of this domain. Every abelian function can be written in terms of rational functions of theta functions and their derivatives. This allows the expression of solutions of integrable systems in terms of theta functions. Such solutions are relevant in the description of surface water waves, non linear optics. Because of these applications, Deconinck and Van Hoeij have developed and implemented al-gorithms for computing the Riemann matrix and Deconinck et al. have developed the computation of the corresponding theta functions. Deconinck et al. have used Siegel's algorithm to approximately reach the Siegel fundamental domain and have adopted the LLL reduction algorithm to nd the shortest lattice vector. However, we opt here to use a Minkowski algorithmup to dimension 5 and an exact determination of the shortest lattice vector for greater dimensions.
|
27 |
Aspectos da teoria invariante e equivariante para a ação do grupo de Lorentz no espaço de Minkowski / Aspects of the invariant and equivariant theory for the action of the Lorentz group in Minkowski spaceLeandro Nery de Oliveira 30 June 2017 (has links)
Neste trabalho, introduzimos a teoria invariante e equivariante para a ação do grupo de Lorentz no espaço de Minkowski. Na teoria clássica, muitos resultados são válidos somente para a ação de grupos compactos em espaços Euclideanos. Continuamos o estudo para alguns subgrupos de Lorentz compactos e apresentamos uma forma de calcular as involuções de Lorentz em O(n;1). Fazemos uma empolgante discussão sobre uma classe de matrizes centrossimétricas polinomiais com aplicações em teoria invariante, estabelecendo um rumo para a pesquisa em subgrupos de Lorentz não compactos. Por fim, apresentamos alguns resultados da teoria equivariante para subgrupos de Lorentz. / In this work, we introduce the invariant and equivariant theory for the Lorentz group on the Minkowski space. In the classical theory, many results are valid only for compact groups on Euclidean spaces. We continue the study of some compact Lorentz subgroups and present a way of calculating the Lorentz involutions in O(n;1). We make an exciting discussion about a class of polynomial centrosymmetric matrices with applications in invariant theory, setting a course for research in non-compact Lorentz groups. Finally, we present some results for the equivariant theory of Lorentz subgroups.
|
28 |
Surfaces de Cauchy polyédrales des espaces temps plats singuliers / Polyhedral Cauchy-surfaces of flat space-timesBrunswic, Léo 22 December 2017 (has links)
L'étude des espaces-temps plats singuliers munis d'une surface de Cauchy polyédrale est motivée par leur rôle de model jouet de gravité quantique proposé par Deser, Jackiw et 'T Hooft. Cette thèse porte sur les paramétrisations de certaines classes d'espaces-temps plat singuliers : les espaces-temps plats avec particules massives et BTZ Cauchy-compacts maximaux. Deux paramétrisations sont proposées, l'une reposant sur une extension du théorème de Mess aux espaces-temps plats avec BTZ et la surface de Penner-Epstein, l'autre reposant sur une généralisation du théorème d'Alexandrov aux espaces-temps plats avec particules massives et BTZ. Ce travail propose également une amorce de cadre théorique permettant de considérer des espaces-temps singuliers plus généraux. / The study of singular flat spacetimes with polyhedral Cauchy-surfaces is motivated by the quantum gravity toy model role they play in the seminal work of Deser, Jackiw and 'T Hooft. This thesis study parametrisations of classes of singular flat spacetimes : Cauchy-compact maximal flat spacetimes with massive and BTZ-like singularities. Two parametrisations are constructed. The first is based on an extension of Mess theorem to flat spacetimes with BTZ and Penner-Epstein convex hull construction. The second is based on a generalisation of Alexandrov polyhedron theorem to radiant Cauchy-compact flat spacetimes with massive and BTZ-like singularities. This work also initiate a wider theoretical background that encompass singular spacetimes.
|
29 |
Geometry of Minkowski Planes and Spaces -- Selected TopicsWu, Senlin 03 February 2009 (has links) (PDF)
The results presented in this dissertation refer to the geometry of Minkowski
spaces, i.e., of real finite-dimensional Banach spaces.
First we study geometric properties of radial projections of
bisectors in Minkowski spaces, especially the relation between the
geometric structure of radial projections and Birkhoff
orthogonality. As an application of our results it is shown that for
any Minkowski space there exists a number, which plays somehow the
role that $\sqrt2$ plays in Euclidean space. This number is referred
to as the critical number of any Minkowski space. Lower and upper
bounds on the critical number are given, and the cases when these
bounds are attained are characterized. Moreover, with the help of
the properties of bisectors we show that a linear map from a normed
linear space $X$ to another normed linear space $Y$ preserves
isosceles orthogonality if and only if it is a scalar multiple of a
linear isometry.
Further on, we examine the two tangent segments from any exterior
point to the unit circle, the relation between the length of a chord
of the unit circle and the length of the arc corresponding to it,
the distances from the normalization of the sum of two unit vectors
to those two vectors, and the extension of the notions of
orthocentric systems and orthocenters in Euclidean plane into
Minkowski spaces. Also we prove theorems referring to chords of
Minkowski circles and balls which are either concurrent or parallel.
All these discussions yield many interesting characterizations of
the Euclidean spaces among all (strictly convex) Minkowski spaces.
In the final chapter we investigate the relation between the length
of a closed curve and the length of its midpoint curve as well as
the length of its image under the so-called halving pair
transformation. We show that the image curve under the halving pair
transformation is convex provided the original curve is convex.
Moreover, we obtain several inequalities to show the relation
between the halving distance and other quantities well known in
convex geometry. It is known that the lower bound for the geometric
dilation of rectifiable simple closed curves in the Euclidean plane
is $\pi/2$, which can be attained only by circles. We extend this
result to Minkowski planes by proving that the lower bound for the
geometric dilation of rectifiable simple closed curves in a
Minkowski plane $X$ is analogously a quarter of the circumference of
the unit circle $S_X$ of $X$, but can also be attained by curves
that are not Minkowskian circles. In addition we show that the lower
bound is attained only by Minkowskian circles if the respective norm
is strictly convex. Also we give a sufficient condition for the
geometric dilation of a closed convex curve to be larger than a
quarter of the perimeter of the unit circle.
|
30 |
An exploration of fractal dimensionCohen, Dolav January 1900 (has links)
Master of Science / Department of Mathematics / Hrant Hakobyan / When studying geometrical objects less regular than ordinary ones, fractal analysis becomes a valuable tool. Over the last 30 years, this small branch of mathematics has developed extensively. Fractals can be de fined as those sets which have non-integral Hausdor ff dimension. In this thesis, we take a look at some basic measure theory needed to introduce certain de finitions of fractal dimensions, which can be used to measure a set's fractal degree. We introduce Minkowski dimension and Hausdor ff dimension as well as explore some examples where they coincide. Then we look at the dimension of a measure and some very useful applications. We conclude with a well known result of Bedford and McMullen about the Hausdor ff dimension of self-a ffine sets.
|
Page generated in 0.0591 seconds