51 |
Discrete Geometry in Normed SpacesSpirova, Margarita 09 December 2010 (has links) (PDF)
This work refers to ball-intersections bodies as well as covering, packing, and kissing problems related to balls and spheres in normed spaces. A quick introduction to these topics and an overview of our results is given in Section 1.1 of Chapter 1. The needed background knowledge is collected in Section 1.2, also in Chapter 1. In Chapter 2 we define ball-intersection bodies and investigate special classes of them: ball-hulls, ball-intersections, equilateral ball-polyhedra, complete bodies and bodies of constant width. Thus, relations between the ball-hull and the ball-intersection of a set are given. We extend a minimal property of a special class of equilateral ball-polyhedra, known as Theorem of Chakerian, to all normed planes. In order to investigate bodies of constant width, we develop a concept of affine orthogonality, which is new even for the Euclidean subcase. In Chapter 2 we solve kissing, covering, and packing problems. For a given family of circles and lines we find at least one, but for some families even all circles kissing all the members of this family. For that reason we prove that a strictly convex, smooth normed plane is a topological Möbius plane. We give an exact geometric description of the maximal radius of all homothets of the unit disc that can be covered by 3 or 4 translates of it. Also we investigate configurations related to such coverings, namely a regular 4-covering and a Miquelian configuration of circles. We find the concealment number for a packing of translates of the unit ball.
|
52 |
Estudo do acoplamento entre superf?cies seletivas de frequ?ncia assim?tricas em estruturas de multicamadas / Estudo do acoplamento entre superf?cies seletivas de frequ?ncia assim?tricas em estruturas de multicamadasMani?oba, Robson Hebraico Cipriano 18 June 2012 (has links)
Made available in DSpace on 2014-12-17T14:55:05Z (GMT). No. of bitstreams: 1
RobsonHCM_TESE.pdf: 3686861 bytes, checksum: 9b78889548f4f5129d82c1a9c438aec4 (MD5)
Previous issue date: 2012-06-18 / Conselho Nacional de Desenvolvimento Cient?fico e Tecnol?gico / This work presents the development of new microwaves structures, filters and high gain antenna, through the cascading of frequency selective surfaces, which uses fractals D?rer and Minkowski patches as elements, addition of an element obtained
from the combination of the other two simple the cross dipole and the square spiral. Frequency selective surfaces (FSS) includes a large area of Telecommunications and have been widely used due to its low cost, low weight and ability to integrate with others microwaves circuits. They re especially important in several applications, such as airplane, antennas systems, radomes, rockets, missiles, etc. FSS applications in high
frequency ranges have been investigated, as well as applications of cascading structures or multi-layer, and active FSS.
In this work, we present results for simulated and measured transmission characteristics of cascaded structures (multilayer), aiming to investigate the behavior of the operation in terms of bandwidth, one of the major problems presented by frequency
selective surfaces. Comparisons are made with simulated results, obtained using commercial software such as Ansoft DesignerTM v3 and measured results in the laboratory. Finally, some suggestions are presented for future works on this subject / Este trabalho apresenta o desenvolvimento de novas estruturas de micro-ondas, filtros multi-banda ou banda larga, atrav?s do cascateamento de superf?cies seletivas em frequ?ncia, que usa patches fractais de D?rer pentagonal e Minkowski como elementos, al?m de um elemento obtido a partir da combina??o de outros dois mais simples que s?o o dipolo em cruz e a espira quadrada. Superf?cies seletivas em frequ?ncia (FSS) abrangem uma grande ?rea das Telecomunica??es e t?m sido largamente utilizadas devido a seu baixo custo, peso reduzido e possibilidade de se integrar com outros circuitos de micro-ondas. Elas s?o
especialmente importantes em diversas aplica??es, como avi?es, sistemas de antenas, radomes, foguetes, m?sseis, etc. Aplica??es de FSS em faixas de frequ?ncia elevadas t?m sido investigadas, assim como aplica??es destas estruturas em cascata ou multicamadas, FSS ativas. Nesse trabalho, s?o apresentados resultados simulados e medidos para as
caracter?sticas de transmiss?o de estruturas cascateadas (multicamadas), com intuito de investigar o comportamento do funcionamento em termos de largura de banda, um dos
grandes problemas apresentados por superf?cies seletivas em frequ?ncia. S?o feitas compara??es entre resultados simulados, obtidos utilizando software comercial como Ansoft DesignerTM v3 e resultados medidos em laborat?rio. S?o apresentadas, ainda, sugest?es de continuidade do trabalho
|
53 |
Implementação e comparação de métodos de estimativa da dimensão fractal e sua aplicação à análise e processamento de imagens / Implementation and comparison of fractal dimension estimative methods and their use on analysis and image processing.Andre Ricardo Backes 27 March 2006 (has links)
A Dimensão Fractal pode ser utilizada para medir algumas características ligadas a complexidade da imagem, permitindo seu uso em análise de formas e texturas e reconhecimento de padrões. Neste trabalho é apresentado um estudo comparativo entre alguns dos principais métodos de estimativa da Dimensão Fractal. Foi realizada uma análise experimental e um estudo de casos para cada uma das técnicas, levando em consideração aspectos de implementação, precisão, variação de resultados segundo ajuste de parâmetros e tolerância a ruídos. Neste trabalho também foi desenvolvido um estudo sobre a Dimensão Fractal Multiescala, visando seu emprego como metodologia de assinatura de complexidade. Na literatura a técnica de multiescala é limitada ao método de Bouligand-Minkowski, sendo aqui ela estendida para outras metodologias de estimativa de Dimensão Fractal. Por meio de análise experimental as metodologias propostas foram comparadas e os resultados discutidos, enfatizando as vantagens e desvantagens destas técnicas. / Fractal Dimension can be used to measure some characteristics related to the image complexity, allowing its use on shape and texture analysis and pattern recognition. In this work is presented a comparative study among some of the most important methods to estimate Fractal Dimension. It was performed a experimental analysis and a case study for each one of the techniques, considering implementation aspects, precision, variation of results under parameters adjustments and noise tolerance. In this work is also performed a study about MultiScale Fractal Dimension, aiming at its use as a methodology of complexity signature. In the literature the multiscale technique is limited to Bouligand-Minkowski method, being here it extended to other methodologies of estimative of Fractal Dimension. By experimental analysis the proposed methodologies were compared and the results argued, emphasizing the advantages and disadvantages of those techniques.
|
54 |
Unicidade de hipersuperfÃcies tipo-espaÃo com curvatura mÃdia de ordem superior constante em espaÃo-tempo de Robertson-Walker generalizado. / Uniqueness of spacelike hypersurfaces with constant higher order curvature in generalized Robertson-Walker spacetimesJonatan Floriano da Silva 26 March 2007 (has links)
Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico / Estudaremos, de acordo com Alias e Colares em [11], o problema de unicidade para hipersuperfÃcies tipo-espaÃo com curvatura mÃdia de ordem superior constante em um
espaÃo-tempo de Robertson-Walker generalizado (GRW). Em particular, consideraremos a seguinte pergunta: Sob quais condiÃÃes deve uma hipersuperfÃcie tipo-espaÃo compacta
com curvatura mÃdia de ordem superior constante em um espaÃo-tempo GRW espacialmente fechado ser uma fatia tipo-espaÃo? Provaremos que isto ocorre, essencialmente,
sob a entÃo chamada condiÃÃo de convergÃncia nula. Nossa abordagem à baseada no uso das transformaÃÃes de Newton (e seus operadores diferenciais associados) e nas fÃrmulas
de Minkowski para hipersuperfÃcies tipo-espaÃo.
|
55 |
Superfícies Helicoidais no espaço Euclidiano e de Minkowski / Helicoidal surfaces in Euclidean space and Minkowski spaceSOUZA, Danillo Flugge de 31 May 2012 (has links)
Made available in DSpace on 2014-07-29T16:02:21Z (GMT). No. of bitstreams: 1
Superficies helicoidais.pdf: 906474 bytes, checksum: 1d89336393ea70fe9a7948ddebe670f9 (MD5)
Previous issue date: 2012-05-31 / In this work, based in [2] and [6] we studies helicoidal surfaces of the Euclidean space
and Minkowski space R31
with prescribed Gaussian or mean curvature given by smooth
functions. In the Minkowski space we consider three especial kinds of helicoidal surfaces,
corresponding to the space-like, time-like or light-like axes of revolution and show some
geometric meanings of the helicoidal surfaces of the space-like type. We also define
certain solinoid (tubular) surfaces around a hyperbolic helix in R31and we study some
of their geometric properties. / Neste trabalho, baseado nos artigos [2] e [6] estudamos superfícies helicoidais no Espaço
Euclidiano e no Espaço de Minkowski R31
com curvatura média ou Gaussiana dada por
funções diferenciáveis. No Espaço de Minkowski R31
, consideramos três tipos especiais
de superfícies helicoidais, correspondendo aos eixos de revolução space-like, time-like
ou light-like e apresentamos alguns significados geométricos de superfícies helicoidais
do tipo space-like. Também definimos superfícies (tubulares) solenóides em torno de uma
hélice hiperbólica em R31
e estudamos algumas de suas propriedades geométricas.
|
56 |
Curvas no espaço de Minkowski / Curves in the Minkowski spaceAndrea de Jesus Sacramento 27 March 2015 (has links)
Nesta tese, investigamos a geometria de curvas no 3-espaço e no 4-espaço de Minkowski usando a teoria de singularidades, mais especificamente, a teoria de contato. Para isto, estudamos as famílias de funções altura e de funções distância ao quadrado sobre as curvas. Os conjuntos discriminantes e conjuntos de bifurcação destas famílias são ferramentas essenciais para o desenvolvimento deste trabalho. Para curvas no 3-espaço de Minkowski, estudamos seus conjuntos focais e conjunto de bifurcação da família de funções distância ao quadrado sobre estas curvas para investigar o que acontece próximo de pontos tipo luz. Estudamos também os conjuntos focais e conjuntos de bifurcação esféricos de curvas nos espaços de Sitter do 3-espaço e do 4-espaço de Minkowski. Definimos imagens normal Darboux pseudo-esféricas de curvas sobre uma superfície tipo tempo no 3-espaço de Minkowski e estudamos as singularidades e propriedades geométricas destas imagens normal Darboux. Além disso, investigamos a relação da imagem normal Darboux de Sitter (hiperbólica) de uma curva tipo espaço em S21 com a superfície tipo luz ao longo desta curva tipo espaço. Definimos as superfícies horoesférica e dual hiperbólica de curvas tipo espaço no espaço de Sitter S31 e estudamos estas superfícies usando técnicas da teoria de singularidades. Damos uma relação entre estas superfícies do ponto de vista de dualidades Legendrianas. Finalmente, consideramos curvas sobre uma hipersuperfície tipo espaço no 4-espaço de Minkowski e definimos a superfície hiperbólica desta curva. Estudamos a geometria local da superfície hiperbólica e da curva hiperbólica, que é definida como sendo o local das singularidades da superfície hiperbólica. / We study in this thesis the geometry of curves in Minkowski 3-space and 4-space using singularity theory, more specifically, the contact theory. For this we study the families of height functions and of the distance square functions on the curves. The discriminant sets and bifurcation sets of these families are essential tools in our work. For curves in Minkowski 3-space, we study their focal sets and the bifurcation set of the family of the distance square functions on these curves in order to investigate what happens near the lightlike points. We also study the spherical focal sets and bifurcation sets of curves in the de Sitter space in Minkowski 3-space and 4-space. We define pseudo-spherical normal Darboux images of curves on a timelike surface in Minkowski 3-space and study the singularities and geometric properties of these normal Darboux images. Furthermore, we investigate the relation of the de Sitter (hyperbolic) normal Darboux image of a spacelike curve in S21 with the lightlike surface along this spacelike curve. We define the horospherical and hyperbolic dual surfaces of spacelike curves in de Sitter space S31 and study these surfaces using singularity theory technics. We give a relation between these surfaces from the view point of Legendrian dualities. Finally, we consider curves on a spacelike hypersurface in Minkowski 4-space and define the hyperbolic surface of this curve. We study the local geometry of the hyperbolic surface and of the hyperbolic curve that is defined as being the locus of singularities of the hyperbolic surface.
|
57 |
Packing curved objects with interval methods / Méthodes intervalles pour le placement d’objets courbesSalas Donoso, Ignacio Antonio 29 April 2016 (has links)
Un problème courant en logistique, gestion d’entrepôt, industrie manufacturière ou gestion d’énergie dans les centres de données est de placer des objets dans un espace limité, ou conteneur. Ce problème est appelé problème de placement. De nombreux travaux dans la littérature gèrent le problème de placement en considérant des objets de formes particulières ou en effectuant des approximations polygonales. L’objectif de cette thèse est d’autoriser toute forme qui admet une définition mathématique (que ce soit avec des inégalités algébriques ou des fonctions paramétrées). Les objets peuvent notamment être courbes et non-convexes. C’est ce que nous appelons le problème de placement générique. Nous proposons un cadre de résolution pour résoudre ce problème de placement générique, basé sur les techniques d’intervalles. Ce cadre possède trois ingrédients essentiels : un algorithme évolutionnaire plaçant les objets, une fonction de chevauchement minimisée par cet algorithme évolutionnaire (coût de violation), et une région de chevauchement qui représente un ensemble pré-calculé des configurations relatives d’un objet (par rapport à un autre) qui créent un chevauchement. Cette région de chevauchement est calculée de façon numérique et distinctement pour chaque paire d’objets. L’algorithme sous-jacent dépend également du fait qu’un objet soit représenté par des inégalités ou des fonctions paramétrées. Des expérimentations préliminaires permettent de valider l’approche et d’en montrer le potentiel. / A common problem in logistic, warehousing, industrial manufacture, newspaper paging or energy management in data centers is to allocate items in a given enclosing space or container. This is called a packing problem. Many works in the literature handle the packing problem by considering specific shapes or using polygonal approximations. The goal of this thesis is to allow arbitrary shapes, as long as they can be described mathematically (by an algebraic equation or a parametric function). In particular, the shapes can be curved and non-convex. This is what we call the generic packing problem. We propose a framework for solving this generic packing problem, based on interval techniques. The main ingredients of this framework are: An evolutionary algorithm to place the objects, an over lapping function to be minimized by the evolutionary algorithm (violation cost), and an overlapping region that represents a pre-calculated set of all the relative configurations of one object (with respect to the other one) that creates an overlapping. This overlapping region is calculated numerically and distinctly for each pair of objects. The underlying algorithm also depends whether objects are described by inequalities or parametric curves. Preliminary experiments validate the approach and show the potential of this framework.
|
58 |
Visualizing light cones in space-timeElmabrouk, T. January 2013 (has links)
Although introductory courses in special relativity give an introduction to the causal structure of Minkowski space, it is common for causal structure in general space- times to be regarded as an advanced topic, and omitted from introductory courses in general relativity, although the related topic of gravitational lensing is often included. Here a numerical approach to visualizing the light cones in exterior Schwarzschild space taking advantage of the symmetries of Schwarzschild space and the conformal invariance of null geodesics is formulated, and used to make some of these ideas more accessible. By means of the Matlab software developed, a user is able to produce figures showing how light cones develop in Schwarzschild space, starting from an arbitrary point and developing for any length of time. The user can then interact with the figure, changing their point of view, or zooming in or out, to investigate them. This approach is then generalised, using the symbolic manipulation facility of Matlab, to allow the user to specify a metric as well as an initial point and time of development. Finally, the software is demonstrated with a selection of metrics.
|
59 |
Generalisation of Clairaut's theorem to Minkowski spacesSaad, A. January 2013 (has links)
The geometry of surfaces of rotation in three dimensional Euclidean space has been studied widely. The rotational surfaces in three dimensional Euclidean space are generated by rotating an arbitrary curve about an arbitrary axis. Moreover, the geodesics on surfaces of rotation in three dimension Euclidean space have been considered and discovered. Clairaut's [1713-1765] theorem describes the geodesics on surfaces of rotation and provides a result which is very helpful in understanding all geodesics on these surfaces. On the other hand, the Minkowski spaces have shorter history. In 1908 Minkowski [1864-1909] gave his talk on four dimensional real vector space, with asymmetric form of signature (+,+,+,-). In this space there are different types of vectors/axes (space-like- time-like and null) as well as different types of curves (space-like- time-like and null). This thesis considers the different types of axes of rotations, then creates three different types of surfaces of rotation in three dimensional Minkowski space, and generates Clairaut's theorem to each type of these surfaces, it also explains the analogy between three dimensional Euclidean and Minkowskian spaces. Moreover, this thesis produces different types of surfaces of rotation in four dimensional Minkowski spaces. It also generalises Clairaut's theorem for these surfaces of rotations in four dimensional Minkowski space. Then we see how Clairaut's theorem characterization carries over to three dimensional and four dimensional Minkowski spaces.
|
60 |
The influence of morphology on physical properties of reservoir rocksArns, Christoph Hermann, Petroleum Engineering, Faculty of Engineering, UNSW January 2002 (has links)
We consider the structural and physical properties of complex model morphologies and microstructures obtained by Xray-CT imaging. The Minkowski functionals, a family of statistical measures based on the Euler-Poincaré characteristic of n-dimensional space, are shown to be sensitive measures of the morphology of disordered structures. Analytic results for the Boolean model are given and used to devise a reconstruction scheme, which allows one to accurately reconstruct a complex Boolean structure given at any phase fraction for all other phase fractions. The percolation thresholds of either phase are obtained with good accuracy. From the reconstructions one can subsequently predict property curves for the material across all phase fractions from a single 3D image. We illustrate this for transport and mechanical properties of complex Boolean systems and for experimental sandstone samples. By extending the Minkowski functionals to parallel surfaces using operations from mathematical morphology, a powerful discrimination of structure is obtained. Further the sensitivity of the Minkowski functionals under experimental conditions is analysed. Accurate calculations of conductive and elastic properties directly from tomographic images are achieved by estimating and minimising several sources of numerical error. Simulations of electrical conductivity and linear elastic properties on microtomographic images of Fontainebleau sandstone are in excellent agreement with experimental measurements over a wide range of porosity. The results show the feasibility of combining digitised images with transport and elasticity calculations to accurately predict physical properties of individual material morphologies. We show that measurements of properties based on microtomographic images are more accurate than those based on conventional theories for disordered materials. We study the elastic behaviour of model clean and cemented sandstones. Results are in excellent agreement with available experimental data, and are compared to conventional theoretical and empirical laws. A new predictive empirical method is given for predicting the elastic moduli of sandstone morphologies. The method gives an excellent match to numerical and experimental data.
|
Page generated in 0.0567 seconds