221 |
Functions of interactions and localization of Ankle2 during mitosisWang, Xinyue 12 1900 (has links)
Les cellules cancéreuses sont sujettes à des défauts de reformation de
l'enveloppe nucléaire (EN) après la mitose. BAF est l'une des premières protéines
recrutées sur les chromosomes pour initier la reformation de l’EN. Chez l'humain,
le recrutement de BAF nécessite sa déphosphorylation par la phosphatase PP2A
et Ankle2, une protéine du réticulum endoplasmique (RE) interagissant avec
PP2A. Cependant, les fonctions d’Ankle2 dans la reformation de l’EN ne sont pas
complètement comprises. Pour les étudier, notre laboratoire utilise la drosophile
comme organisme modèle. On ne sait pas si Ankle2 de drosophile fonctionne dans
le NER. Nous avons constaté qu’Ankle2 est nécessaire au recrutement de BAF
pour le réassemblage du noyau après la mitose chez la drosophile. Pour mieux
comprendre son fonctionnement, nous avons identifié des protéines avec
lesquelles BAF interagit : PP2A, Vap33 (une protéine du RE) et certaines Kinases
Dépendantes des Cyclines (CDK). Nous avons cartographié les régions d’Ankle2
impliquées dans ces interactions protéiques grâce à une analyse mutationnelle,
des co-purifications par affinité et des pulldowns GST. Nous avons ensuite généré
des mutants d’Ankle2 spécifiquement déficients pour des interactions et testé leur
capacité à sauver la prolifération et la reformation de l’EN dans des cellules où
Ankle2 endogène est déplété. Nos résultats indiquent que l'interaction entre
Ankle2 et PP2A est essentielle pour sa fonction dans la reformation de l’EN. Une
analyse biochimique suggère qu’Ankle2 fonctionne comme une sous-unité
régulatrice de PP2A. En utilisant une approche phosphoprotéomique, nous avons
confirmé que la déphosphorylation de BAF dépend d’Ankle2 et nous avons aussi
identifié de nouveaux substrats potentiels du complexe PP2A-Ankle2. Nous
concluons que le complexe PP2A-Ankle2 est nécessaire à la déphosphorylation
de BAF et à son recrutement pour le réassemblage du noyau. Les expériences en
cours permettront de déterminer les exigences d'autres interactions d’Ankle2 pour
ses fonctions dans la reformation de l’EN. La suite de ces travaux impliquera
l’étude de la régulation de nouveaux substrats de PP2A-Ankle2 impliqués dans ce
processus. Une reformation de l’EN défectueuse peut provoquer une
4
micronucléation, ce qui peut déclencher une réponse immunitaire innée. La
perturbation de la reformation de l’EN dans les cellules cancéreuses pourrait donc
être bénéfique dans le contexte de l’immunothérapie. / Cancer cells are prone to defects in Nuclear Envelope Reformation (NER) after
mitosis. BAF is one of the first proteins recruited on chromosomes to initiate NER.
In humans, BAF recruitment requires its dephosphorylation by PP2A and Ankle2,
a PP2A-interacting protein of the endoplasmic reticulum (ER). However, the
functions of Ankle2 in NER are incompletely understood. Our lab uses Drosophila
as a model system. Whether Drosophila Ankle2 functions in NER is unknown. We
found that Ankle2 is required for BAF recruitment to reassembling nuclei in
Drosophila. To better understand how it functions, we identified its interactors,
which include PP2A, Vap33 (an ER protein) and Cyclin-Dependent Kinases
(CDKs). We mapped the regions of Ankle2 involved in these protein-protein
interactions through a mutational analysis, affinity co-purifications and GST
pulldowns. We then generated mutant forms of Ankle2 defective in individual
interactions and tested their ability to rescue proliferation and NER in cells depleted
from endogenous Ankle2. Our results indicate that the interaction of Ankle2 with
PP2A is essential for its function in NER. A biochemical analysis suggests that
Ankle2 functions as a regulatory subunit of PP2A. Using a phosphoproteomic
approach, we confirmed that BAF dephosphorylation depends on Ankle2 and also
identified novel candidate substrates of the PP2A-Ankle2 complex. We conclude
that PP2A-Ankle2 complex is required for BAF dephosphorylation and recruitment
to reassembling nuclei. Ongoing experiments will determine the requirements of
other interactions of Ankle2 for its functions in NER. Future work will explore the
regulation of novel PP2A-Ankle2 substrates in this process. Defective NER can
cause micronucleation, which can elicit an innate immune response. Disrupting
NER in cancer cells could be beneficial in the context of immunotherapy.
|
222 |
Studies on the regulation of mitotic transition by cyclin B1/Cdk1Soni, Deena V. January 2005 (has links)
No description available.
|
223 |
Regulation of Contractile-Ring and Spindle-Pole-Body Assembly in Fission YeastLee, I-Ju January 2013 (has links)
No description available.
|
224 |
The Regulation of Sororin by PhosphorylationDreier, Megan Renee 26 June 2012 (has links)
No description available.
|
225 |
The p53-p21-Cyclin E Pathway in Centrosome Amplification and Chromosome InstabilityBENNETT, RICHARD A. January 2007 (has links)
No description available.
|
226 |
Loss of the RB tumor suppressor contributes to genomic instabilitySRINIVASAN, SEETHA V. 22 August 2008 (has links)
No description available.
|
227 |
Regulation of Mitotic Progression by Btf and TRAP150Cheedu, Divya January 2016 (has links)
No description available.
|
228 |
Systematic analysis of phosphatase genes in aspergillus nidulans and a role of FCP1 in cell cycle regulationSon, Sunghun 11 December 2007 (has links)
No description available.
|
229 |
Interaction of JLP with PLK1 recruits FoxK1 to form a ternary complex during mitosisRamkumar, Poornima January 2015 (has links)
JLP (JNK associated Leucine zipper protein) is a scaffolding protein that has been shown to interact with and activate the JNK/p38MAPK pathway. Its interaction with various signaling proteins is associated with coordinated regulation of cellular processes such as endocytosis, motility, neurite outgrowth, cell proliferation and apoptosis. Here, we undertook a mass spectrometric approach to identify novel interaction partners of JLP and identified the mitotic Ser/Thr kinase, Polo like Kinase 1 (PLK1) and the Fox transcription factor, Forkhead box protein K1 (FoxK1), as proteins that interact with and form a ternary complex with JLP during mitosis. Domain mapping studies showed that the N-terminal domain of JLP interacts with the polo-box domain (PBD) of PLK1 in a phosphorylation-dependent manner. Our results indicate that, JLP is phospho-primed on Thr351, which is recognized by the PBD of PLK1 and leads to phosphorylation of JLP at additional sites. Moreover, treatment of cells with the PLK1 inhibitor BI2536 affects this interaction, demonstrating the importance of PLK1 kinase activity in this process. Because JLP is a scaffolding protein that recruits proteins to mediate specific cell signaling events, the interaction of JLP with PLK1 likely results in the recruitment of other proteins to this complex. To test this hypothesis, we carried out SILAC labeling of proteins in mitotic cells in the presence or absence of BI2536. Through mass-spectrometry, we identified the FoxK1 transcription factor as a PLK1-dependent JLP-interacting protein. Furthermore, we show that JLP, PLK1 and FoxK1 form a ternary complex that is present only during mitosis. Knockdown of PLK1 and not JLP affected the interaction between JLP and FoxK1, indicating that the formation of the ternary complex is PLK1-dependent. FoxK1 is a known transcriptional repressor of the cyclin dependent kinase inhibitor, p21/WAF1. Knockdown of JLP in U2OS cells resulted in increased FoxK1 protein levels and a reduction of p21 expression. Moreover, immunofluorescence studies in asynchronous cells showed that FoxK1 is excluded from the nucleus during mitosis and that a fraction of FoxK1 localizes to the midbody region during cytokinesis. Analysis of FoxK1 protein in cells exiting S-phase suggests that FoxK1 is post-translationally modified during mitosis. In this study we characterized the ternary complex formed between JLP, PLK1 and FoxK1 during mitosis. Based on our observations, we propose that formation of the JLP/PLK1/FoxK1 ternary complex regulates the stability and/or transcriptional activity of FoxK1. / Molecular Biology and Genetics
|
230 |
Macromolecular Organization and Cell Function: A Multi-System AnalysisCrosby, Kevin C. 31 January 2009 (has links)
The interior of the cell is a densely crowded and complex arena, full of a vast and diverse array of molecules and macromolecules. A fundamental understanding of cellular physiology will depend not only upon a reductionist analysis of the chemistry, structure, and function of individual components and subsystems, but also on a sagacious exegesis of the dynamic and emergent properties that characterize the higher-level system of living cells. Here, we present work on two aspects of the supramolecular organization of the cell: the controlled assembly of the mitotic spindle during cell division and the regulation of cellular metabolism through the formation of multienzyme complexes.
During division, the cell undergoes a profound morphological and molecular reorganization that includes the creation of the mitotic spindle, a process that must be highly controlled in order to ensure that accurate segregation of hereditary material. Chapter 2 describes results that implicate the kinase, Zeste-white3/Shaggy (Zw3/Sgg), as having a role in regulating spindle morphology.
The congregation of metabolic enzymes into macromolecular complexes is a key feature of cellular physiology. Given the apparent pervasiveness of these assemblies, it seems likely that some of the mechanisms involved in their organization and regulation might be conserved across a range of biosynthetic pathways in diverse organisms. The Winkel laboratory makes use of the flavonoid biosynthetic pathway in Arabidopsis as an experimental model for studying the architecture, dynamics, and functional roles of metabolic complexes. Over the past several years, we have accumulated substantive and compelling evidence indicating that a number of these enzymes directly interact, perhaps as part of a dynamic globular complex involving multiple points of contact between proteins. Chapter 3 describes the functional analysis of a predicted flavonol synthase gene family in Arabidopsis. The first evidence for the interaction of flavonoid enzymes in living cells, using fluorescent lifetime imaging microscopy fluorescent resonance energy transfer analysis (FLIM-FRET), is presented in Chapter 4. / Ph. D.
|
Page generated in 0.0413 seconds