• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 3
  • Tagged with
  • 9
  • 9
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analyse du comportement dynamique d'un élastomère : modélisation et identification

Huynh Kim Long, Alex 18 January 2005 (has links) (PDF)
Le travail proposé porte sur les mesures, la modélisation et l'identification du comportement dynamique d'un plot en élastomère dans la plage de fréquence 0-100 Hz. Notre plot est utilisé pour l'isolation vibratoire dans l'automobile. Il est testé sous excitation uniaxiale par vérin hydraulique à différents niveaux de précharge et d'amplitude de déplacement. Ces essais permettent de mesurer le module d'Young complexe. Nous avons recherché des modèles adaptés à nos données expérimentales et ayant un nombre réduit de paramètres. Deux modèles viscoélastiques linéaires à quatre paramètres ont été retenus: le premier est en fait un modèle proposé par Biot pour le frottement solide et un autre, nouveau, très proche du précédent utilisant les dérivées fractionnaires. De plus, nous avons établi des relations d'interpolation définissant les paramètres des modèles en fonction de la précharge et de m'amplitude, afin de prendre en compte de façon assez simple les aspects non linéaires du comportement de l'élastomère. Des essais quasi-statiques ont permis de vérifier la prédictivité de nos modèles dans le domaine temporel. Enfin, une étude critique est conduite sur leur qualité à modéliser les propriété dissipatives du matériau.
2

Déshydratation mécano-thermique d’un milieu poreux déformable : modélisation des transferts et développement d’outils de caractérisation adaptés

Boulos, Mario 30 September 2010 (has links)
Ces travaux de thèse portent sur la caractérisation des milieux poreux fortement déformables afin de modéliser le transfert réalisé au cours du séchage. La théorie de consolidation de Biot traduit le couplage hydromécanique se produisant durant la déshydratation d’un milieu poreux déformable. Le modèle de Cáceres s’appuie sur cette théorie et sur la loi classique de Darcy. Il est adapté aux grandes déformations du squelette solide et utilise un tenseur de contraintes de décomposition Terzaghi. Une simulation de la déshydratation par l’intermédiaire de ce modèle nécessite au préalable le renseignement de celui-ci en termes de caractéristiques thermophysiques. Deux dispositifs expérimentaux ont été mis en place : l’un mesurant la relaxation de charge, l’autre réalisant la pressurisation dynamique (DP). La 1ère expérience nous a permis de caractériser la perméabilité, le coefficient de Poisson et le module d’Young en fonction de la teneur en eau du gel. La 2ème expérience a révélé l’importance de la prise en considération de la compressibilité de la phase solide dans la modélisation du séchage du gel d’agar ainsi que, la nécessité de corriger la valeur du module de compressibilité de l’eau contenant du gaz dissout. Suite à cette étape expérimentale, nous avons concentré nos efforts sur la modélisation liée à notre étude. Tout d’abord, la DP étant conforme à l’hypothèse de faibles déformations, un modèle numérique basé sur les équations de Biot a été réalisé afin de valider les paramètres mesurés et de corriger la valeur estimée de la perméabilité. Un second modèle traduit le couplage thermo-hydro-mécanique lors du séchage convectif d’un milieu poreux fortement déformable comme les gels d’agar et d’alumine. Ce dernier s’appuie sur la théorie de Biot et d’une part s’adapte aux fortes déformations et d’autre part utilise l’approche eulérienne. Ce modèle constitue donc un compromis entre les modèles de Biot et de Cáceres et s’appuie sur l’étude thermodynamique de Coussy ce qui est une avancée dans la modélisation des gels déformables. / This thesis focuses on the characterization of strongly deformable porous media in order to model the transfer taking place during drying. The theory of consolidation of Biot reflects the hydro-mechanical coupling occurring during dehydration of a deformable porous medium. Cáceres developed a model based on this theory and on the classical Darcy’s law. It is suitable for large deformations of the solid skeleton and the stress tensor is decomposed according to the so-called Terzaghi’s principle. A simulation using this model requires the information in thermo-physical terms of characteristics. Two experimental setups were developed : one measuring the relaxation charge, the other called dynamic pressurization (DP). The first experiment allowed us to characterize the permeability, Poisson’s ratio and Young’s modulus as functions of water content of the gel. The second experiment showed the importance of taking into account the compressibility of the solid phase in the modeling of the drying of agar gel as well as the effect of the existence of bubbles on the bulk modulus of the water. The establishment of two models followed this experimental study. First, the DP is consistent with the hypothesis of small deformations, a numerical model based on Biot’s equations was carried out to validate the parameters measured and to correct the estimated value of the permeability. A second model reflects the thermo-hydro-mechanical coupling in the convective drying of highly deformable porous media such as agar gel and alumina. The latter is based on the Biot’s theory and on the thermodynamics study of Coussy. It uses the Euler’s method while staying adapted to large deformations.
3

Caractérisation mécanique de matériaux fibreux en vibro-acoustique

Doutres, Olivier 28 September 2007 (has links) (PDF)
Ce travail de thèse a pour objectif la modélisation et la caractérisation des matériaux poreux, et en particulier des matériaux fibreux utilisés dans un contexte aéronautique. La première partie est consacrée à la modélisation des matériaux poreux. Le modèle de Biot-Allard ainsi qu'un modèle simplifié dit de "fluide équivalent" sont présentés. Le modèle simplifié, encore appelé modèle "limp", est basé sur l'hypothèse que la rigidité du matériau est négligeable par rapport à celle de l'air. Il est donc principalement dédié aux matériaux souples du type laine de verre ou coton. Un critère d'utilisation de ce modèle est présenté dans cette partie. On montre alors que, dans la majorité des cas, le modèle limp peut être utilisé en dehors des fréquences de résonance du squelette et ce, même pour des matériaux rigides. La seconde partie de ce travail propose trois nouvelles méthodes de caractérisation mécanique basses et moyennes fréquences dédiées aux matériaux fibreux. Le module d'Young et le facteur d'amortissement du squelette sont estimés indirectement par l'étude du comportement mécanique du matériau soumis à diverses sollicitations. Les deux premières méthodes placent le matériaux poreux dans un contexte proche de son utilisation réelle : étude de la transmission et du rayonnement acoustique de parois revêtues du matériau poreux. Dans les deux cas, le modèle utilisé pour l'inversion tient compte de l'effet de l'air saturant le matériau et de son couplage avec le milieu extérieur. La troisième méthode est basée sur la mesure de l'impédance mécanique d'un échantillon de taille réduite soumis à une sollicitation en tractioncompression. L'échantillon est placé dans une cavité fermée afin de limiter l'effet de l'air ambiant. Un transducteur électrodynamique est utilisé comme source et comme capteur. Ce banc de mesure a fait l'objet d'un dépôt de brevet en 2007. Les premiers résultats obtenus à l'aide d'un prototype ont permis de valider la méthode.
4

Etude vibroacoustique des matériaux poroélastiques par éléments finis

Dauchez, Nicolas 12 April 1999 (has links) (PDF)
Le travail présenté est une analyse critique des éléments finis poroélastiques basés sur la théorie de Biot, permettant la simulation du comportement vibroacoustique des matériaux poreux à squelette déformable (mousses polymères, en particulier). Dans un premier temps, une étude de convergence montre que les critères de maillage, habituellement utilisés pour les éléments monophasiques, s'appliquent eu égard aux longueurs d'onde de Biot, mais restent insuffisants pour des applications tridimensionnelles. Une deuxième partie est consacrée à la validation expérimentale. Une attention particulière est portée sur la caractérisation expérimentale des matériaux. La première validation concerne la mesure d'impédance en conduit d'un échantillon résonnant. Différentes conditions aux limites sont réalisées afin de tester la validité des lois de comportement isotrope ou isotrope transverse pour le squelette. La deuxième validation porte sur la vibration d'une plaque amortie par collage d'une couche poreuse. Bien que les tendances soient bonnes, la difficulté à caractériser le comportement mécanique du squelette est mise en relief. Dans la dernière partie, on s'intéresse à l'analyse du comportement des matériaux poroélastiques. Un calcul de la répartition des puissances dissipées et réactives est développé à partir de la formulation par éléments finis. Appliqué au cas d'une couche poreuse collée à une plaque, il permet de montrer l'importance de la dissipation due à la viscoélasticité du squelette. Un modèle de plaque équivalente, considérant la couche poreuse comme un milieu viscoélastique, sujet au cisaillement, a été développé. Les bons résultats obtenus permettent un allégement conséquent des calculs en ce qui concerne le comportement vibratoire de cette structure.
5

Contribution à la caractérisation mécanique de matériaux poro-visco-élastiques en vibro-acoustique

Jaouen, Luc 18 December 2003 (has links) (PDF)
Ce travail présente deux méthodes expérimentales de caractérisation des propriétés élastiques et d'amortissement de matériaux poreux acoustiques en régime dynamique.<br />Les modules d'Young ou de cisaillement ainsi que les coefficients<br />d'amortissement de mousses polymères ou matériaux fibreux sont estimés dans leurs conditions usuelles d'utilisation, i.e. en flexion ou cisaillement et dans des gammes de température et de fréquence habituellement rencontrées dans les industries du bâtiment ou des transports. La théorie de Biot-Johnson-Champoux-Allard est utilisée pour décrire le comportement de ces matériaux poro-visco-élastiques modélisés comme des systèmes diphasiques constitués d'une phase solide et d'une phase fluide, l'air, couplées dans le temps et l'espace.<br /><br />La première méthode est dérivée de celle de la poutre d'Oberst : un<br />déplacement transverse est imposé au centre d'une poutre en conditions limites libre-libre. Un calcul par éléments finis hiérarchiques et un algorithme non-linéaire d'inversion sont utilisés afin d'estimer les paramètres inconnus des matériaux et de déterminer leurs évolutions en fonction de la fréquence et de la température.<br /><br />La seconde méthode est basée sur l'étude des vibrations d'une plaque multicouche en flexion. Un code numérique hiérarchique<br />simplifié est utilisé conjointement au précédent algorithme d'inversion dans le même but de caractérisation des matériaux poro-visco-élastiques.<br /><br />Des applications à quelques matériaux, visco-élastiques légers ou<br />mousses aux propriétés très différentes, ont permis de vérifier la pertinence de ces méthodes face à celles déjà existantes et d'en fixer les limitations.
6

Development of innovative passive polyurethane foam with higher absorption and/or insulation performance / Développement innovant de mousse passive de polyuréthanee ayant la meilleure performance en absorption et/ou en isolation

Gholami, Mohammad Sadegh January 2017 (has links)
Les mousses de polyuréthane (PU) hautement poreuses sont largement utilisées dans différentes industries pour dissiper l’énergie des ondes sonores et vibratoires. La propagation des ondes acoustiques dans ces matériaux poroélastiques est décrite à partir d’un ensemble de paramètres physiques connus sous le nom de paramètres de Biot (pour les matériaux isotropes, ils sont composés de 5 paramètres non acoustiques et de 4 paramètres mécaniques). Il est bien connu que les propriétés macroscopiques dépendent intrinsèquement des propriétés de la microstructure de la mousse. Ainsi, une compréhension claire des corrélations entre la structure interne des mousses de PU et leurs paramètres de Biot ainsi que la contribution de chaque paramètre, soit microscopique ou macroscopique, sur l’indicateur vibroacoustique désiré est d’un intérêt majeur au stade précoce de la conception et de l’optimisation de ces matériaux poroélastiques. Le développement d’un modèle micromacro qui corrèle les propriétés de la microstructure aux paramètres macroscopiques de Biot est donc nécessaire. Récemment, un modèle qui corrèle les propriétés de la microstructure des mousses PU hautement poreuses à leurs propriétés non acoustiques a été présenté par Doutres et coll. [24, 25]. Dans cette étude, les propriétés de la microstructure (dimensions de la cellule et taux de réticulation) sont d’abord caractérisées par un microscope électronique à balayage (SEM). Ensuite, l’effet du taux de réticulation (mesurant le pourcentage de fenêtres ouvertes), de la taille des cellules et de la densité relative sur les propriétés mécaniques de la mousse de polyuréthane a été élucidé à l’aide d’un modèle numérique. Se basant sur ce modèle, un modelé analytique existant, qui corrèle les propriétés de la microstructure de mousses PU entièrement réticulées à ses propriétés mécaniques, a été revu et corrigé pour tenir compte de l’effet important du taux de réticulation. En combinant le modèle de Doutres avec le modèle mécanique développé dans cette thèse, un modèle micro-macro complet est ainsi obtenu. Utilisant ce modèle, l’impact de la variabilité de la microstructure et la contribution de chacun des paramètres microstructuraux à la réponse vibroacoustique ont été étudiés utilisant une méthode d’analyse de sensibilité globale (FAST). La méthode FAST a été utilisée pour identifier l’impact de la microstructure sur, premièrement, les paramètres de Biot-Allard et, deuxièmement, sur les indicateurs vibroacoustiques (absorption et perte par transmission) des mousses de polyuréthane poroélastiques. Une fois les modèles micro-macro et la contribution des propriétés de la microstructure connus, la performance vibroacoustique de la mousse a été optimisée. Ainsi nous avons testé numériquement la performance acoustique de mousses homogènes et de mousses graduellement structurées (variation de propriétés suivant l’épaisseur de la mousse). Cette étude ouvre ainsi de nouvelles portes pour concevoir des mousses PU innovantes avec une microstructure modifiée et des performances vibroacoustique améliorées. / Abstract : Highly porous polyurethane (PU) foams are widely used in different industries to dissipate the energy of sound and vibration waves. Propagation of acoustic waves in such poroelastic materials is explained based on a set of physical parameters known as the Biot's parameters (for isotropic materials these are comprised of 5 non-acoustical parameters and 4 mechanical parameters). These macroscopic properties are inherently dependent on the microstructure properties of the foam. Hence, a clear understanding of correlations between the internal structure of PU foams and their Biot's parameters and the contribution of each parameter, either microscopic or macroscopic, to classical vibro-acoustic indicators is of utmost interest at the early stage of design and optimization of such poroelastic materials. In consequence, a micro macro model that correlates microstructure properties to macroscopic Biot's parameters is needed. Recently, a model that correlates the microstructure properties of highly porous PU foams to their non-acoustical properties was presented by~\citet{Doutres2011,Doutres2013}. In this study, micro-structure properties (strut length, strut thickness, and open pore content) are first characterized using a Scanning Electron Microscope (SEM). Then, a numerical study is performed to elucidate the effect of open pore content (known as reticulation rate), cell size, and relative density on the mechanical properties of polyurethane foam. Based on this study, an existing analytical model~\cite{Gong2005} that correlates fully reticulated unit cell microstructure properties of PU foams to its mechanical properties is corrected and updated to account for these important parameters. Combined with Doutres’ model, the proposed extension lead to a full micro-macro model for predicting the acoustic performance of PU foams from its microstructure. Using this model, the contribution of the unit cell parameters and effect of their variability on classical vibro-acoustic indicators (absorption and transmission loss) is investigated using a global sensitivity analysis method (FAST). The FAST method is used to identify the impact of microstructure role on, first, the Biot-Allard parameters and, second, on vibro-acoustical indicators of poroelastic polyurethane foams. Based on this sensitivity analysis study, the developed micro-macro model, is used to design both optimum homogeneous foam and functionally graded foams (properties optimally varnish along the thickness of the foam) targeting specific in absorption and/or transmission loss problems. This study opens thus a new door to design innovative PU foams with modified micro-structure and improved vibro-acoustical performance.
7

Modélisation numérique de la propagation et de la diffraction d'ondes mécaniques

Lombard, Bruno 20 January 2010 (has links) (PDF)
Ce document traite de la résolution de problèmes directs de propagation d'ondes en milieu hétérogène et dans le domaine temporel. L'essentiel du travail porte sur la conception, l'analyse et l'implémentation de méthodes numériques pour la propagation d'ondes : schéma d'ordre élevé pour intégrer les lois de conservation, méthode d'interface immergée pour discrétiser les interfaces sur une grille cartésienne. On modélise numériquement plusieurs lois de comportement linéaires (fluide parfait, élasticité, viscoélasticité, poroélasticité) et conditions d'interface (surface libre, contacts parfaits ou imparfaits). Les résultats numériques sont comparés à des solutions analytiques, dont certaines sont originales. La mise en oeuvre des différentes méthodes au sein d'un code de calcul optimisé rend possible une expérimentation numérique fine de phénomènes ondulatoires en milieux complexes. On étudie de cette façon la propagation des ondes à travers un ensemble de diffuseurs répartis aléatoirement, en dimension deux. Les solutions numériques permettent de caractériser le milieu effectif, et ainsi de quantifier la précision de méthodes classiques de diffusion multiple. En parallèle à ces travaux numériques, une analyse théorique de l'interaction d'ondes élastiques avec des nonlinéarités de contact est aussi menée, en dimension un. On étudie la génération d'harmoniques et la dilatation moyenne d'une fissure en fonction de l'amplitude de l'onde incidente.
8

Time-domain numerical modeling of poroelastic waves: the Biot-JKD model with fractional derivatives

Blanc, Emilie 05 December 2013 (has links) (PDF)
Une modélisation numérique des ondes poroélastiques, décrites par le modèle de Biot, est proposée dans le domaine temporel. La dissipation visqueuse à l'intérieur des pores est décrite par le modèle de perméabilité dynamique, développé par Johnson-Koplik-Dashen (JKD). Certains coefficients du modèle de Biot-JKD sont proportionnels à la racine carrée de la fréquence : dans le domaine temporel, ces coefficients introduisent des dérivées fractionnaires décalées d'ordre 1/2, qui reviennent à un produit de convolution. Basé sur une représentation diffusive, le produit de convolution est remplacé par un nombre fini de variables de mémoire, dont la relaxation est gouvernée par une équation différentielle ordinaire locale en temps, ce qui mène au modèle de Biot-DA (approximation diffusive). Les propriétés du modèle de Biot-JKD et du modèle de Biot-DA sont analysées : hyperbolicité, décroissance de l'énergie, dispersion. Pour déterminer les coefficients de l'approximation diffusive, différentes méthodes de quadrature sont proposées : quadratures de Gauss, procédures d'optimisation linéaire ou non-linéaire sur la plage de fréquence d'intérêt. On montre que l'optimisation non-linéaire est la meilleure méthode de détermination. Le système est modélisé numériquement en utilisant une méthode de splitting : la partie propagative est discrétisée par un schéma aux différences finies ADER, d'ordre 4 en espace et en temps, et la partie diffusive est intégrée exactement. Une méthode d'interface immergée est implémentée pour discrétiser la géometrie sur une grille cartésienne et pour discrétiser les conditions de saut aux interfaces. Des simulations numériques sont présentées, pour des milieux isotropes et isotropes transverses. Des comparaisons avec des solutions analytiques montrent l'efficacité et la précision de cette approche. Des simulations numériques en milieux complexes sont réalisées : influence de la porosité d'os spongieux, diffusion multiple en milieu aléatoire.
9

Time-domain numerical modeling of poroelastic waves : the Biot-JKD model with fractional derivatives

Blanc, Emilie 05 December 2013 (has links)
Une modélisation numérique des ondes poroélastiques, décrites par le modèle de Biot, est proposée dans le domaine temporel. La dissipation visqueuse à l'intérieur des pores est décrite par le modèle de perméabilité dynamique de Johnson-Koplik-Dashen (JKD). Certains coefficients du modèle de Biot-JKD sont proportionnels à la racine carrée de la fréquence, introduisant dans le domaine temporel des dérivées fractionnaires décalées d'ordre 1/2, revenant à un produit de convolution. Basé sur une représentation diffusive, le produit de convolution est remplacé par un nombre fini de variables de mémoire satisfaisant une équation différentielle ordinaire locale en temps, menant au modèle de Biot-DA (diffusive approximation). Les propriétés des deux modèles sont analysées : hyperbolicité, décroissance de l'énergie, dispersion. On montre que la meilleure méthode de détermination des coefficients de l'approximation diffusive - quadratures de Gauss, optimisation linéaire ou non-linéaire sur la plage de fréquence d'intérêt - est l'optimisation non-linéaire. Une méthode de splitting est utilisée numériquement : la partie propagative est discrétisée par un schéma aux différences finies ADER d'ordre 4, et la partie diffusive est intégrée exactement. Les conditions de saut aux interfaces sont discrétisées avec une méthode d'interface immergée. Des simulations numériques sont présentées pour des milieux isotropes et isotropes transverses. Des comparaisons avec des solutions analytiques montrent l'efficacité et la précision de cette approche. Des simulations numériques en milieux complexes sont réalisées : influence de la porosité d'os spongieux, diffusion multiple en milieu aléatoire. / A time-domain numerical modeling of Biot poroelastic waves is proposed. The viscous dissipation in the pores is described using the dynamic permeability model of Johnson-Koplik-Dashen (JKD). Some of the coefficients in the Biot-JKD model are proportional to the square root of the frequency: in the time-domain, these coefficients introduce shifted fractional derivatives of order 1/2, involving a convolution product. Based on a diffusive representation, the convolution product is replaced by a finite number of memory variables that satisfy local-in-time ordinary differential equations, resulting in the Biot-DA (diffusive approximation). The properties of the two models are analyzed: hyperbolicity, decrease of energy, dispersion. To determine the coefficients of the diffusive approximation, different methods of quadrature are analyzed: Gaussian quadratures, linear or nonlinear optimization procedures in the frequency range of interest. The nonlinear optimization is shown to be the best way of determination. A splitting strategy is applied numerically: the propagative part is discretized using a fourth-order ADER scheme on a Cartesian grid, and the diffusive part is solved exactly. An immersed interface method is implemented to discretize the jump conditions at interfaces. Numerical experiments are presented for isotropic and transversely isotropic media. Comparisons with analytical solutions show the efficiency and the accuracy of this approach. Some numerical experiments are performed in complex media: influence of the porosity of a cancellous bone, multiple scattering across a set of random scatterers.

Page generated in 0.0466 seconds