• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 5
  • 4
  • 2
  • Tagged with
  • 25
  • 25
  • 8
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

The Voronoi liquid : a new model to probe the glass transition / Le liquide de Voronoï : un nouveau modèle pour l'étude de la transition vitreuse

Ruscher, Céline 05 October 2017 (has links)
Comprendre l’origine microscopique du ralentissement de la dynamique au voisinage de la transition vitreuse reste l’un des problèmes fondamentaux de la physique de la matière condensée. Au cours de ce travail, nous introduisons un nouveau modèle de liquide, appelé liquide de Voronoï, et dont les interactions sont directement reliées aux propriétés géométriques des tessellations de Voronoï. Pour cette classe de liquides, les interactions sont à plusieurs corps et agissent de telle sorte que le système est toujours sous tension tout en restant stable. Le but de ce travail est d’étudier un mélange binaire du liquide de Voronoï et de voir de quelles façons ces interactions exotiques affectent le scénario habituel de la transition vitreuse. Tout au long de ce travail, nous caractérisons le liquide de Voronoï bidisperse théoriquement et par le biais des simulations numériques. Nous proposons également des comparaisons avec des liquides de Lennard-Jones surfondus bien décrit dans la littérature. / Understanding the origin of the important slowing down of the dynamics near glass transition is still one of the remaining fundamental problems of condensed matter physics. During this work we introduced a brand-new model of liquids named Voronoi liquid, whose interactions are directly related to the geometrical properties of Voronoi tessellations. For these class of liquids interactions are intrinsically manybody and act in such a way that the liquid is always under tension but remains stable. The aim of this work is to use a binary mixture of the Voronoi liquid to see to what extend these exotic interactions may affect the classical scenario of glass transition. Throughout this work we characterize theoretically and by mean of numerical simulation the bidisperse Voronoi liquid. Comparisons with well-known Lennard-Jones glass formers are systematically performed.
22

Méthodologies de simulation des bruits automobiles induits par le frottement / Méthodologies de simulation des bruits automobiles induits par le frottement

Elmaian, Alex 27 May 2013 (has links)
Les bruits automobiles induits par le frottement sont à l’origine de nombreuses plaintes clients et occasionnent des coûts de garantie considérables pour les constructeurs automobiles. Les objectifs de la thèse consistent à comprendre la physique à l’origine de ces bruits et proposer des méthodologies de simulation afin de les éradiquer. Un système générique est tout d’abord étudié. Ce système discret met en jeu un contact entre deux masses et une loi de frottement de Coulomb présentant une discontinuité à vitesse relative nulle. Des calculs de valeurs propres complexes de ce système linéarisé autour de sa position d’équilibre glissant sont menés et montrent la présence d’instabilités par flottement voire par divergence. Les simulations temporelles montrent quant à elles que les non-linéarités de contact permettent de stabiliser les niveaux vibratoires en cas d’instabilité selon quatre régimes distincts. De plus, malgré ses trois degrés de liberté, ce système est capable de reproduire les mécanismes de stick-slip, sprag-slip et couplage modal ainsi que les bruits de crissement, grincement et craquement rencontrés sur les systèmes automobiles. Des études paramétriques sont également présentées et mettent en avant des bifurcations de Hopf ainsi que l’effet déstabilisant potentiellement induit par l’amortissement. Des méthodologies permettant de catégoriser les réponses en termes de bruit et de mécanisme sont par la suite proposées. Les occurrences et risques de ces derniers sont alors analysés et des tendances sont dégagées. Enfin, la relation entre les bruits et les mécanismes est établie. L’attention est ensuite portée sur un système automobile particulier. Afin d’étudier son comportement crissant, les analyses de stabilité et les simulations temporelles sont désormais menées sur des modèles éléments-finis. Les simulations temporelles permettent d’observer l’établissement de vibrations auto-entretenues et d’identifier, parmi tous les modes instables prédits lors des analyses de stabilité, celui qui est réellement à l’origine de l’instabilité. L’effet du coefficient de frottement sur les motifs de coalescence et les cycles limites est également investigué. Le risque de crissement est ensuite évalué pour des conditions d’utilisation variées du système. La méthodologie, basée sur des analyses de stabilité, permet de retrouver les principaux constats expérimentaux obtenus sur banc d’essai. Le rôle des géométries et des matériaux constituant le système est également discuté. Enfin, une solution permettant de réduire de façon significative le risque de crissement est proposée. / Automotive friction-induced noises are the source of many customer complaints and lead to hugewarranty costs for car manufacturers. The objectives of the thesis are to improve the understanding ofthe physics at the origin of these noises and to propose numerical methodologies to eradicate them.A generic system is first investigated. This discrete system includes a contact between two masses anda Coulomb friction law with a discontinuity at zero relative velocity. Calculations of complex eigenvaluesof the linearized system around its sliding equilibrium position are carried out and show the presence offlutter and even divergence instabilities. Time simulations show that contact non-linearities permit tostabilize the vibrational levels in case of instability according to four distinct behaviors. Furthermore,despite its three degrees of freedom, this system is able to reproduce the stick-slip, sprag-slip and modecouplingmechanisms as well as the squeal, squeak and creak noises encountered in automotive systems.Parametric studies are also presented and highlight Hopf bifurcations as well as the destabilizing effectpotentially induced by damping. Methodologies allowing the categorization of the responses in termsof noise and mechanism are then proposed. Occurrences and risks of these noises and mechanismsare thus analyzed and trends are highlighted. The relationship between noises and mechanisms is alsoestablished.A specific automotive system is then considered. In order to study its squeal behavior, stabilityanalysis and time simulations are now carried out on finite element models. Time simulations allowto observe the establishment of self-excited vibrations and to identify, among all the unstable modespredicted by the stability analysis, the one which is actually the source of the instability. The effectof friction on the coalescence patterns and limit cycles is also investigated. The risk of squeal is thenevaluated in different operating conditions. The methodology, based on stability analysis, leads toresults in good agreement with the experimental observations. The role of geometries and materialsconstituting the system is also discussed. Finally, a solution with significantly low risk of squeal isproposed.
23

Propriétés viscoélastqiues des fondus de polymères vitrifiables / Viscoelastic properties of glass-forming polymer melts

Frey, Stephan 29 June 2012 (has links)
À l'approche de la transition vitreuse les fondus de polymères montrent une augmentation importante de la viscosité de plusieurs ordres de grandeur. Le but de cette étude est d'acquérir une compréhension plus profonde des propriétés viscoélastiques des fondus de polymères vitrifiables. Les polymères sont modélisés comme des chaînes flexibles en utilisant un modèle de bille-ressort. Les propriétés dynamiques sont analysées dans le cadre de la théorie de couplage de mode idéale. Nous constatons que la température critique de couplage de mode varie avec l'inverse de la longueur de chaîne. En étudiant la fonction de relaxation de cisaillement, nous constatons que les processus de relaxation polymériques, ne sont pas modifiés, mais décalés vers des temps plus importants en approchant la transition vitreuse. / Polymer melts show a remarkable increase of their viscosity by many orders of magnitude on approaching the glass transition. The aim of this study is to gain a deeper insight into the viscoelastic properties of glass forming polymer melts. The polymers are modeled as flexible chains using a bead-spring model. The dynamic properties are analyzed in the framework of the ideal mode-coupling theory. We find that the critical temperature of the ideal mode-coupling theory scales with the reciprocal chain length. By studying the shear relaxation function we find that the polymer relaxation processes are not altered but shifted to later times in the approach of the glass transition.
24

LIGHT-MATTER INTERACTION FROM ATOMISTIC RARE-EARTH CENTERS IN SOLIDS TO MASSIVE LEVITATED OBJECTS

Xiaodong Jiang (10524008) 19 April 2022 (has links)
<p>  </p> <p>A harmonic oscillator is a ubiquitous tool in various disciplines of engineering and physics for sensing and energy transduction. The degrees of freedom, low noise oscillation, and efficient input-output coupling are important metrics when designing sensors and transducers using such oscillators. The ultimate examples of such oscillators are quantum mechanical oscillators coherently transducing information or energy. Atoms are oscillators whose degrees of freedom can be controlled and probed coherently by means of light. Elegant techniques developed during the last few decades have enabled us to use atoms, for example, to build exquisite quantum sensors such as clocks with the precision of <1 second error over the lifetime of the universe, to store and transduce information of various forms and also to develop quantum processors. Similar to atoms, mechanical oscillators can also be controlled ultimately to their single vibrational quanta and be used for similar sensing and transduction applications.</p> <p><br></p> <p>In this thesis, we explore both atomic and mechanical systems and develop a toolbox to build an effective atom-light interface and light-oscillator interface for controlling such atomic and mechanical oscillators and use them in sensing and storage applications. Primarily, we study two disparate platforms: 1) rare-earth ions in solids integrated into photonic chips as a compact and heterogeneous platform and 2) nanoscopic and macroscopic oscillators interfaced with light and magnetic field to isolate them from environmental noise. </p> <p><br></p> <p>Rare earth (RE) ions in crystals have been identified as robust optical centers and promising candidates for quantum communication and transduction applications. Lithium niobate (LN), a novel crystalline host of RE ions, is considered as a viable material for photonic system integration because of its electro-optic and integration capability. This thesis first experimentally reports the activation and characterization of LN crystals implanted with Yb and Er ions and describes their scalable integration with a silicon photonic chip with waveguide and resonator structures. The evanescent coupling of light emitted from Er ions with optical modes of waveguide and microcavity and modified photoluminescence (PL) of Er ions from the integrated on-chip Er:LN-Si-SiN photonic device with quality factor of 104 have been observed at room temperature. This integrated platform can ultimately enable developing quantum memory and provide a path to integrate more photonic components on a single chip for applications in quantum communication and transduction.</p> <p><br></p> <p>Optomechanical systems are also considered as candidates for light storage and sensing. In this thesis, we also present results of the theoretical study of coherent light storage in an array of nanomechanical resonators. The majority of the thesis is focusing on an optomechanical sensing experiment based on levitation. An oscillator well isolated from environmental noise can be used to sense force, inertia, torque, and magnetic field with high sensitivity as the interaction with these quantities can change the amplitude or frequency of the oscillator’s vibration, which can be accurately measured by light. It has been proposed that such levitated macroscopic objects could be used as quantum sensors and transducers at their quantum ground states. They are also proposed as a platform to test fundamental physics such as detecting gravitational waves, observing macroscopic quantum entanglement, verifying the spontaneous collapse models, and searching for dark matter.</p> <p><br></p> <p>In particular, we consider superconducting levitation of macroscopic objects in vacuum whose positions are measured by light. We build an optomechanical platform based on a levitated small high reflective (HR)-coated mirror above a superconductor disk. We use this levitated mirror at ambient conditions to detect the magnetic field with a sensitivity on the order of <em>pT/sqrt(Hz).</em> Moreover, the levitated mirror is used as the end mirror of a Fabry–Pérot cavity to create an optical resonance that could be used to study coherent radiation pressure forces. The platform provides a sensitive tool to measure the various forces exerted on the mirror and it offers the possibility of the coherent optical trapping of macroscopic objects and precision gravity sensing. Moreover, we study the nonlinear dissipation and mode coupling of a levitated HR-coated magnetic mirror above a superconducting disk in vacuum conditions. We observe that by exciting one vibrational mode of the mirror, the vibrational noise of another mode can be significantly suppressed by a factor of 60. We attribute this unique noise suppression mechanism to the mode coupling and nonlinear dissipation caused by the driven magnetic inhomogeneity of the levitated object. Such a suppression mechanism can enable cooling certain modes independent of their detection and position in the spectrum, which may be promising for precision sensing applications.</p>
25

Numerical Studies Of Slow Dynamics And Glass Transition In Model Liquids

Karmakar, Smarajit 02 1900 (has links)
An increase in the co-operativity in the motion of particles and a growth of a suitably defined dynamical correlation length seem to be generic features exhibited by all liquids upon supercooling. These features have been observed both in experiments and in numerical simulations of glass-forming liquids. Specially designed NMR experiments have estimated that the rough magnitude of this correlation length is of the order of a few nanometers near the glass transition. Simulations also predict that there are regions in the system which are more liquid-like than other regions. A complete theoretical understanding of this behaviour is not available at present. In recent calculations, Berthier, Biroli and coworkers [1, 2] extended the simple mode coupling theory (MCT) to incorporate the effects of dynamic heterogeneity and predicted the existence of a growing dynamical correlation length associated with the cooperativity of the dynamics. MCT also predicts a power law divergence of different dynamical quantities at the mode coupling temperature and at temperatures somewhat higher than the mode coupling temperature, these predictions are found to be consistent with experimental and simulation results. The system size dependence of these quantities should exhibit finite size scaling (FSS) similar to that observed near a continuous phase transition in the temperature range where they show power law growth. Hence we have used the method of finite size scaling in the context of the dynamics of supercooled liquids. In chapter 2, we present the results of extensive molecular dynamics simulations of a model glass forming liquid and extract a dynamical correlation length ξ associated with dynamic heterogeneity by performing a detailed finite size scaling analysis of a four-point dynamic susceptibility χ4(t) [3] and the associated Binder cumulant. We find that although these quantities show the “normal” finite size scaling behaviour expected for a system with a growing correlation length, the relaxation time τ does not. Thus glassy dynamics can not be fully understood in terms of “standard” critical phenomena. Inspired by the success of the empirical Adam-Gibbs relation [4] which relates dynamics with the configurational entropy, we have calculated the configurational entropy for different system sizes and temperatures to explain the nontrivial scaling behaviour of the relaxation time. We find that the behaviour of the relaxation time τ can be explained in terms of the Adam-Gibbs relation [4] for all temperatures and system sizes. This observation raises serious questions about the validity of the mode coupling theory which does not include the effects of the potential energy (or free energy) landscape on the dynamics. On the other hand, in the “random first order transition” theory (RFOT), introduced by Wolynes and coworkers [5], the configurational entropy plays a central role in determining the dynamics. So we also tried to explain our simulation results in terms of RFOT. However, this interpretation has the drawback that the value of one of the exponents of this theory extracted from our numerical results does not satisfy an expected physical bound, and there is no clear explanation for the obtained values of other exponents. Thus we find puzzling values for the exponents relevant to the applicability of RFOT, which are in need of explanation. This can be due to the fact that RFOT focuses only near the glass transition, while all our simulation results are for temperatures far above the glass transition temperature (actually, above the mode coupling temperature). Interestingly, results similar to ours were obtained in a recent analysis [6] of experimental data near the laboratory glass transition, on a large class of glass-forming materials. Thus right now we do not have any theory which can explain our simulation data consistently from all perspectives. There have been some attempts to extend the RFOT analysis to temperatures above the mode coupling temperature [7, 8] and to estimate a length scale associated with the configurational entropy at such temperatures. We compare our results with the predictions arising from these analyses. In chapter 3, we present simulation results that suggest that finite size scaling analysis is probably the only feasible method for obtaining reliable estimates of the dynamical correlation length for supercooled liquids. As mentioned before, although there exists a growing correlation length, the behaviour of all measured quantities (specifically, the relaxation time) is not in accordance with the behaviour expected in “standard” critical phenomena. So one might suspect the results for the correlation length extracted from the scaling analysis. To find out whether the results obtained by doing finite size scaling are correct, we have done simulations of very large system sizes for the same model glass forming liquid. In earlier studies, the correlation length has been extracted from the wave vector dependence of the dynamic susceptibility in the limit of zero wave vector, but to estimate the correlation length with reasonable accuracy one needs data in the small wave vector range. This implies that one needs to simulate very large systems. But as far as we know, in all previous studies typical system sizes of the order of 10, 000 particles have been used to do this analysis. In this chapter we show by comparing results for systems of 28, 000 and 350, 000 particles that these previous estimates are not reliable. We also show that one needs to simulate systems with at least a million particles to estimate the correlation length correctly near the mode coupling temperature and this size increases with decreasing temperature. We compare the correlation length obtained by analyzing the wave vector dependence of the dynamic susceptibility for a 350, 000particle system with the results obtained from the finite size scaling analysis. We were only able to compare the results in the high temperature range due to obvious reasons. However the agreement in the high temperature range shows that the finite size scaling analysis is robust and also establishes the fact that finite size scaling is the only practical method to extract reliable correlation lengths in supercooled liquids. In chapter 4, we present a free energy landscape analysis of dynamic heterogeneity for a monodisperse hard sphere system. The importance of the potential energy landscape for particles interacting with soft potentials is well known in the glass community from the work of Sastry et al. [9] and others, but the hard sphere system which does not have any well defined potential energy landscape also exhibits similar slow dynamics in the high density limit. Thus it is not clear how to treat the hard sphere systems within the same energy landscape formalism. Dasgupta et al. [10, 11, 12, 13, 14, 15] showed that one can explain the slow dynamics of these hard core systems in term of a free energy landscape picture. They and other researchers showed that these system have many aperiodic local minima in its free energy landscape, with free energy lower than that of the liquid. Using the Ramkrishnan-Yussouff free energy functional, we have performed multi parameter variational minimizations to map out the detailed density distribution of glassy free energy minima. We found that the distribution of the widths of local density peaks at glassy minima is spatially heterogeneous. By performing hard sphere event driven molecular dynamics simulation, we show that there exists strong correlation between these density inhomogeneity and the local Debye-Waller factor which provides a measure of the dynamic heterogeneity observed in simulations. This result unifies the system of hard core particles with the other soft core particles in terms of a landscapebased description of dynamic heterogeneity. In chapter 5, we extend the same free energy analysis to a polydisperse system and show that there is a critical polydispersity beyond which the crystal state is not stable and glassy states are thermodynamically stable. We also found a reentrant behaviour in the liquid-solid phase transition within this free-energy based formalism. These results are in qualitative agreement with experimental observations for colloidal systems.

Page generated in 0.0445 seconds