261 |
Ultrastructural characterization of mammalian k-fibers by large-scale electron tomographyKiewisz, Robert 21 September 2021 (has links)
Eukaryotic cells have to divide constantly in order to promote the growth of certain organs, to replace dying or damaged cells, or to set up an entire organism. These essential processes are called mitosis in the case of somatic cell division. Mitotic cell division is the process during which chromosomes, centrosomes, and microtubules (MTs) are involved to set up a bipolar structure called the “mitotic spindle”. This bipolar spindle is formed by MTs, which are presumably mainly organized from the centrosomes. However, more data are being published that suggest MTs nucleation can occur from other MTs or even a chromosome surface. These biopolymers are built from α/β-tubulin heterodimers and can dynamically grow and shrink to exert forces necessary for chromosome segregation. Previous studies of spindles during mitosis have allowed the identification of different MT classes based on their plus-ends interaction with different cellular target sites. One of the MT classes is the kinetochore microtubules (KMTs), which physically connect chromosomes and centrosomes (i.e. spindle pole) via a specialized protein structure termed the “kinetochore”. This kinetochore-to-spindle pole connection has been studied in many organisms. In budding yeast, this connection is established by only a single KMT. In contrast, multiple KMTs bind to each mammalian kinetochore and form an MT bundle also called “k-fiber”. The ultrastructural architecture of the mammalian k-fiber connection is not well documented. Currently, different models concerning the nature of the kinetochore-to-spindle pole connection via k-fibers are discussed in the literature, i.e. a direct, semi-direct or indirect connection. The widely accepted ‘direct’ model proposes that all k-fibers of the mammalian spindle are formed through tight bundles of up to 20 KMTs, with all MT minus ends associated with the centrosome. However, it is necessary to understand the k-fibers structure in order to interpret its role during chromosome segregation. Here the architecture of the k-fiber was studied in human HeLa, U2OS and RPE-1 cell lines, as these different types of cells have been widely used in studies of mitosis. This thesis aimed to systematically investigate the characteristics of mammalian k-fibers and their attachment to the kinetochore within mammalian metaphase spindles. For that, the ultrastructure of mitotic spindles and k-fibers were analyzed using serial-section electron tomography primarily in HeLa cells. Furthermore, the spindle ultrastructure was compared by electron tomography to metaphase spindles in both U2OS and RPE-1 cells. Electron tomographic analysis of the mitotic spindle in HeLa cells revealed that the kinetochore-to-spindle pole connection is formed by k-fibers consisting of ~9 KMTs. Moreover, the data revealed that not all KMTs in k-fibers are directly associated with one of the spindle poles. Instead, KMT ends were located along the length of k-fibers indicating strongly for a semi-direct connection between the kinetochores and the spindle poles. Unexpectedly, by correlating the k-fiber ultrastructure with its position in the mitotic spindle, it can be demonstrated that the k-fiber structure varied depending on the position on the metaphase plate. It can also be shown that k-fibers located in the center of the metaphase plate had a tendency to form straighter and more bundled k-fibers. In contrast, k-fibers associated with the periphery of the metaphase plate had a more loose and disorganized structure resembling a fusiform shape. Furthermore, additional analysis of U2OS and RPE-1 cells indicated ultrastructural differences between the different cell lines. Mainly, differences between HeLa and RPE-1 cells were observed. K-fibers observed in RPE-1 cells showed a lower curvature and overall a more bundled ultrastructure compared to HeLa or U2OS cells. However, due to the small sample size for U2OS and RPE-1 cells, the results have to be confirmed in future experiments to conclude that there are indeed functional and structural differences in the k-fiber organization in different mammalian cell lines. Taken together, this work presents the first detailed quantitative ultrastructural analysis of KMTs in whole spindles in three different human cell lines. The data revealed that the currently favored direct model of k-fiber ultrastructure is oversimplified and needs to be corrected in terms of the k-fibers interaction with the spindle pole and the surrounding MT network within the mitotic spindle. The data here will serve as a structural basis for further analyses of mutant situations and contribute to our understanding of the overall organization and function of MTs in mitotic spindles.:Summary 6
Zusammenfassung 8
List of figures 10
List of tables 13
List of abbreviations and symbols 14
1 Introduction 19
1.1 The morphology of the mitotic spindle 21
1.1.1 Centrosomes 22
1.1.2 Microtubules 23
1.2 Kinetochores, KMTs and k-fibers 28
1.2.1 A brief history of k-fiber formation in mammalian cells 30
1.2.2 Models of the k-fiber ultrastructure in mammalian cells 32
2 Aims of this thesis 35
3 Materials and methods 36
3.1 Materials 37
3.1.1 Mammalian cell lines 37
3.1.2 Chemicals 38
3.1.3 Instrumentation and materials 40
3.1.4 Solutions and buffers 44
3.1.5 Software 46
3.2 Methods 47
3.2.1 Handling of cell cultures 47
3.2.2 Custom-designed incubation chambers 49
3.2.3 Specimen preparation for electron microscopy 51
3.2.4 Quality assessment of samples, acquisition of the tomographic data, and the 3D reconstruction 59
3.2.5 Ultrastructural analysis of MTs in mitotic spindles 62
3.2.6 Ultrastructural analysis of the k-fiber organization 70
4 Results 76
4.1 Initial characterization of mammalian mitotic spindles 77
4.2 Ultrastructure of KMTs 84
4.3 Curvature and tortuosity of KMTs 91
4.4 Ultrastructure of k-fibers 98
4.5 Effect of metaphase position on the k-fiber ultrastructure 102
5 Discussion 110
5.1. Comparison of data sets from different cell lines 111
5.2. Establishing a data analysis pipeline for the analysis of KMTs 113
5.3 Ultrastructural characterization of KMTs and k-fibers in HeLa cells 114
5.3.1 K-fibers have an unexpectedly low number of KMTs 115
5.3.2 Semi-direct kinetochores-to-spindle pole connection 117
5.3.3 Shape of k-fibers 121
5.4 Positional effect on the k-fiber shape 124
5.5 Comparison of k-fiber ultrastructure in different mammalian cells 127
5.6 Outlook 130
References 133
Appendix 1 149
Appendix 2 150
Appendix 3 151
Appendix 4 152
Acknowledgments 153
|
262 |
Caractérisation de ARHGAP19, une nouvelle GAP de Rho impliquée dans la mitose des Lymphocytes T / Characterization of ARHGAP19, a Novel Rho GAP Involved in T-Cell MitosisPetit, Dominique 02 February 2016 (has links)
Dans le but de déterminer le rôle des Rho GTPases et de leurs régulateurs dans les cellules hématopoïétiques, une analyse des niveaux d’expressions de 300 gènes codant pour des protéines impliquées dans les voies de signalisation dépendantes de Rho a été faite à partir d’échantillons de patients atteints de leucémies de type T-ALL. Il a ainsi pu être mis en évidence qu’un groupe de gènes incluant notamment RacGAP1, Ect2, Citron et ARHGAP19 variaient parallèlement. A l’exception de ARHGAP19, ces gènes avaient une fonction connue au cours de la mitose. Il a donc été entrepris de caractériser ARHGAP19 qui, d’après les banques de données, est spécifique du système hématopoïétique, et pour laquelle aucune fonction n’avait encore été déterminée.Afin de déterminer la fonction biologique de GAP19, un anticorps a été généré. Cet outil nous a permis de montrer que l’expression de la protéine est régulée au cours du cycle cellulaire et que sa localisation varie au cours de la mitose. Par ailleurs, nous avons montré que GAP19, joue un rôle essentiel dans le changement de forme des lymphocytes en mitose, la ségrégation des chromatides sœurs et le recrutement membranaire des effecteurs de RhoA au cours de la mitose. Nous avons aussi mis en évidence le mécanisme par lequel GAP19 permet le changement de forme dans les lymphocytes.Nous avons aussi montré que GAP19 est phosphorylée par CDK1 sur deux résidus présents dans la partie C-Terminale. Afin de mettre en évidence le rôle de ces phosphorylations, nous avons généré des cellules Kit225 transfectées avec des plasmides pour les formes non-phosphorylables de la protéine. Ceci nous a permis de mettre en évidence que la phosphorylation des résidus T404 et T476 permet la localisation cytoplasmique de GAP19 en début de mitose. Nous avons aussi pu observer lors de l’anaphase la formation de ponts de chromatines, ainsi qu’une augmentation significative de cellules multinucléées. Par ailleurs, nous avons procédé à des expériences de cytogénétique et d’immunofluorescence afin de déterminer, si les ponts de chromatines avaient pour origine soit des défauts de condensation de la chromatine, soit un stress réplicatif.Enfin, un possible modèle de la protéine ARHGAP19 a été généré et des simulations de dynamiques moléculaires réalisées afin de comprendre le rôle des phosphorylations par CDK1 a un niveau structurel. / In an attempt to understand the role of Rho GTPases and their regulators in hematopoietic cell lines, expression levels of 300 genes were analyzed for proteins involved in Rho dependent signaling pathways from patients with T-ALL leukemia.It was shown that a group of genes consisting of RacGAP1, Ect2 and Citron varied concomitantly. With the exception of ARHGAP19, all already had a known function during mitosis. Consequently, it was decided to characterize ARHGAP19, which according to databases is specific of hematopoietic cell lines, and whose function was unknown. In order to determine the biological function of ARHGAP19, a specific antibody has been generated. This allowed us to demonstrate that the level of expression of the protein vary during the cell cycle and its localization varies during mitosis. In addition, we have shown that ARHGAP19 plays a central role in regulating cell shapes changes, sister chromatids segregation and RhoA effectors membrane recruitment during mitosis. We have also shown that this occurs by a previously undescribed pathway involving RhoA-ROCK-Vimentin.Finally, we have demonstrated that ARHGAP19 is a substrate of CDK1. It is phosphorylated on two residues located in the C-Terminal region of the protein. For investigating the role of these phosphorylations, we have generated Kit225 cell lines transfected with plasmids coding for the non-phosphorylable forms of the protein. This allowed us to show that phosphorylation of residue T404 and T476 are involved preventing GAP19 recruitment at the equatorial cell cortex during mitosis.In addition, we have observed the formation of chromatin bridges, as well as an increase in multinucleated cells. Thus, we have performed cytogenetic experiments for determining if chromatin bridges are due to chromosome condensation defects, or replicative stress. Finally, a possible tertiary structure of ARHGAP19 has been created de novo, and molecular dynamics simulations were generated in order to understand the role of these phosphorylations by CDK1 at a structural level.
|
263 |
Régulation d'une nouvelle GAP de Rho, ARHGAP19, dans la division des lymphocytes T humains et rôle dans l'hématopoièse murine / Regulation of a novel GAP of RhoA, ARHGAP19, in the division of human T-cell and role in murine hematopoiesisMarceaux, Claire 27 March 2018 (has links)
L’équipe a identifié une nouvelle GAP de RhoA, ARHGAP19, majoritairement exprimée dans le système hématopoïétique. Le projet a consisté à étudier la régulation de cette protéine dans des lymphocytes T humains. Pour cela, les analyses se sont portées sur la phosphorylation d’ARHGAP19 et sur sa localisation au cours de la division des lymphocytes T. ARHGAP19 est phosphorylée par l’effecteur de RhoA, la protéine kinase ROCK, sur la Sérine 422 et par la protéine kinase mitotique CDK1 sur les Thréonines 404 et 476. La phosphorylation par ROCK permet à ARHGAP19 d’interagir avec la famille de protéines 14-3-3 qui la protège des déphosphorylations pouvant avoir lieu au cours de la division cellulaire. L'ensemble des phosphorylations est primordial pour la régulation de la localisation cellulaire d'ARHGAP19 et contribue à une division cellulaire correcte. En effet, en absence de phosphorylation, on observe des défauts lors de la cytodiérèse entrainant la formation de cellules multinucléées. De plus, des dérégulations de RhoGTPases comme l’absence de GAP, sont aujourd’hui mises en évidence dans les cancers. C’est pourquoi nous avons généré des souris arhgap19 KO pour étudier les conséquences de l’absence du gène codant pour ARHGAP19, dans le système hématopoïétique murin. L’ensemble des cellules progénitrices et matures intervenant dans l’hématopoïèse murine a été analysé. Par ce modèle d’invalidation conditionnelle d’arhgap19, aucun rôle majeur de la protéine n'a été mis en évidence mais les résultats suggèrent une implication aux différents stades de la différenciation hématopoïétique et un impact sur l'ensemble des populations de ce système. / The team identified a new GAP of RhoA, ARHGAP19, mostly expressed in the hematopoietic system. The project consisted in studying the regulation of this protein in human T lymphocytes. For this, the analyzes focused on the phosphorylation of ARHGAP19 and on its localization during the division of the T lymphocytes. ARHGAP19 is phosphorylated by the effector of RhoA, the protein kinase ROCK, on the Serine 422 and by the protein CDK1 mitotic kinase on Threonines 404 and 476. ROCK phosphorylation allows ARHGAP19 to interact with the 14-3-3 family of proteins that protects it from dephosphorylation that occur during cell division. All phosphorylations are essential for regulating the cellular localization of ARHGAP19 and contribute to correct cell division. Indeed, in the absence of phosphorylation, defects are observed during cytodiérèse resulting in the formation of multinucleate cells. In addition, deregulation of RhoGTPases, such as the absence of GAP, are now highlighted in cancers. This is why we generated arhgap19 KO mice to study the consequences of the absence of the gene coding for ARHGAP19, in the murine hematopoietic system. All progenitor and mature cells involved in murine hematopoiesis were analyzed. By this model of conditional invalidation of arhgap19, no major role of the protein has been demonstrated but the results suggest an involvement at different stages of hematopoietic differentiation and an impact on all populations of this system.
|
264 |
Les rôles de Trim15 et UCHL3 dans la régulation, médiée par l’ubiquitine, du cycle cellulaire / The roles of Trim15 and UCHL3 in the ubiquitin-mediated cell cycle regulationJerabkova, Katerina 09 October 2019 (has links)
La mitose est précisément contrôlée par la signalisation via l'ubiquitine et est essentielle au maintien de l'intégrité du génome. Dans ce travail, j'ai étudié la fonction de l'enzyme de dé-ubiquitination, UCHL3 et de la ligase E3-ubiquitine, TRIM15. J'ai observé que TRIM15 régule l'adhésion et la mobilité des cellules. UCHL3 a été identifié par un criblage à haut contenu, en tant que facteur critique contrôlant l'alignement et la ségrégation des chromosomes. Fait intéressant, il a déjà été rapporté que les niveaux d’expression d’UCHL3 sont altérés dans divers types de cancer. En utilisant une approche protéomique, nous avons identifié la kinase Aurora B comme un médiateur potentiel de ces phénotypes. Comme l'aneuploïdie est la marque de nombreux cancers et que l'adhésion cellulaire joue un rôle important dans l'invasion des tumeurs et les métastases, mes résultats suggèrent que ces deux protéines pourraient jouer un rôle dans la carcinogenèse. / Mitosis is tightly controlled by ubiquitin signaling and is crucial to maintain genome integrity. In this work, I investigated the function of the deubiquitinating enzyme UCHL3 and the E3 ubiquitin ligase TRIM15. I observed that TRIM15 regulates cell adhesion and motility. UCHL3 was identified in a high-content screen, as a critical factor controlling the chromosome alignment and segregation. Interestingly, it has been previously reported that UCHL3 levels are altered in various cancer types. Using a proteomic approach, we identified Aurora B kinase as a potential mediator of these phenotypes. Since aneuploidy is a hallmark of many cancers, and cell adhesion plays an important role in tumor invasion and metastasis, my results suggest that both proteins could play a role in carcinogenesis.
|
265 |
Zásobní buňky a jejich role ve fyziologii želvušek. / Storage cells and their role in tardigrade physiology.Czerneková, Michaela January 2020 (has links)
STORAGE CELLS AND THEIR ROLE IN TARDIGRADE PHYSIOLOGY Abstract Tardigrades possess remarkable tolerance to numerous stress conditions (e.g. almost complete desiccation, exposure to very low sub-zero temperature, heat stress and even exposure to space in low Earth orbit). Indeed, they are among the most radiation-resistant multi-cellular organisms. The body cavity of tardigrades is filled with the storage cells (SC). Their role in anhydrobiosis has been discussed. The main objectives of this work were to analyse (i) the occurrence of mitosis in SC, (ii) the factors constraining anhydrobiotic survival, and (iii) the general ultrastructure of SC and their ultrastructure concerning the stress conditions. Our model species, R. cf. coronifer is one of the most extensively studied tardigrades concerning anhydrobiosis. Comprehensive histochemical techniques were used in combination with SEM, TEM, and confocal microscopy. First, mitotic divisions of tardigrade SC occur with a higher frequency in juveniles than in adults and correlate with animal growth. Mitosis is more frequent in moulting tardigrades, but the overall mitotic index is low. Furthermore, tardigrades of R. cf. coronifer can survive the maximum of 6 repeated desiccation cycles with significantly declining survival rate with repeated desiccations and...
|
266 |
Functional Characterization of Microtubule Associated Proteins in ES Cell Division and Neuronal DifferentiationDemir, Özlem 02 February 2015 (has links)
Microtubules are tubular polymers that are involved in a variety of cellular processes such as cell movement, mitosis and intracellular transport. The dynamic behavior of microtubules makes this possible because all of these processes require quick responses. Embryonic stem (ES) cells were first isolated from mouse embryos and they have two unique characteristics; they can be kept undifferentiated for many passages with a stable karyotype and they can be differentiated into any type of cells under appropriate conditions. The pluripotency of ES cells, their ease of manipulation in culture, and their ability to contribute to the mouse germ-line provides us a model of differentiation both in vitro and in vivo. In my thesis I focused on the cell division and neuronal differentiation of ES cells and developed two methods to understand the effects of microtubule dynamics in spindle assembly and chromosome segregation and to reveal the roles of different Microtubule Associated Proteins (MAPs) in the neuronal morphology formation.
In the first part, we developed a live-cell imaging method for ES cells to visualize, track and analyze the single cell behavior in a cell population over a time period. So far many techniques have been adapted and combined for imaging of cell lines, mainly for the cancer or immortalized ones. However, because ES cells are very prone to apoptosis, tend to form spheres and hard to stably label, it is quite tricky to image them in culture conditions. In our system, we combined the BAC-based gene expression with wide-field deconvolution microscopy for ES cells that are plated onto the laminin-511 coated surface and kept in CO2 independent culture conditions. This combined technique does not interfere with the growth of cells and keeps them healthy up to 24 hours on the microscope stage.
In the second part, we analyzed the effects of MAPs chTOG, EB1, Kif18A and MCAK in the overall spindle morphology and mitotic progression in mES cells. For this purpose, we utilized our stable TUBB-GFP and H2A-GFP cell lines along with our live-cell imaging set-up to reveal the effects of the above-mentioned proteins and the interplay among each other. By using RNAi method we either single or co-depleted the genes by siRNAs and measured the spindle length and width in RNAi conditions. We further analyzed the mitotic progression in H2A-GFP cell line in terms of the metaphase timing and the percentage of chromosome segregation errors. Our results showed that, EB1 depletion did not cause any significant changes in the overall spindle morphology or in the metaphase timing. However, the co-depletion of EB1 with chTOG partially rescued the sichTOG specific mini-spindle phenotype. siKif18A produced longer spindles without any change in the spindle width. Surprisingly, the co-depletion of antagonistic chTOG and Kif18A proteins had additive effects on the spindle dynamics and on mitotic progression in a way that spindle assembly was severely disrupted by the absence of these two proteins and as a result of this, both metaphase timing and chromosome missegregation levels increased significantly. These results overall indicate that MAPs have important roles in the regulation of dynamic instability and these proteins have an interplay among each other to be able to control the morphology of the spindle as well as the correct segregation of chromosomes into daughter cells.
In the last part, I will introduce you a new ES cell based differentiation and morphology model, which brings the advantages of high resolution imaging capacity, control over development and easy genetic manipulation and culturing. We have generated Tet-induced shRNA cell lines against chTOG, Kif18A and MCAK, which are also stably expressing TUBB-GFP. These labeled cells were mixed with unlabeled wild-type mES cells before differentiation at 1:1000 ratio and then they were differentiated into mouse cortical cells and spinal motor neurons. Our results showed that, all of the three genes could be successfully knocked-down by shRNA after 48 hours of Tet induction. After mixing the labeled and unlabeled cells, single neurons could be imaged at high resolution and their skeletons could be generated afterwards. The RNAi studies in shchTOG cell line showed that, the knock-down of this gene in early differentiation interferes with the neuronal differentiation.
|
267 |
Role of ALADIN for Oxidative Stress Response and Microsomal Steroidogenesis in Human Adrenocortical CellsJühlen, Ramona 12 November 2015 (has links)
Autosomal recessive triple A syndrome is caused by mutations in the AAAS gene encoding the protein ALADIN. The disorder manifests with the triad of adrenocorticotropin-resistant adrenal insufficiency, achalasia of the stomach cardia and impaired tear production (alacrima) in combination with progressive neurological impairment of the central, peripheral and autonomic nervous systems. ALADIN is part of the nuclear pore complex acting as a scaffold nucleoporin. In this work the role of ALADIN in the human adrenocortical tumour cell line NCI-H295R1 was investigated. These cells were engineered to either over-express or down-regulate AAAS by inducible stable transfection. Alterations in steroidogenic gene expression and functional consequences were determined. In addition, the role of ALADIN on cell viability and oxidative stress response was analysed. Using both the human adrenal NCI-H295R1-TR AAAS knock-down and over-expression models the potential impairment of the nuclear import of aprataxin, DNA ligase 1 and ferritin heavy chain 1 was investigated. For this YFP-specific vectors transiently transfected into the cell lines were employed.
The findings indicate that AAAS knock-down induces a down-regulation of genes coding for type II microsomal cytochrome P450 hydroxylases CYP17A1 and CYP21A2 and their electron donor enzyme cytochrome P450 oxidoreductase, thereby decreasing biosynthesis of precursor metabolites required for glucocorticoid and androgen production. Furthermore I demonstrate that ALADIN deficiency leads to increased susceptibility to oxidative stress and alteration in redox homeostasis after paraquat treatment. Finally, I show significantly impaired nuclear import of DNA ligase 1, aprataxin and ferritin heavy chain 1 in ALADIN knock-down cells. I conclude that down-regulating ALADIN results in decreased oxidative stress response leading to alteration in steroidogenesis, highlighting the knock-down cell model as an important in vitro tool for studying the adrenal phenotype in triple A syndrome.
In an approach to identify new interaction partners of ALADIN, co-immunoprecipitation followed by proteome analyses using mass spectrometry was conducted in a GFP-ALADIN over-expression model using the human adrenocortical tumor cell line NCI-H295R. These results were verified in co-immunoprecipitation assays of endogenous ALADIN using NCI-H295R wild-type cells. The results suggest a possible interaction between ALADIN and microsomal flavoprotein cytochrome P450 oxidoreductase and progesterone receptor membrane compartment 2. Co-localisation analyses of these findings were done using immunofluorescence. The data are suggestive for an involvement of ALADIN in the export of nuclear-encoded mitochondrial proteins.
Regulation of adrenocortical steroidogenesis is complex and there is increasing evidence that oxidative stress due to ROS accumulation and mitochondria are significantly involved. Furthermore, there may be an important cross-talk between functional organelles comprising nucleus, ER and mitochondria which presumably involves lipid metabolism. The goal of this work was to elucidate the function of ALADIN for the cellular oxidative stress response and its possible consequences for adrenocortical steroidogenesis in triple A syndrome patients. / Mutationen im AAAS Gen verursachen die autosomal rezessive Krankheit Triple-A-Syndrom. AAAS kodiert das Nukleoporin ALADIN, welches Bestandteil des nukleären Porenkomplexes ist. Phänotypische Charakteristika des Triple-A-Syndroms sind Nebennierenrinden-Insuffizienz, Achalasie des unteren Speiseröhrenschließmuskels und eine fehlende Tränenproduktion (Alakrimie). Diese Symptome sind kombiniert mit progredienten neurologischen Störungen des zentralen, peripheren und autonomen Nervensystems. In dieser Arbeit wurde die Rolle von ALADIN in der humanen Karzinom-Zelllinie NCI-H295R1 untersucht. Diese Nebennierenrinden-Zellen wurden stabil transfiziert und mit einem induzierbaren Expressionssystem modifiziert, so dass sie AAAS entweder überexprimierten oder herunterregulierten. In NCI-H295R1-Zellen wurden Veränderungen der Genexpression von Enzymen der Steroidogenese und funktionelle Konsequenzen der Überexpression oder Herunterregulation von ALADIN gemessen. Des Weiteren wurde die Rolle von ALADIN auf die Zellviabilität und die Redox-Homöostase analysiert. ALADIN überexprimierende und herunterregulierte Zellen wurden verwendet, um die potentielle Behinderung des nukleären Imports von Proteinen zu untersuchen, welche den Zellkern gegen oxidativen Stress schützen (z.B. Aprataxin, DNA-Ligase 1 und Ferritin Heavy Chain 1). Dazu wurden YFP-spezifische Vektoren transient in diese Zellen gebracht.
Mit den Ergebnissen dieser Arbeit wurde gezeigt, dass die Herunterregulation von AAAS eine Verminderung der Genexpression von CYP17A1 und CYP21A2 und deren Elektronendonor Cytochrom P450 Oxidoreduktase bewirken. Die Biosynthese der Vorläufermetabolite von Kortisol und Aldosteron ist in diesen Zellen ebenfalls vermindert. Des Weiteren zeigen die ALADIN-defizienten NCIH295R1-Zellen eine erhöhte Sensitivität gegenüber oxidativem Stress und eine veränderte Redox-Homöostase nach der Behandlung mit Paraquat. Darüber hinaus konnte in dieser Studie auch gezeigt werden, dass herunterregulierte ALADIN NCI-H295R1-Zellen einen verminderten Zellkernimport von Aprataxin, DNA-Ligase 1 und Ferritin heavy chain 1 besitzen. Aus diesen Ergebnissen kann geschlussfolgert werden, dass ALADIN-defiziente Nebennierenzellen eine verminderte Stressantwort auf oxidativen Stress besitzen; dies führt schlussendlich zu einer veränderten Steroidogenese. Das beschriebene ALADIN knock-down Modell in NCI-H295R1-Zellen ist ein wichtiges in vitro Werkzeug, um die Pathogenese der Nebennierenveränderungen im Triple-A-Syndrom zu erforschen.
Neue Interaktionspartner von ALADIN wurden mit Hilfe von Co-Immunpräzipitation gefolgt von Proteom-Analysen durch Massenspektrometrie in einem GFP-ALADIN Überexpressionsmodell in NCI-H295R charakterisiert. Die Ergebnisse wurden durch Experimente auf endogenem Niveau in NCI-H295R-Wildtypzellen verifiziert. Mit diesen Daten wird in dieser Arbeit erstmals eine Interaktion zwischen ALADIN und dem Flavoprotein Cytochrom P450 Oxidoreduktase und Progesterone Receptor Membrane Compartment 2 nachgewiesen. Diese Ergebnisse wurden mit Co-Lokalisierungsanalysen durch Immunfluoreszenzfärbung von ALADIN und Cytochrome P450 Oxidoreduktase ergänzt. Außerdem gibt die Arbeit Hinweise darauf, dass ALADIN als Nukleoporin an dem nuklearen Export mitochondrialer Vorläuferproteine beteiligt ist.
Die Regulation der Steroidogenese in der Nebennierenrinde ist komplex und es existieren zahlreiche Hinweise darauf, dass oxidativer Stress aufgrund der Ansammlung reaktiver Sauerstoffradikale und. dass die Mitochondrien involviert sind. Außerdem ist ein funktionelles Zusammenspiel verschiedener Organellen, darunter Nukleus, ER und Mitochondrien, von großer Bedeutung. Das Ziel dieser Arbeit war die Identifizierung der Funktion von ALADIN in der zellulären oxidativen Stressantwort und die möglichen Konsequenzen für die Steroidogenese in der Nebennierenrinden in Triple-A-Syndrom-Patienten.
|
268 |
In Vivo Characterization of Interactions Among Dynein Complex Components at Microtubule Plus EndsPlevock, Karen M 01 January 2010 (has links) (PDF)
Dynein is a minus end directed molecular motor required for numerous cellular processes during intracellular transport and mitosis. Pac1/LIS1 and Bik1/CLIP-170 are two proteins required for targeting dynein to cytoplasmic microtubule plus ends in budding yeast. The lab previously proposed a model whereby Pac1/LIS1 binds to the motor domain of dynein heavy chain, Dyn1/HC, forming a complex that interacts with the +TIP protein Bik1/CLIP170 at plus ends. This project focused on using Bimolecular Fluorescence Complementation (BiFC) to visualize protein-protein interactions among dynein pathway components in vivo. Budding yeast, Saccharomyces cerevisiae is an ideal system to manipulate dynein as it is a non-essential protein in this system.
The BiFC assay fuses two non-fluorescent halves of Venus, a YFP-derivative, to proteins of interest. If an interaction between the proteins occur, the two halves are brought to close proximity and the fluorophore is reconstituted.
Cells co-expressing Dyn1-VN with Pac1-VC or Bik1-VC exhibited fluorescent foci associated with microtubule plus ends, the cell cortex and spindle pole bodies (SPBs). Additionally, cells co-expressing Pac1-VC with Bik1-VN exhibited fluorescent foci associated with microtubule plus ends.
Cells coexpressing Tub1-VC and Bik1-VN or Dyn1-VN have BiFC signal indicating that both interact with the microtubule directly. Pac-1 coexpressed with Tub1 had no signal above background. These data support that these three components associate at microtubule plus ends. Dyn1 and Pac1 interact with Bik1 at microtubule plus ends. Bik1 serves as a docking platform for the two, but dynein is still able to interact with microtubules, while Pac1 is not.
|
269 |
Characterization of γ-tubulin complex proteins and investigation of the regulation of nuclear proteasome localization in Aspergillus nidulansXiong, Yi 27 July 2011 (has links)
No description available.
|
270 |
Nup2 and a Newly Discovered Nuclear Pore Complex Protein, NupA, Function at Mitotic Chromatin Controlled by the NIMA KinaseMarkossian, Sarine W. 27 July 2011 (has links)
No description available.
|
Page generated in 0.0557 seconds