81 |
Ειδικές επιφάνειες του χώρου Ε3 1 με ΔΙΙΙ r = Ar και διαρμονικές υπερεπιφάνειες Μ23 του χώρου Ε24Πετούμενος, Κωνσταντίνος 20 April 2011 (has links)
Στην παρούσα διδακτορική διατριβή μελετάμε τρία Προβλήματα που αναφέρονται στην Ψευδο-Ευκλείδεια Γεωμετρία. Στα δύο πρώτα Κεφάλαια, Κεφάλαιο 1 και Κεφάλαιο 2 αναφέρουμε γνωστά αποτελέσματα και περιγράφουμε βασικές έννοιες της Ρημάννιας και Ψευδό - Ρημάννιας Γεωμετρίας. Στο Κεφάλαιο 3 μελετάμε επιφάνειες εκ περιστροφής στον τρισδιάστατο Lorentz - Minkowski χώρο ικανοποιώντας δοσμένη γεωμετρική συνθήκη. Στο Κεφάλαιο 4 βρίσκουμε όλες τις κανονικές μορφές του τελεστή σχήματος των τρισδιάστατων υπερεπιφανειών τύπου (-, +, -) του τετρασδιάστατου Ψευδο - Ευκλείδειου χώρου τύπου (-, +, -, +). Τέλος, στο Κεφάλαιο 5 μελετάμε τη σχέση που υπάρχει μεταξύ των διαρμονικών και ελαχιστικών υπερεπιφανειών που αναφέρθηκαν στο Κεφάλαιο 4, χρησιμοποιώντας τον τελεστή σχήματός τους. Ειδικότερα, αποδεικνύουμε ότι κάθε τέτοια διαρμονική υπερεπιφάνεια είναι ελαχιστική. / In the present PH.D. thesis we study three problems referred in the pseudo-Euclidean geometry. In the first two chapters, Chapter 1 and Chapter 2, we review known results and describe the basic notions of the Riemannian and Pseudo-Riemannian geometry. In Chapter 3, we study surfaces of revolution of the three dimensional Lorentz-Minkowski space satisfying given geometric condition. In Chapter 4, we find all the canonical forms of the shape operator of the three dimensional hypersurfaces of signature (-, +, -) of the four dimensional pseudo-Euclidean space of signature (-, +, -, +). Finally, in Chapter 5, we study the relation which exists between the biharmonic and minimal hypersurfaces referred in Chapter 4, by using their shape operator. Precisely, we prove that every such biharmonic hypersurface is minimal.
|
82 |
Sur la dimension de Minkowski des quasicercles / On Minkowski dimension of quasicirclesLe, Thanh Hoang Nhat 05 October 2012 (has links)
Pour accéder au résumé en français à la fin de la thèse, ouvrir le fichier du texte intégral / Pour accéder au résumé en anglais à la fin de la thèse, ouvrir le fichier du texte intégral
|
83 |
Modèles de Mumford-Shah pour la détection de structures fines en image / Mumford-Shah model for detection of fine structures in image processingVicente, David 14 September 2015 (has links)
Cette thèse est une contribution au problème de détection de fines structures tubulaires dans une image2-D ou 3-D. Nous avons plus précisément en vue le cas des images angiographiques. Celles-ci étant bruitées, les vaisseaux ne se détachent pas nettement du reste de l’image, la question est donc de segmenter avec précision le réseau sanguin. Le cadre théorique de ce travail est le calcul des variations eten particulier l'énergie de Mumford-Shah. Cependant, ce modèle n'est adapté qu'à la détection de structures volumiques étendues dans toutes les directions de l’image. Le but de ce travail est donc deconstruire une énergie qui favorise les ensembles qui ne sont étendus que dans une seule direction, cequi est le cas de fins tubes. Pour cela, une nouvelle inconnue est introduite, une métrique Riemannienne,qui a pour but la détection de la structure géométrique de l’image. Une nouvelle formulation de l’énergie de Mumford-Shah est donnée avec cette nouvelle métrique. La preuve de l'existence d'une solution au problème de la minimisation de l’énergie est apportée. De plus, une approximation par gamma-convergence est démontrée, ce qui permet ensuite de proposer et de mettre en oeuvre une implémentation numérique. / This thesis is a contribution to the fine tubular structures detection problem in a 2-D or 3-D image. We arespecifically interested in the case of angiographic images. The vessels are surrounded by noise and thenthe question is to segment precisely the blood network. The theoretical framework of our work is thecalculus of variations and we focus on the Mumford-Shah energy. Initially, this model is adapted to thedetection of volumetric structures extended in all directions of the image. The aim of this study is to buildan energy that favors sets which are extended in one direction, which is the case of fine tubes. Then, weintroduce a new unknown, a Riemannian metric, which captures the geometric structure at each point ofthe image and we give a new formulation of the Mumford-Shah energy adapted to this metric. Thecomplete analysis of this model is done: we prove that the associated problem of minimization is wellposed and we introduce an approximation by gamma-convergence more suitable for numerics. Eventually,we propose numerical experimentations adapted to this approximation.
|
84 |
Geometry controlled phase behavior in nanowetting and jamming / Effet géométriques dans les transitions de mouillage et dans la physique des empilements désordonnésMickel, Walter 30 September 2011 (has links)
Cette thèse porte sur différents aspects géométriques et morphologiques concernant des problèmes de mouillage et d'empilement de sphères. Nous proposons tout d'abord une nouvelle méthode de simulation pour étudier le mouillage et le glissement d'un liquide sur une surface nanostructurée: un modèle de champ de phase en lien avec la théorie de la fonctionnelle de la densité dynamique. Nous étudions grâce à cette méthode la possibilité de transformer une surface quelconque en surface omniphobe (c'est à dire qui repousse tous les liquides). Nous montrons que contrairement à la théorie classique de Cassie-Baxter-Wenzel, il est possible d'inverser la mouillabilité d'une surface en la texturant, et nous montrons qu'une surface monovaluée, i.e. sans constrictions, peut produire un comportement omniphobe c'est à dire repousser tous les liquides grâce à un effet de pointe. La géométrie a également un effet considérable dans les milieux vitreux ou bloqués. Les empilements aléatoires de sphères conduisent par exemple à des état bloqués ("jamming") et nous montrons que la structure locale de ces systèmes est universelle, c'est à dire indépendante de la méthode de préparation. Pour cela, nous introduisons des paramètres d'ordre - les tenseurs de Minkowski - qui suppriment les problèmes de robustesse qu'ont les paramètres d'ordre utilisés classiquement. Ces nouveaux paramètres d'ordre conduisent à une vision unifiée, basée sur des principes géométriques. Enfin, nous montrons grâce aux tenseurs de Minkowski que les empilements de sphères se mettent à cristalliser au delà du point d'empilement aléatoire le plus dense ("random close packing") / This thesis is devoted to several aspects of geometry and morphology in wetting problems and hard sphere packings. First, we propose a new method to simulate wetting and slip on nanostructured substrates: a phase field model associated with a dynamical density theory approach. We showed omniphobicity, meaning repellency, no matter the chemical properties of the liquid on monovalued surfaces, i.e. surfaces without overhangs, which is in contradiction with the macroscopic Cassie-Baxter-Wenzel theory, can produce so-called We checked systematically the impact of the surface parameters on omniphobic repellency, and we show that the key ingredient are line tensions, which emerge from needle shaped surface structures. Geometrical effects have also an important influence on glassy or jammed systems, for example amorphous hard sphere systems in infinite pressure limit. Such hard sphere packings got stuck in a so-called jammed phase, and we shall demonstrate that the local structure in such systems is universal, i.e. independent of the protocol of the generation. For this, robust order parameters - so-called Minkowski tensors - are developed, which overcome robustness deficiencies of widely used order parameters. This leads to a unifying picture of local order parameters, based on geometrical principles. Furthermore, we find with the Minkowski tensor analysis crystallization in jammed sphere packs at the random closed packing point
|
85 |
Geometric distance graphs, lattices and polytopes / Graphes métriques géométriques, réseaux et polytopesMoustrou, Philippe 01 December 2017 (has links)
Un graphe métrique G(X;D) est un graphe dont l’ensemble des sommets est l’ensemble X des points d’un espace métrique (X; d), et dont les arêtes relient les paires fx; yg de sommets telles que d(x; y) 2 D. Dans cette thèse, nous considérons deux problèmes qui peuvent être interprétés comme des problèmes de graphes métriques dans Rn. Premièrement, nous nous intéressons au célèbre problème d’empilements de sphères, relié au graphe métrique G(Rn; ]0; 2r[) pour un rayon de sphère r donné. Récemment, Venkatesh a amélioré d’un facteur log log n la meilleure borne inférieure connue pour un empilement de sphères donné par un réseau, pour une suite infinie de dimensions n. Ici nous prouvons une version effective de ce résultat, dans le sens où l’on exhibe, pour la même suite de dimensions, des familles finies de réseaux qui contiennent un réseaux dont la densité atteint la borne de Venkatesh. Notre construction met en jeu des codes construits sur des corps cyclotomiques, relevés en réseaux grâce à un analogue de la Construction A. Nous prouvons aussi un résultat similaire pour des familles de réseaux symplectiques. Deuxièmement, nous considérons le graphe distance-unité G associé à une norme k_k. Le nombre m1 (Rn; k _ k) est défini comme le supremum des densités réalisées par les stables de G. Si la boule unité associée à k _ k pave Rn par translation, alors il est aisé de voir que m1 (Rn; k _ k) > 1 2n . C. Bachoc et S. Robins ont conjecturé qu’il y a égalité. On montre que cette conjecture est vraie pour n = 2 ainsi que pour des régions de Voronoï de plusieurs types de réseaux en dimension supérieure, ceci en se ramenant à la résolution de problèmes d’empilement dans des graphes discrets. / A distance graph G(X;D) is a graph whose set of vertices is the set of points X of a metric space (X; d), and whose edges connect the pairs fx; yg such that d(x; y) 2 D. In this thesis, we consider two problems that may be interpreted in terms of distance graphs in Rn. First, we study the famous sphere packing problem, in relation with thedistance graph G(Rn; (0; 2r)) for a given sphere radius r. Recently, Venkatesh improved the best known lower bound for lattice sphere packings by a factor log log n for infinitely many dimensions n. We prove an effective version of this result, in the sense that we exhibit, for the same set of dimensions, finite families of lattices containing a lattice reaching this bound. Our construction uses codes over cyclotomic fields, lifted to lattices via Construction A. We also prove a similar result for families of symplectic lattices. Second, we consider the unit distance graph G associated with a norm k _ k. The number m1 (Rn; k _ k) is defined as the supremum of the densities achieved by independent sets in G. If the unit ball corresponding with k _ k tiles Rn by translation, then it is easy to see that m1 (Rn; k _ k) > 1 2n . C. Bachoc and S. Robins conjectured that the equality always holds. We show that this conjecture is true for n = 2 and for several Voronoï cells of lattices in higher dimensions, by solving packing problems in discrete graphs.
|
86 |
Discrete Geometry in Normed SpacesSpirova, Margarita 02 December 2010 (has links)
This work refers to ball-intersections bodies as well as covering, packing, and kissing problems related to balls and spheres in normed spaces. A quick introduction to these topics and an overview of our results is given in Section 1.1 of Chapter 1. The needed background knowledge is collected in Section 1.2, also in Chapter 1. In Chapter 2 we define ball-intersection bodies and investigate special classes of them: ball-hulls, ball-intersections, equilateral ball-polyhedra, complete bodies and bodies of constant width. Thus, relations between the ball-hull and the ball-intersection of a set are given. We extend a minimal property of a special class of equilateral ball-polyhedra, known as Theorem of Chakerian, to all normed planes. In order to investigate bodies of constant width, we develop a concept of affine orthogonality, which is new even for the Euclidean subcase. In Chapter 2 we solve kissing, covering, and packing problems. For a given family of circles and lines we find at least one, but for some families even all circles kissing all the members of this family. For that reason we prove that a strictly convex, smooth normed plane is a topological Möbius plane. We give an exact geometric description of the maximal radius of all homothets of the unit disc that can be covered by 3 or 4 translates of it. Also we investigate configurations related to such coverings, namely a regular 4-covering and a Miquelian configuration of circles. We find the concealment number for a packing of translates of the unit ball.
|
87 |
Algunas contribuciones a la programación semi-infinita convexaFajardo Gómez, María Dolores 03 April 2007 (has links)
No description available.
|
88 |
Sommes de Minkowski de trianglesRousset, Mireille 22 October 1996 (has links) (PDF)
La modélisation géométrique d'un problème de gestion de la fabrication des mélanges (faisabilité simultanée de deux mélanges) fait apparaître des polytopes nouveaux résultant de la somme de triangles particuliers qui dans ce contexte sont appelés convexes de 2-mélanges. De façon plus générale, la somme de triangles peut être considérée comme la généralisation des zonotopes (somme de segments). De ce point de vue, l'étude menée ici fait apparaître que la propriété de zone associée à un segment du zonotope se généralise à trois demi-zones associées à chaque triangle; et que la complexité combinatoire (nombre de faces du polytope), par rapport au nombre de sommandes, est du même ordre de grandeur que celle des zonotopes. On traite également le problème de la construction de tels polytopes, des algorithmes optimaux en temps sont proposés. Concernant le problème particulier des mélanges, le premier cas non trivial est celui de mélanges à trois composantes qui nous place en dimension 6. L'appartenance d'un point au convexe de 2-mélanges détermine la faisabilité simultanée des mélanges. Les facettes de ce polytope sont décrites, en détail, dans le cas de la dimension 6, dans le but d'obtenir des conditions de faisabilité des deux mélanges. Le problème de la décomposition de polytopes en somme de Minkowski de polytopes plus simples est exposé, ainsi que les principaux résultats existant.
|
89 |
Caractérisation géométrique et morphométrique 3-D par analyse d'image 2-D de distributions dynamiques de particules convexes anisotropes. Application aux processus de cristallisation.Presles, Benoit 09 December 2011 (has links) (PDF)
La cristallisation en solution est un procédé largement utilisé dans l'industrie comme opération de séparation et de purification qui a pour but de produire des solides avec des propriétés spécifiques. Les propriétés concernant la taille et la forme ont un impact considérable sur la qualité finale des produits. Il est donc primordial de pouvoir déterminer la distribution granulométrique (DG) des cristaux en formation. En utilisant une caméra in situ, il est possible de visualiser en temps réel les projections 2D des particules 3D présentes dans la suspension. La projection d'un objet 3D sur un plan 2D entraîne nécessairement une perte d'informations : déterminer sa taille et sa forme à partir de ses projections 2D n'est donc pas aisé. C'est tout l'enjeu de ce travail: caractériser géométriquement et morphométriquement des objets 3D à partir de leurs projections 2D. Tout d'abord, une méthode basée sur le maximum de vraisemblance des fonctions de densité de probabilité de mesures géométriques projetées a été développée pour déterminer la taille d'objets 3D convexes. Ensuite, un descripteur de forme stéréologique basé sur les diagrammes de forme a été proposé. Il permet de caractériser la forme d'un objet 3D convexe indépendamment de sa taille et a notamment été utilisé pour déterminer les facteurs d'anisotropie des objets 3D convexes considérés. Enfin, une combinaison des deux études précédentes a permis d'estimer à la fois la taille et la forme des objets 3D convexes. Cette méthode a été validée grâce à des simulations, comparée à une méthode de la littérature et utilisée pour estimer des DGs d'oxalate d'ammonium qui ont été comparées à d'autres méthodes granulométriques.
|
90 |
Registration and Quantitative Image Analysis of SPM DataRehse, Sabine 18 June 2008 (has links) (PDF)
Nichtlineare Verzerrungen von Rasterkraftmikroskopie (engl.: scanning probe microscopy, Abk.: SPM) Bildern beeinträchtigen die Qualität von Nanotomographiebildern und SPM Bildsequenzen. In dieser Arbeit wird ein neues, nichtlineares Registrierungsverfahren vorgestellt, das auf einem für medizinische Anwendungen entwickelten Algorithmus aufbaut und diesen für die Behandlung von SPM Daten erweitert. Die nichtlineare Registrierung ermöglicht es, verschiedene nanostrukturierte Materialen über große Bereiche (1 µm x 1 µm) mit einer Auflösung von 10 nm abzubilden. Dies erlaubt eine wesentlich detailliertere quantitative Analyse der Daten. Hierfür wurde eine neue Datenreduktions- und Visualisierungsmethode für Mikrodomänennetzwerke von Blockcopolymeren eingeführt. Zwei- und dreidimensionale Mikrodomänenstrukturen werden zu ihrem Skelett reduziert, Verzweigungspunkte farblich codiert und der entstandene Graph visualisiert. Die Anzahl verschiedener Skelettverzweigungen lässt sich über die Zeit verfolgen. Die Methode wurde mit lokalen Minkowskimaßen der ursprünglichen Graustufenbilder verglichen. Sie liefert morphologische und geometrische Informationen auf unterschiedlichen Längenskalen.
|
Page generated in 0.0349 seconds