• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 195
  • 46
  • 12
  • 8
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 1
  • Tagged with
  • 355
  • 136
  • 99
  • 80
  • 73
  • 43
  • 38
  • 36
  • 35
  • 34
  • 32
  • 31
  • 30
  • 28
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

Régulation et fonctions de la phosphatase PP2A-Twins pendant la mitose chez Drosophila melanogaster

Larouche, Myreille 06 1900 (has links)
L'entrée en mitose est initiée par le complexe cycline B – Cdk1. La phosphorylation de ses substrats déclenche des transformations incluant la condensation des chromosomes, le bris de l'enveloppe nucléaire et la formation d'un fuseau mitotique. Ces transformations permettent à la cellule de se diviser. La protéine phosphatase 2A (PP2A) en complexe avec sa sous-unité B55/Twins (Tws) reconnaît et déphosphoryle les substrats de cycline B – Cdk1. Pour éviter la déphosphorylation précoce des phosphoprotéines mitotiques, PP2A-B55/Tws est inhibée en entrée de mitose. Cette inhibition de la phosphatase est attribuable au module Greatwall (Gwl) – endosulfines. Activée en entrée de mitose, la kinase Gwl phosphoryle les endosulfines, qui inhibent alors de manière spécifique PP2A-B55/Tws. Gwl est exportée du noyau vers le cytoplasme en prophase, avant le bris de l’enveloppe nucléaire. Les mécanismes de régulation spatiotemporelle du module Gwl – endosulfines – PP2AB55/Tws ne sont pas entièrement élucidés. De plus, les substrats ciblés par PP2AB55/Tws en sortie mitose ne sont pas tous identifiés à ce jour. Dans mon travail de thèse, j’ai trouvé que Tws peut transiter par le noyau via un signal de localisation nucléaire (NLS), mais que ses fonctions essentielles sont au cytoplasme. De plus, j’ai trouvé que l’unique endosulfine présente chez Drosophila melanogaster, Endos, a une localisation cytoplasmique. Cette localisation est requise pour qu’Endos soit efficacement phosphorylée par la forme active et cytoplasmique de Gwl. Endos phosphorylée lie ensuite PP2A-Tws pour l’inhiber. Empêcher la localisation cytoplasmique d’Endos avant le bris de l’enveloppe nucléaire entraîne des défauts mitotiques dépendants de l’activité de PP2A-Tws. Les substrats mitotiques de PP2A-Tws ne sont pas tous connus. Par des cribles de phosphoprotéomique, j’ai identifié des substrats mitotiques potentiels de PP2A-Tws. L’un des candidats hyperphosphorylés suite à la déplétion de Tws, Otefin (Ote), est une protéine de l’enveloppe nucléaire. Les sites de phosphorylation d’Otefin identifiés dans mes cribles sont adjacents à son domaine d’interaction avec BAF, une protéine liant l’ADN et certaines protéines de l’enveloppe nucléaire. L’introduction de mutations phosphomimétiques à ces sites abolit l’association d’Otefin avec BAF, en plus de retarder le recrutement d’Otefin à l’enveloppe nucléaire en sortie de mitose. Par ailleurs, l’association Otefin – BAF dépend de l’activité de PP2A-Tws. Enfin, la perte d’Otefin dans l’embryon syncytial de mouche affecte le développement. En somme, mes travaux ont permis d’approfondir notre compréhension mécanistique de la régulation spatiotemporelle du module Gwl – endosulfines – PP2A et d’identifier de nouveaux substrats potentiels de PP2A-Tws. / Mitosis is triggered by the cyclin B – Cdk1 complex that phosphorylates multiple substrates to promote transformations such as chromosome condensation, nuclear envelope breakdown and mitotic spindle formation. These transformations are required for cell division. The protein phosphatase 2A (PP2A) in complex with its B55/Twins (Tws) subunit dephosphorylates cyclin B – Cdk1 substrates. To prevent premature dephosphorylation of the mitotic phosphoproteins, PP2A-B55/Tws is inhibited upon mitotic entry. The Greatwall (Gwl) – endosulfines pathway is responsible for PP2AB55/Tws inhibition. Activated upon mitotic entry, the Gwl kinase phosphorylates small proteins called endosulfines to turn them into specific inhibitors of PP2A-B55/Tws. Gwl is exported from the nucleus to the cytoplasm before nuclear envelope breakdown. However, the mechanisms of spatiotemporal regulation of the Gwl – endosulfines – PP2A module are not entirely elucidated. Moreover, the identity of the proteins targeted by PP2A-Tws during mitotic exit is still unclear. During my PhD training, I found that Tws can transit through the nucleus via a nuclear localization signal (NLS), but its essential functions are cytoplasmic. Moreover, the sole endosulfine present in Drosophila melanogaster, Endos, has a cytoplasmic localization. Such localization is required for efficient phosphorylation of Endos by active and cytoplasmic Gwl. Once phosphorylated, Endos binds PP2A-Tws to inhibit its activity. Preventing the cytoplasmic localization of Endos prior to nuclear envelope breakdown causes mitotic defects that are PP2A-Tws-dependent. The mitotic substrates of PP2A-Tws are not all identified. By phosphoproteomic screening, I identified potential novel PP2A-Tws substrates. Among the hits that are hyperphosphorylated following Tws depletion, there is the nuclear envelope protein Otefin (Ote). The identified phosphosites on Otefin are adjacent to its domain of interaction with BAF, a protein binding DNA and nuclear envelope proteins. Introducing phosphomimetic mutations at these sites abolishes the Otefin – BAF association and delays Otefin recruitment at the reforming nuclear envelope during mitotic exit. Moreover, the Otefin – BAF association is PP2A-Tws-dependent. Finally, loss of Otefin in the syncytial embryo of the fly impairs development. Altogether, my results deepen our understanding of the spatiotemporal coordination of the Gwl – endosulfines – PP2A module and provide potential novel PP2A-Tws substrates.
212

TRIP13 AAA-ATPase Promotes Spindle Assembly Checkpoint Activation through Coordinating with MAD1 at Unattached Kinetochores

Arnst, Christopher Edward 04 September 2019 (has links)
No description available.
213

Identification of Dynein Binding Sites in Budding Yeast Pac1/LIS1

Meaden, Christopher W. 01 January 2010 (has links) (PDF)
Pac1/LIS1, an essential tip tracking protein of the WD40 super family, is required to target cytoplasmic dynein to the plus ends of astral microtubules in budding yeast. Pac1/LIS1 protein is composed of two regions: a small coiled-coil domain and a highly conserved WD40 repeat domain. Because of in vivo data suggesting the motor domain of Dyn1 interacts with Pac1, I attempted to locate the region of Pac1/LIS1 essential for binding to Dyn1/HC by utilizing PCR-mediated site directed mutagenesis. PCR-generated site directed Pac1(S226P) mutant appears to bind Dyn1/HC, allowing it to localize to the microtubule plus ends; whereas, Pac1(H197R) and Pac1(D379H) mutants appear to disrupt motor localization. I further hypothesized that Dyn1/HC would bind to either the coiled-coil domain or the WD40 repeat domain. Using truncated Pac1 constructs, I have observed that neither the coiled-coil domain nor the WD40 repeat domain alone is sufficient to recruit Dyn1/DHC to the plus ends of the cytoplasmic microtubules. Additionally, if I dimerize the WD40 repeat domain with a GST fusion tag, I observed that Dyn1/HC colocalized with the truncation at the spindle pole bodies. This result indicates that Pac1 must dimerize with its coiled-coil domain prior to interacting with Dyn1/HC. Furthermore, the WD40 dimer, is unable to track microtubule plus-ends; indicating that the very N-terminus of Pac1 is important for other interactions responsible for recruiting the Pac1/Dyn1 complex to the astral microtubule plus end.
214

MICROSPECTROPHOTOMETRIC ANALYSIS OF MITOSIS AND DNA SNYTHESIS ASSOCIATED WITH COLONY FORMATION IN PEDIASTRUM BORYANUM (CHLOROPHYCEAE)

Millington, William F., Rasch, Ellen M. 01 January 1980 (has links)
Patterns of DNA synthesis and mitosis in the coenobial alga Pediastrum boryanum (Turp.) Meneghini were analyzed by cytophotometric measurements of individual, Feulgen‐stained nuclei from swarming zoospores aggregating into colonies, and cells in colonies varying in age from 12 to 96 h after their initial transfer to fresh culture medium. A haploid genome size of 0.2 pg DNA (corresponding to roughly 11 × 1012 daltons, or 1.64 × 105 kb) was estimated by comparative measurements of nuclei from zoospores or young colonies and chicken erythrocyte (RBC) nuclei which were included with each set of Pediastrum slides as an internal reference standard of 2.5 pg DNA/cell. Although nuclear morphology and extent of chromatin condensation vary with different stages of colony development, nuclear division in P. boryanum appears to follow each cycle of DNA replication with no accumulation of DNA beyond the 2C level. Cytoplasmic cleavage resulting in the formation of individual zoospores is delayed until completion of mitosis, as is the demise of the pyrenoid. After 96 h of culture, 40% of all colonies have cells that are 8‐ or 16‐nucleate and some colonies have 32 nuclei/cell. Release of zoospores within vesicles occurs at this time to complete a cycle of asexual reproduction.
215

New insights into the functions of the two mitotic kinases, NIMA and CDK1, through the cell cycle

Govindaraghavan, Meera 09 August 2013 (has links)
No description available.
216

STRUCTURAL STUDIES OF THE MOLECULAR BASIS OF BRANCHING MICROTUBULE NUCLEATION

Clinton A Gabel (15348334) 27 April 2023 (has links)
<p>Conserved across metazoans, cell division depends upon the synchronous assembly and disassembly of a robust, mitotic spindle for the congression and separation of duplicated chromosomes. Composed of mostly microtubules, mitotic spindle generation depends on three different microtubule nucleation mechanisms to build its distinctive bipolar assembly. These three mechanisms are centrosomal-based, kinetochore-based, and branching microtubule nucleation. Branching microtubule nucleation occurs when microtubules nucleate from the sides of pre-existing microtubules within the mitotic spindle. Without branching microtubules, a weaker spindle apparatus can result in mitotic delay, chromosomal misalignment, multi-polar spindles, and/or aneuploidy. </p> <p>Several important complexes and proteins mediate branching microtubule nucleation. These proteins are the γ-tubulin ring complex (γ–TuRC), the homologous to augmin subunits (HAUS) complex (or simply augmin), the targeting protein for Xklp2 (TPX2), colonic and hepatic tumor overexpressed gene (chTOG), and echinoderm microtubule-associated protein-like 3 (EML3) among others. This work focused on discerning the molecular architecture of the augmin complex while also endeavoring to establish heterologous expression and purification methodologies for the γ–TuRC and TPX2. </p> <p>Augmin consists of proteins HAUS1–8 (H1–8) which bind to the sides of pre-existing microtubules and orient the γ–TuRC, the template for making microtubules, via NEDD1 to create new microtubules at shallow angles (~<20°). Despite its importance in cell division, the structure of augmin has eluded determination. This work utilized a multi-pronged approach of the baculovirus insect cell protein complex expression, cryo-EM, new protein structure prediction methodologies, and crosslinking mass spectrometry (CLMS) to elucidate the molecular architecture of the augmin complex. Further work studying the isolation, structure prediction and comparison across model organisms, and phosphorylation studies was also conducted. The results will aid the structure-assisted development of novel chemotherapeutics that target the augmin complex as well as provide deeper insights into how this complex functions in cell division. </p> <p>To help better understand the molecular mechanisms, regulation, and interactions between the different machinery involved in branching microtubule nucleation, the γ–TuRC and TPX2 also became a focus of this work. My primary effort was to overexpress and purify from the heterologous baculovirus insect cell protein complex expression system sufficient quantities of γ–TuRC for biochemical and biophysical characterization. Thus, efforts shifted to establish an expression and purification methodology for this complex. Similarly, a methodology for purification of TPX2 were also initiated. The goal of these endeavors is to establish <em>in vitro</em> biochemical reconstitution of branching microtubule nucleation utilizing the augmin complex, γ–TuRC, and TPX2 utilizing total internal reflection fluorescence microscopy (TIRF-M). </p> <p>Lastly, in unrelated work, a section on other work focuses on the roles of anti-CRISPR proteins that inhibit the Csy surveillance complex from <em>Pseudomonas aeruginosa</em> can be found. Cryo-EM studies revealed the structures of AcrIF4, AcrIF7, and AcrIF14. These anti-CRISPR proteins inhibit the Csy complex by different mechanisms. AcrIF4 prevents conformational changes necessary to recruit a Cas2/3 nuclease for degradation of invading mobile genetic elements while AcrIF7 acts as a dsDNA mimic preventing invading phage DNA recognition. Lastly, AcrIF14 functions by binding in the grove where the crRNA of Csy is and prevents hybridization between target invading MGE DNA and the crRNA. These mechanisms exemplify convergent evolution among anti-CRISPR proteins while also showing the diversity of structures produced by phages in their ongoing molecular arms race with their hosts.</p>
217

The Role of LIM Kinase 1 and its Substrates in Cell Cycle Progression

Ritchey, Lisa 01 January 2014 (has links)
LIM Kinase 1 (LIMK1), a modulator of actin and microtubule dynamics, has been shown to be involved in cell cycle progression. In this study we examine the role of LIMK1 in G1 phase and mitosis. We found ectopic expression of LIMK1 resulted in altered expression of p27Kip1, the G1 phase Cyclin D1/Cdk4 inhibitor. Overexpression of LIMK1 resulted in lower levels of p27Kip1 and p27Kip1-pY88 (inactive p27Kip1). Knockdown of LIMK1 resulted in elevated levels of p27Kip1 and p27Kip1-pY88. Together, these results suggest LIMK1 regulates progression of G1 phase through modulation of p27Kip1 expression. LIMK1 is involved in the mitotic process through inactivating phosphorylation of Cofilin. Aurora kinase A (Aur-A), a mitotic kinase, regulates initiation of mitosis through centrosome separation and proper assembly of bipolar spindles. Phosphorylated LIMK1 is recruited to the centrosomes during early prophase, where it colocalizes with ?-tubulin. Here, we report a novel functional cooperativity between Aur-A and LIMK1 through mutual phosphorylation. LIMK1 is recruited to the centrosomes during early prophase and then to the spindle poles, where it colocalizes with Aur-A. Aur-A physically associates with LIMK1 and activates it through phosphorylation, which is important for its centrosomal and spindle pole localization. Aur-A also acts as a substrate of LIMK1, and the function of LIMK1 is important for its specific localization and regulation of spindle morphology. Taken together, the novel molecular interaction between these two kinases and their regulatory roles on one other's function may provide new insight on the role of Aur-A in manipulation of actin and microtubular structures during spindle formation. The substrates of LIMK1, Aur-A and Cofilin, are also involved in the mitotic process. Aur-A kinase regulates early mitotic events through phosphorylation and activation of a variety of proteins. Specifically, Aur-A is involved in centrosomal separation and formation of mitotic spindles in early prophase. The effect of Aur-A on mitotic spindles is mediated by modulation of microtubule dynamics and association with microtubule binding proteins. In this study we show that Aur-A exerts its effects on spindle organization through regulation of the actin cytoskeleton. Aur-A phosphorylates Cofilin at multiple sites including S3 resulting in inactivation of its actin depolymerizing function. Aur-A interacts with Cofilin in early mitotic phases and regulates its phosphorylation status. Cofilin phosphorylation follows a dynamic pattern during progression of prophase to metaphase. Inhibition of Aur-A activity altered subcellular localization of Cofilin and induced a delay in the progression of prophase to metaphase. Aur-A inhibitor also disturbed the pattern of Cofilin phosphorylation, which correlated with the mitotic delay. Our results establish a novel function of Aur-A in the early mitotic stage through regulation of actin cytoskeleton reorganization. ?
218

Lim Kinase 1 Modulates Expression Of Matrix Metalloproteinases And Associates With Gamma-tubulin: Dual Role In Invasion And Mito

Tapia, Tenekua 01 January 2007 (has links)
LIM kinase 1 (LIMK1) is a unique dual specificity serine/threonine kinase containing two N-terminal LIM domains in tandem, a PDZ domain and a C-terminal catalytic domain. LIMK1 is involved in modulation of actin cytoskeleton through inactivating phosphorylation of the ADF (actin depolymerization factor) family protein cofilin. Recent studies have shown that LIMK1 is upregulated in breast and prostate cancer cells and tissues, promotes metastasis in animals and induces acquisition of an invasive phenotype when ectopically expressed in benign prostate epithelial (BPH) cells. Furthermore, overexpression of LIMK1 was associated with altered sub cellular localization of the membrane type 1 matrix metalloprotease (MT1-MMP). Matrix metalloproteases (MMPs) are a family of zinc dependant proteolytic enzymes that hydrolyze extra cellular matrix and cell surface molecules. A number of MMPs including MMP-2, MMP-9 and their activator MT1-MMP are over expressed in a variety of cancers including prostate cancer. The abundant expression of these enzymes contributes to changes in the tumor microenvironment, which facilitate degradation of the surrounding collagen matrix and migration of cells through the matrix defects. In this study, we show that MMPs are involved in LIMK1 induced invasion of otherwise non-invasive BPH cells. We also show that (a) the kinase activity of LIMK is not essential for the invasive behavior of the cells and (b) the absence of LIM domains significantly retards cell invasion. We have established transfected sub lines of BPH cells stably expressing 1) constitutively active LIMK1 (BPHLCA), 2) kinase dead LIMK1 (BPHLKD) and 3) only the kinase domain of LIMK1 (BPHLK) for our study. In vitro invasion assays revealed that LIMK1 induced invasion was inhibited by the MMP specific inhibitor, GM6001, and that cells expressing kinase-dead LIMK1 were equally invasive. Furthermore, BPH cells expressing LIMK1 mutants expressed higher amounts of MMP-2 and MMP-9. Substrate zymography revealed increased concentration of secreted MMP-2 and MMP-9 in the media of BPHLCA and BPHLK cells respectively compared to BPHV (vector control) cells. Quantitative RT-PCR also showed a ~10 fold increase in the steady state concentration of MMP-2 in BPHLCA cells compared to the control BPHLV cells. Expression of active LIMK1 stimulated cell-surface expression of MT1-MMP in BPHLCA cells as determined by flow cytometry. A modest increase in expression of MT1-MMP was noted in BPHLKD cells compared to BPHLK and BPHV cells. Immunoflourescence analysis indicated differential localization of MT1-MMP and LIMK1 in BPH cells expressing different mutants of LIMK1. Co-localization of LIMK1 and MT1-MMP in the plasma membrane and in the perinuclear region was also evident in these cells. Furthermore, here we provide evidence that suggests a functional role for phosphorylated (activated) LIMK1/2 (p-LIMK1/2) during mitosis through its association with γ-tubulin. Immunoflourescence analysis showed distinct co-localization of γ -tubulin and p-LIMK1/2 in the centrosomes during mitosis from early prophase to the beginning of telophase. No association was seen in the interphase or in late telophase. Phospho-LIMK1/2 was co-precipitated in immunoprecipitates of γ -tubulin using an anti- γ -tubulin antibody suggesting a physical association between these proteins in a complex. This finding reveals a novel role of LIMK1 in the mitotic process. In summary, our data suggests that MMPs are involved in LIMK1 induced invasion of prostate epithelial cells, and that this effect is mediated through altered expression and activation of specific MMPs. Furthermore, LIMK1 induced invasion is dependant on the presence of LIM domains more than the kinase activity. Finally, we show that phosphorylated LIMK1 and LIMK2 are involved in the mitotic process in a stage specific manner through its association with the centrosomal protein γ -tubulin. Because LIMK1 promotes invasion in vitro, regulates expression of MMPs, and is involved in mitotic processes, it is an attractive drug target for prostate cancer therapy.
219

Acetyl-CoA Carboxylase Alpha the Rate-limiting Enzyme of Fatty Acid Synthesis Modulates Mitotic Progression and Chromosome Segregation

Landgrave-Gomez, Jorge 10 1900 (has links)
While metabolic enzymes inside the cell nucleus were initially considered “contaminants”, recent evidence has shown that these fulfill essential functions in epigenetic regulation. Indeed a model is emerging in which local metabolite pools influence various nuclear processes. In this model, the subcellular distribution and organization of metabolic factors have a crucial role in the complex logic and regulation of nuclear functions. Cancer cells exploit nuclear metabolic enzymes to alter the synthesis and utilization of metabolites that sustain their transcriptional programs allowing their abnormal proliferation. Understanding the precise molecular mechanisms that modulate the distribution of nuclear metabolic enzymes and their related biological functions has the potential to uncover novel therapeutic vulnerabilities of malignant cells. Here, we describe an unexpected subcellular distribution of acetyl-CoA carboxylase alpha (ACC1), the rate-limiting enzyme of de novo fatty acid synthesis. We found that in cancer cells, ACC1 is not restricted to the cytoplasm. Instead, at mitosis and after the nuclear envelope breakdown, it transiently redistributes into filament-like structures that contact condensed chromosomes. Simultaneous profiling of protein-protein and -DNA interactions defined ACC1 association with different factors associated with the cellular machinery that modulates chromosome segregation, including the centromere, the kinetochore, and the fibrous corona. Inducible depletion of ACC1 resulted in altered mitotic progression and accumulation of chromosome segregation defects – effects that are abolished only with the reconstituted expression of catalytically active mutants of ACC1 but not its inactive counterparts. We further found that the abundance of malonyl-CoA – the main product of ACC1 enzymatic activity – gradually increases towards the onset of mitosis, being a significant determinant for histone malonylation. Overall we uncovered a previously unknown function of ACC1 in modulating mitotic progression and chromosome segregation. Our findings support a model where local niches of malonyl-CoA might act as signal molecules for faithful chromosome segregation.
220

The Differential Regulation of Adult Neural Stem Cells by Beclin1 and Atg5

Kalinina, Alena 09 February 2024 (has links)
Adult hippocampal neurogenesis is orchestrated by neural stem cell (NSC) activity. Some associations exist between autophagy and neurogenesis, yet much remains unknown about autophagic regulation of adult neurogenesis. This thesis interrogates the requirement and role of Beclin1 and Atg5, two regulators of autophagy, in the formation of adult hippocampal neurons. To examine adult brain NSCs, the experiments presented in the first objective of this thesis test the ability to isolate adult NSCs using flow cytometry and a DNA-binding dye, DyeCycleViolet. While adult NSCs could not be isolated from the adult neurogenic niches using this methodology, it was effective in isolating endothelial cells. This provided valuable insight on the use of DNA-binding dyes and a new method for isolation of brain endothelial cells. The next objective determines the role of Beclin1 in adult NSCs and their progeny using an inducible model. Beclin1 loss in Nestin-expressing hippocampal NSCs resulted in reduced proliferation, autophagy, and adult neurogenesis within one month. Single-cell RNA sequencing and other methods illuminated that loss of Beclin1 resulted in mitosis reduction, disrupted mitotic regulation of chromatin maintenance, and induction of DNA damage. The final objective first tests whether Beclin1 loss results in similar deficits within GLAST-expressing NSCs and progeny. This model mirrored neurogenesis deficits and requirement of Beclin1 in mitosis and DNA maintenance. Next, to test whether this phenotype occurs with other autophagy proteins, Atg5 was removed from GLAST NSCs. This resulted in reduced autophagy and a transient decrease in neurons in the absence of any effect on NSC proliferation. Thus, proliferation deficits are unique to Beclin1 loss and do not underlie reduced adult hippocampal neurogenesis after Atg5 removal. This work demonstrates a novel discovery of mitosis regulation in adult NSCs by Beclin1, and individual roles of Beclin1 and Atg5 in neurogenesis.

Page generated in 0.0623 seconds