71 |
Grundvattenmodellering och föroreningstransport av PFOS i BredåkradeltatEdvinsson, Johan January 2015 (has links)
Perfluorerade alkylsyror (PFAS) är en grupp ämnen som de senaste åren har uppmärksammats för dess persistenta, bioackumulerande och toxiska egenskaper för människor och djur. Det är känt att brandövningsplatser där det filmbildande skummet AFFF har använts utgör betydande punktkällor för PFAS. Förutom att förorena marken vid brandövningsplatserna kan PFAS spridas med grundvattnet, vilket har orsakat förorenade dricksvattentäkter på ett flertal platser i Sverige. Hydrogeologiska modeller kan användas för att modellera grundvattnets flöden och medföljande föroreningar. Syftet med examensarbetet är att med en hydrogeologisk modell undersöka föroreningsspridning och transporttider av PFAS-ämnet perfluoroktansulfonat (PFOS) från en brandövningsplats till ytvatten och grundvattentäkter i Bredåkradeltat, väster om Kallinge i Blekinge. Den hydrogeologiska modellen skapades i Visual MODFLOW och transportmodelleringen gjordes med MT3D99 och MODPATH. Modellen kunde reproducera uppmätta grundvattennivåer, med en korrelationskoefficient (R) på 0,98 mellan modellerade och uppmätta nivåer. Med antagandet försumbar adsorption visade modellresultaten att en föroreningsplym med hög PFOS-koncentration (~90.000 ng/l) spreds från brandövningsplatsen till ett våtmarksområde väster om Klintabäcken, och vidare till dalen längs Klintabäcken med lägre koncentrationen (0–4.000 ng/l). Enligt modellen spreds dock inte föroreningen lika långt som uppmätta värden visar. När PFOS väl har nått Klintabäcken bedöms den kunna spridas snabbt med ytvattnet mot grundvattentäkterna, för att sedan infiltrera ned i isälvsmaterialet nära aktiva grundvattentäkter. Transporttiden av PFOS från brandövningsplatsen till Klintabäcken beräknades till sex år för den bäst kalibrerade modellen, vilket betyder att grundvattentäkterna kan ha varit förorenade sedan slutet av 1980-talet eller början av 1990-talet. Beräkningar av masstransport indikerar att runt 3,5 kg PFOS flödar genom Klintabäcken varje år, och att det mesta av den mängden kommer från området vid brandövningsplatsen. Trots förenklingar av Bredåkradeltats komplexa geologi och svårigheter att nå konvergens i modellen bedöms den kunna reproducera hydrogeologiska egenskaper inom deltat, samt föroreningsplymens spridning från brandövningsplatsen till Klintabäcken.
|
72 |
EVALUATION OF POTENTIAL 10 MGD GROUNDWATER SUPPLY FROM AQUIFERS IN GEAUGA COUNTY, OHIOAlzahrani, Abdulaziz S. 03 August 2022 (has links)
No description available.
|
73 |
The temporal impacts of climate condition on groundwater flow using numerical transient modelling / De temporära effekterna av klimatförhållandena på grundvattenflödet med numerisk övergående modelleringRahman, Malieha Zannat January 2020 (has links)
Compiling comprehensive understanding of all the available natural resources is an important task which should be carried out as it holds a crucial role for the next generation’s lives. In particular, groundwater is considered as one of the vital resources in providing essential drinking water. Krycklan catchment is a well-monitored catchment in Sweden that is characterized with almost 30% of the world’s forest cover and it has a range of data sets stored from 1920. A numerical model with several observational constrains is used in this study to investigate the groundwater flow circulation. The numerical model is developed with Visual MODFLOW Flex 6.1 software to investigate the temporal effects of the climate condition on the groundwater flow of the Krycklan catchment through a transient-state condition. Daily precipitation and daily evapotranspiration data along with stream data are used to represent the climatic boundary conditions. The impact of climatic condition on groundwater flow was investigated using two different metrices: groundwater level, and groundwater flow travel time reaching the stream network. The results clearly indicated the variability in groundwater level due to the impact of climatic condition in which the winter and summer months have the highest and lowest groundwater levels, respectively. In addition, the particles tracing results show that physical characteristics of the stream channel substantially influence the shallow groundwater travel time.
|
74 |
A comprehensive modeling approach for BMP impact assessment considering surface and ground water interactionCho, Jae-Pil 12 June 2007 (has links)
The overall goal of this study was to develop a comprehensive tool for assessing the effectiveness of selected BMPs on both hydrology and water quality and to demonstrate the applicability of the system by considering 1) temporally and spatially changing land use management practice in an agricultural watershed and 2) interaction between surface and ground water over the entire system. A user interface and Dynamic Agricultural Non-point Source Assessment Tool (DANSAT) were developed to achieve this goal. DANSAT is the only distributed-parameter, physically-base, continuous-simulation, and multi-soil layer model for simulating impacts of agricultural BMPs on hydrology and water qulality in small agricultural watersheds. DANSAT was applied to QNB plot (18m à 27m) and two agricultural watersheds in Virginia, including Owl Run watershed (1140 ha) and QN2 in the Nomini Creek watershed (216 ha), to evaluate the model components and its performance in predicting runoff, sediment yield, and pesticide load. DANSAT performed well in predicting total runoff and temporal variations in surface runoff for both field-scale and watershed-scale applications. Total percent errors between the measured and predicted results were less than 10% except for one case (39.8% within a subwatershed of Owl Run watershed), while the daily Nash-Sutcliffe model efficiencies were greater than 0.5 in all applications. Predicted total sediment yields were within ±35% of observed values in all applications. However, the performance of DANSAT in predicting temporal trend and spatial distribution of sediment loads was acceptable only within Owl Run watershed, where high correlations between flow rates and sediment loads exist. The predicted total pesticide loads were within ±100% of observed values. DANSAT failed to simulate the temporal occurrence of pesticide loads with a 0.42 daily Nash-Sutcliffe efficiency value. The Dual-Simulation (DS) was developed within the linked ground water approach to resolve problems encountered due to the existence of different temporal scales between DANSAT and the existing ground water models such as MODFLOW and MT3D. The linked approach performed better in predicting the seasonal trend of total runoff compared to the integrated approach by showing an increase in monthly Nash-Sutcliffe efficiency value from 0.53 to 0.60. Surface and subsurface output variables were sensitive to the changes in spatially distributed soil parameters such as total porosity and field capacity. A maximum grid size of 100 m was recommended to be appropriate for representing spatial distribution of topographic, land use, and soil characteristics based on accuracy analysis during the GIS manipulation processes. Larger time-step based on predefined acceptable maximum grid size, decreased the computational time dramatically. Overall sensitivity to different grid sizes and time-steps was smallest for hydrology components followed by sediment and pesticide components. Dynamic crop rotation was considered by DANSAT, and the model successfully simulated the impacts of temporal and spatial changes in crop rotations on hydrology and water quality for both surface and subsurface areas. DANSAT could prove to be a useful tool for non-point source pollution managers to assess the relative effectiveness of temporally and spatially changing BMPs on both surface and ground water quantity and quality. / Ph. D.
|
75 |
Groundwater investigation and modeling - western desert of Iraq / Grundwasseruntersuchung und -modellierung - Western Desert von IrakAl-Muqdadi, Sameh Wisam 06 June 2012 (has links) (PDF)
The region of interest is part from Iraqi western desert covering an area about 100,000 km². Several of the large wadis such as Hauran, Amij, Ghadaf, Tubal and Ubaiydh traverse the entire region and discharge into the Euphrates River.
The present study included the following hydrogeological investigations:
Lineaments interpretation was done by using different data sets (SRTM 30 m and Landsat ETM 15m), within different algorithms. Some faults recognized by field survey match rather well with the automatically extracted lineaments with only a small difference between field data and re-mote sensed data.
The groundwater flow directions (west to east) for three aquifers were determined by using different spatial interpolation algorithms. Due to the faults impact, the flow direction gets a slightly other direction when reaching the fault’s zone.
Two pumping test were performed close to fault 2 in the unconfined aquifer Dammam using well no. 9 and 17. Results of pumping test and recovery were evaluated with the analytical model MLU for Windows. Well 17 shows a slightly higher transmissivity (0.1048 m²/min) in compari-son to well 9 (T= 0.0832 m²/min). This supports the assumption of a zone of unique elevated permeability between fault 1 and fault 2 because of the tectonic stress and the anticline structure.
The catchment and watershed delineation was performed by means of four GIS packages utilizing three DTM´s: 90 m and 30 m SRTM (Shuttle Radar Topography Mission) and the ASTER 30 m. A thorough field survey and manual catchment delineation of the same area was available from Division 1944. Software used was Arc Hydrotools, TNTmips, River Tools and TecDEM.
Ten 90 m SRTM and twelve 30 m ASTER files were merged by means of ArcGIS. The 30 m SRTM dataset of Iraq was supplied by courtesy of the US Army and the region of interest (ROI) was clipped from this DTM using ArcGIS. No additional steps were performed with both DTM data sets before using the mentioned software products to perform the catchment analysis. As a result the catchment calculations were significantly different for both 30 m and 90 m data and the different software products.
The groundwater model implemented in Visual Modflow V.4.2 was built by 5 main layers repre-senting Dammam aquifer, first aquiclude, UmEr Duhmma aquifer, second aquiclude and the Tayarat aquifer. Averaged readings of groundwater head from 102 observation wells were used to calibrate the model.
Calculated recharge average was 17.5 mm/year based on the water balance for ~30 years (1980-2008). A sensitivity analysis was performed by using different permeability and recharge values. However, the model showed a rather low sensitivity because the values of the standard error of the estimation were between 2.27 m and 3.56 m. Models with recharge less than 11.85 mm/year or more than 60 mm/year did not converge and thus failed to produce a result. Models with Kf values from 1.1-3 to 1.1-4 m/s for aquifers and from 1.1-7 to 1.1-8 m/s for aquicludes converged.
Water budget is about 2.17*10¹⁰ m³/year; by irrigating the greenhouses this budget will cover only 1.75% of the total area. However, this value could be upgraded up to 8 – 9 % by utilizing the groundwater inflow from Saudi Arabia. / Das Untersuchungsgebiet umfasst eine Fläche von etwa 100.000 km² und ist Teil der westlichen irakischen Wüste. Einige der großen Wadis wie Hauran, Amij, Ghadaf, Tubal und Ubaiydh durchqueren die gesamte Region und entwässern in den Euphrat.
Die vorliegende Arbeit umfasst folgende hydrogeologische Untersuchungen:
Die Interpretation der Lineamente wurde anhand verschiedener Datensätze (SRTM 30 m und Landsat ETM 15 m) und unter Nutzung unterschiedlicher Algorithmen durchgeführt.
Einige Störungen, welche während Feldmessungen identifiziert wurden, stimmen gut mit automatisch extrahierten Lineamenten überein, der Unterschied zwischen Feld- und Fernerkundungsdaten ist somit gering.
Die Ermittlung der Grundwasserfließrichtungen (von West nach Ost) der drei Aquifere erfolgte unter Nutzung verschiedener Algorithmen zur räumlichen Interpolation. Es zeigte sich, dass die Störungen zu einer leichten Veränderung der Fließrichtung mit zunehmender Nähe zur Störungszone führen.
Zwei Pumpversuche in den Brunnen 9 und 17 wurden nahe der Störung 2 im ungesättigten Aquifer Dammam durchgeführt. Die Auswertung der Ergebnisse der Pump- und Wiederanstiegsversuche erfolgte mittels des analytischen Modells MLU für Windows.
Es zeigte sich, dass Brunnen 17 eine leicht höhere Transmissivität aufweist (T = 0,1048 m²/min) im Vergleich zu Brunnen 9 (T = 0,0832 m²/min). Dies unterstützt die Annahme der Existenz einer Zone erhöhter Permeabilität zwischen den Störungen 1 und 2, verursacht durch tektonischen Stress und die Antiklinalstruktur.
Die Erfassung von Einzugsgebiet und Wasserscheiden erfolgte anhand von vier GIS-Paketen unter Nutzung von 3 DTM’s: 90 m und 30 m SRTM (Shuttle Radar Topography Mission) sowie ASTER 30 m. Genaue Daten aus einer Feldkampagne und eine manuelle Abgrenzung des Einzugsgebietes derselben Region standen zur Verfügung (Division 1944). Als Software kamen Arc Hydrotools, TNTmips, River Tools und TecDEM zum Einsatz.
Zehn SRTM- (90 m) und zwölf ASTER-Files (30 m) wurden mittels ArcGIS vereinigt. Ein 30 m SRTM-Datensatz des Irak (bereitgestellt durch die US-Armee) diente als Grundlage für das Ausschneiden des Untersuchungsgebietes (ROI) mit Hilfe von ArcGIS. An beiden DTM Datensätzen wurden vor der Ermittlung des Einzugsgebietes mit den genannten Software-Produkten keine zusätzlichen Schritte durchgeführt. Als Resultat ergaben sich signifikante Unterschiede zwischen den 30 m und 90 m Datensätzen sowie der verschiedenen Software.
Das in Visual Modflow V.4.2 implementierte Grundwassermodell wurde aus fünf Hauptschichten bestehend aus Dammam Aquifer, erster Stauer, UmEr Duhmma Aquifer, zweiter Stauer und Tayarat Aquifer aufgebaut. Durchschnittliche Werte der Grundwasserstände aus 102 Observationsbrunnen dienten der Kalibrierung des Modells.
Die berechnete mittlere Grundwasserneubildung betrug 17,5 mm/a, basierend auf dem Wasserhaushalt der letzten 30 Jahre (1980-2008). Unter Einbeziehung verschiedener Werte für Permeabilität und Grundwasserneubildung wurde eine Sensitivitätsanalyse durchgeführt. Dabei ergab sich allerdings eine geringe Empfindlichkeit des Modells, resultierend aus einer Standardabweichung der Schätzung zwischen 2,27 m und 3,56 m. Modelle mit einer Grundwasserneubildung kleiner 11,85 mm/a und größer 60 mm/a zeigten keine Konvergenz und führten somit zu keinem Ergebnis. Modelle mit kf Werten zwischen 1.1-3 und 1.1-4 m/s für Aquifere und zwischen 1.1-7 und 1.1-8 m/s für Grundwasserstauer konvergierten.
Die Grundwasserneubildung betrug etwa 2,17∙10¹⁰ m³/a, für die Bewässerung von Gewächshäusern deckt diese Summe nur 1,75% des gesamten Gebietes ab. Allerdings könnte dieser Wert durch die Nutzung des Grundwasserzuflusses aus Saudi Arabien auf 8 – 9% gesteigert werden.
|
76 |
Influence des flux d'eau souterraine entre une zone humide superficielle et un aquifère profond sur le fonctionnement hydrochimique des tourbières : Exemple des marais du Cotentin, Basse-NormandieAuterives, Chrystelle 05 July 2006 (has links) (PDF)
Les tourbières holocènes des marais du Cotentin reposent sur des bassins sédimentaires sableux aquifères (K = 10-3 – 10-4 m.s-1) dont l'exploitation AEP crée des conditions hydrogéologiques variables dans le temps et dans l'espace sur un site donné. Deux années de suivi hydrogéologique et hydrochimique, ainsi qu'une modélisation hydrogéologique du fonctionnement de la zone humide ont permis de montrer que :<br />- Le fonctionnement hydrologique de la tourbière est contrôlé par celui de l'aquifère des sables et l'existence même de la tourbière est directement liée à sa présence ; <br />- Les conditions hydrologiques influencent directement la variabilité spatio-temporelle des conditions redox du milieu et donc les réactions biogéochimiques mises en jeu dans la tourbière ;<br />- La modélisation de la zone humide a mis en évidence la sensibilité et la vulnérabilité de ces écosystèmes à la pression anthropique (pompage) et/ou l'évolution globale du climat.
|
77 |
Groundwater investigation and modeling - western desert of IraqAl-Muqdadi, Sameh Wisam 05 April 2012 (has links)
The region of interest is part from Iraqi western desert covering an area about 100,000 km². Several of the large wadis such as Hauran, Amij, Ghadaf, Tubal and Ubaiydh traverse the entire region and discharge into the Euphrates River.
The present study included the following hydrogeological investigations:
Lineaments interpretation was done by using different data sets (SRTM 30 m and Landsat ETM 15m), within different algorithms. Some faults recognized by field survey match rather well with the automatically extracted lineaments with only a small difference between field data and re-mote sensed data.
The groundwater flow directions (west to east) for three aquifers were determined by using different spatial interpolation algorithms. Due to the faults impact, the flow direction gets a slightly other direction when reaching the fault’s zone.
Two pumping test were performed close to fault 2 in the unconfined aquifer Dammam using well no. 9 and 17. Results of pumping test and recovery were evaluated with the analytical model MLU for Windows. Well 17 shows a slightly higher transmissivity (0.1048 m²/min) in compari-son to well 9 (T= 0.0832 m²/min). This supports the assumption of a zone of unique elevated permeability between fault 1 and fault 2 because of the tectonic stress and the anticline structure.
The catchment and watershed delineation was performed by means of four GIS packages utilizing three DTM´s: 90 m and 30 m SRTM (Shuttle Radar Topography Mission) and the ASTER 30 m. A thorough field survey and manual catchment delineation of the same area was available from Division 1944. Software used was Arc Hydrotools, TNTmips, River Tools and TecDEM.
Ten 90 m SRTM and twelve 30 m ASTER files were merged by means of ArcGIS. The 30 m SRTM dataset of Iraq was supplied by courtesy of the US Army and the region of interest (ROI) was clipped from this DTM using ArcGIS. No additional steps were performed with both DTM data sets before using the mentioned software products to perform the catchment analysis. As a result the catchment calculations were significantly different for both 30 m and 90 m data and the different software products.
The groundwater model implemented in Visual Modflow V.4.2 was built by 5 main layers repre-senting Dammam aquifer, first aquiclude, UmEr Duhmma aquifer, second aquiclude and the Tayarat aquifer. Averaged readings of groundwater head from 102 observation wells were used to calibrate the model.
Calculated recharge average was 17.5 mm/year based on the water balance for ~30 years (1980-2008). A sensitivity analysis was performed by using different permeability and recharge values. However, the model showed a rather low sensitivity because the values of the standard error of the estimation were between 2.27 m and 3.56 m. Models with recharge less than 11.85 mm/year or more than 60 mm/year did not converge and thus failed to produce a result. Models with Kf values from 1.1-3 to 1.1-4 m/s for aquifers and from 1.1-7 to 1.1-8 m/s for aquicludes converged.
Water budget is about 2.17*10¹⁰ m³/year; by irrigating the greenhouses this budget will cover only 1.75% of the total area. However, this value could be upgraded up to 8 – 9 % by utilizing the groundwater inflow from Saudi Arabia.:List of Content Page
Dedication ………………………………..………………..2
Acknowledgment ………………………………..………………..3
List of contents …………………………………..……………..4
List of Figures ………..……………………………..….......…8
List of Tables ………..……………………………….…….…9
List of abbreviations ………..……………………………….………10
English Abstract ……………………………………….………..12
German Abstract ..………………...…………………….……….14
1 Introduction ………..……………………………….………16
1-1 Preface ………..……………………………….………16
1-2 Region of interest ………..……………………………….………16
1-3 Previous Studies ………..……………………………….………17
1-3-1 Local studies ………..……………………………….………17
1-3-1-1 Hydrogeological Studies ………..………………………….…….17
1-3-1-2 Remote Sensing Studies ………..………………………….…….18
1-3-2 Global studies …..……………………………….…….18
1-3-2-1 Groundwater flow and fracture zone ..………………………...19
1-3-2-2 Lineaments extraction ………..…………………………….….19
1-3-2-3 Watershed delineation ………..……………………….……….20
1-4 Importance of investigation area ……………..………………..…24
1-5 Motivation ………..……………………………….…….…24
1-6 Deliverables ………..……………………………….………24
1-7 Problems ………..……………………………….………26
2 Methodology ………..……………………………….………27
2-1 Literature review ………..……………………………….………27
2-2 Personal contact ………..……………………………….………27
2-3 Field work ………..……………………………….………27
2-4 Evaluation of geological data ………………………….………27
2-4-1 Geological cross section ….……..……………………….27
2-4-2 Fault system by means of remote sensing techniques …..………28
2-5 Climate and Meteorology..…..………………………………....……28
2-5-1 Meteorological data ………..……………………………….………28
2-5-2 Aridity index ………..……………………………….………28
2-5-3 Groundwater recharge ………..…………………………….….29
2-5-4 Vegetation index ………..……………………………….………29
2-5-5 Actual evaporation ………..……………………………….………30
2-5-6 Soil moisture ………..……………………………….………32
2-5-7 Runoff ………..……………………………….………32
2-6 Hydrogeology ………..……………………………….………34
2-6-1 Pumping test ………..……………………………….………34
2-6-2 Groundwater flow ………..……………………………….………34
2-6-3 Wadi catchment delineation ……………………………….…34
2-6-3-1 Dataset ………..……………………………….………34
2-6-3-2 Approaches ………..……………………………….………34
2-6-3-3 Software packages ………..……………………………….………35
2-6-4 PC options ………..……………………………….………39
2-6-5 Groundwater Model ………..……………………………….………39
2-6-5-1 Conceptual model ………..……………………………….………40
2-6-5-2 Input ………..……………………………….………41
2-6-5-3 Properties ………..……………………………….………41
2-6-5-4 Boundary conditions ………..……………………………….………41
2-6-5-5 Observation wells ………..……………………………….………42
2-6-5-6 Solver ………..……………………………….………42
2-6-5-7 Calibration ………..……………………………….………42
3 Geological setting ………..……………………………….………44
3-1 Preface ………..……………………………….………44
3-2 Tectonic and structure …………………………………………..…...44
3-3 Stratigraphy ………..……………………………….………46
3-3-1 Tayarat formation ………..……………………………….………47
3-3-2 Umm Er Radhumma formation ………………………………....47
3-3-3 Dammam formation ………..……………………………….………48
3-3-4 Euphrates formation………..…………………………………………48
3-4 Topography and Ubaiydh Wadi …………………………………49
4 Climate and meteorology.…………………………………..………51
4-1 Preface ………..……………………………….………51
4-2 Precipitation ………..……………………………….………51
4-3 Temperature ………..……………………………….………52
4-4 Potential evaporation …………………………………………53
4-5 Relative humidity ………..……………………………….………54
4-6 Wind ………..……………………………….………55
4-7 Sunshine duration ………..……………………………….………56
5 Hydrogeology ………..……………………………….………57
5-1 Preface ………..……………………………….………57
5-2 Tayarat aquifer ………..……………………………….………57
5-2-1 Pressure conditions ………..……………………………….………57
5-2-2 Hydraulic characteristics …………………………………………57
5-2-3 Water quality ………..……………………………….………58
5-3 Um Er Radumma aquifer …………………………………………58
5-3-1 Pressure conditions ………..……………………………….………58
5-3-2 Hydraulic characteristics …………………………………………58
5-3-3 Water quality ………..……………………………….………59
5-4 Dammam aquifer ………..……………………………….………59
5-4-1 Pressure conditions ………..……………………………….………59
5-4-2 Hydraulic characteristics …………………………………………60
5-4-3 Water quality ………..……………………………….………60
6 Result and discussion …………………………………………61
6-1 Topographic contour map …………………………………………61
6-2 Geological cross section …………………………………………62
6-3 Lineaments evaluation …………………………………………65
6-4 Groundwater flow ………..……………………………….………66
6-5 Pumping test evaluation …………………………………………70
6-6 Catchment calculation …………………………………………72
6-7 Water balance and Recharge ……………………………….…76
6-8 Groundwater model ………..……………………………….………78
6.8.1 Model sensitivity ………..……………………………….………80
6.8.2 Groundwater management ……………………………….…83
7 Conclusion and recommendations …………………………………84
7.1 Conclusion ………..……………………………….…….…84
7.2 Recommendations ………..……………………………….…….…85
8 References ………..……………………………….………86
9 Appendixes ………..……………………………….………90
10 Field work Photos ………..……………………………….………115
11 Author CV. ………..……………………………….………116 / Das Untersuchungsgebiet umfasst eine Fläche von etwa 100.000 km² und ist Teil der westlichen irakischen Wüste. Einige der großen Wadis wie Hauran, Amij, Ghadaf, Tubal und Ubaiydh durchqueren die gesamte Region und entwässern in den Euphrat.
Die vorliegende Arbeit umfasst folgende hydrogeologische Untersuchungen:
Die Interpretation der Lineamente wurde anhand verschiedener Datensätze (SRTM 30 m und Landsat ETM 15 m) und unter Nutzung unterschiedlicher Algorithmen durchgeführt.
Einige Störungen, welche während Feldmessungen identifiziert wurden, stimmen gut mit automatisch extrahierten Lineamenten überein, der Unterschied zwischen Feld- und Fernerkundungsdaten ist somit gering.
Die Ermittlung der Grundwasserfließrichtungen (von West nach Ost) der drei Aquifere erfolgte unter Nutzung verschiedener Algorithmen zur räumlichen Interpolation. Es zeigte sich, dass die Störungen zu einer leichten Veränderung der Fließrichtung mit zunehmender Nähe zur Störungszone führen.
Zwei Pumpversuche in den Brunnen 9 und 17 wurden nahe der Störung 2 im ungesättigten Aquifer Dammam durchgeführt. Die Auswertung der Ergebnisse der Pump- und Wiederanstiegsversuche erfolgte mittels des analytischen Modells MLU für Windows.
Es zeigte sich, dass Brunnen 17 eine leicht höhere Transmissivität aufweist (T = 0,1048 m²/min) im Vergleich zu Brunnen 9 (T = 0,0832 m²/min). Dies unterstützt die Annahme der Existenz einer Zone erhöhter Permeabilität zwischen den Störungen 1 und 2, verursacht durch tektonischen Stress und die Antiklinalstruktur.
Die Erfassung von Einzugsgebiet und Wasserscheiden erfolgte anhand von vier GIS-Paketen unter Nutzung von 3 DTM’s: 90 m und 30 m SRTM (Shuttle Radar Topography Mission) sowie ASTER 30 m. Genaue Daten aus einer Feldkampagne und eine manuelle Abgrenzung des Einzugsgebietes derselben Region standen zur Verfügung (Division 1944). Als Software kamen Arc Hydrotools, TNTmips, River Tools und TecDEM zum Einsatz.
Zehn SRTM- (90 m) und zwölf ASTER-Files (30 m) wurden mittels ArcGIS vereinigt. Ein 30 m SRTM-Datensatz des Irak (bereitgestellt durch die US-Armee) diente als Grundlage für das Ausschneiden des Untersuchungsgebietes (ROI) mit Hilfe von ArcGIS. An beiden DTM Datensätzen wurden vor der Ermittlung des Einzugsgebietes mit den genannten Software-Produkten keine zusätzlichen Schritte durchgeführt. Als Resultat ergaben sich signifikante Unterschiede zwischen den 30 m und 90 m Datensätzen sowie der verschiedenen Software.
Das in Visual Modflow V.4.2 implementierte Grundwassermodell wurde aus fünf Hauptschichten bestehend aus Dammam Aquifer, erster Stauer, UmEr Duhmma Aquifer, zweiter Stauer und Tayarat Aquifer aufgebaut. Durchschnittliche Werte der Grundwasserstände aus 102 Observationsbrunnen dienten der Kalibrierung des Modells.
Die berechnete mittlere Grundwasserneubildung betrug 17,5 mm/a, basierend auf dem Wasserhaushalt der letzten 30 Jahre (1980-2008). Unter Einbeziehung verschiedener Werte für Permeabilität und Grundwasserneubildung wurde eine Sensitivitätsanalyse durchgeführt. Dabei ergab sich allerdings eine geringe Empfindlichkeit des Modells, resultierend aus einer Standardabweichung der Schätzung zwischen 2,27 m und 3,56 m. Modelle mit einer Grundwasserneubildung kleiner 11,85 mm/a und größer 60 mm/a zeigten keine Konvergenz und führten somit zu keinem Ergebnis. Modelle mit kf Werten zwischen 1.1-3 und 1.1-4 m/s für Aquifere und zwischen 1.1-7 und 1.1-8 m/s für Grundwasserstauer konvergierten.
Die Grundwasserneubildung betrug etwa 2,17∙10¹⁰ m³/a, für die Bewässerung von Gewächshäusern deckt diese Summe nur 1,75% des gesamten Gebietes ab. Allerdings könnte dieser Wert durch die Nutzung des Grundwasserzuflusses aus Saudi Arabien auf 8 – 9% gesteigert werden.:List of Content Page
Dedication ………………………………..………………..2
Acknowledgment ………………………………..………………..3
List of contents …………………………………..……………..4
List of Figures ………..……………………………..….......…8
List of Tables ………..……………………………….…….…9
List of abbreviations ………..……………………………….………10
English Abstract ……………………………………….………..12
German Abstract ..………………...…………………….……….14
1 Introduction ………..……………………………….………16
1-1 Preface ………..……………………………….………16
1-2 Region of interest ………..……………………………….………16
1-3 Previous Studies ………..……………………………….………17
1-3-1 Local studies ………..……………………………….………17
1-3-1-1 Hydrogeological Studies ………..………………………….…….17
1-3-1-2 Remote Sensing Studies ………..………………………….…….18
1-3-2 Global studies …..……………………………….…….18
1-3-2-1 Groundwater flow and fracture zone ..………………………...19
1-3-2-2 Lineaments extraction ………..…………………………….….19
1-3-2-3 Watershed delineation ………..……………………….……….20
1-4 Importance of investigation area ……………..………………..…24
1-5 Motivation ………..……………………………….…….…24
1-6 Deliverables ………..……………………………….………24
1-7 Problems ………..……………………………….………26
2 Methodology ………..……………………………….………27
2-1 Literature review ………..……………………………….………27
2-2 Personal contact ………..……………………………….………27
2-3 Field work ………..……………………………….………27
2-4 Evaluation of geological data ………………………….………27
2-4-1 Geological cross section ….……..……………………….27
2-4-2 Fault system by means of remote sensing techniques …..………28
2-5 Climate and Meteorology..…..………………………………....……28
2-5-1 Meteorological data ………..……………………………….………28
2-5-2 Aridity index ………..……………………………….………28
2-5-3 Groundwater recharge ………..…………………………….….29
2-5-4 Vegetation index ………..……………………………….………29
2-5-5 Actual evaporation ………..……………………………….………30
2-5-6 Soil moisture ………..……………………………….………32
2-5-7 Runoff ………..……………………………….………32
2-6 Hydrogeology ………..……………………………….………34
2-6-1 Pumping test ………..……………………………….………34
2-6-2 Groundwater flow ………..……………………………….………34
2-6-3 Wadi catchment delineation ……………………………….…34
2-6-3-1 Dataset ………..……………………………….………34
2-6-3-2 Approaches ………..……………………………….………34
2-6-3-3 Software packages ………..……………………………….………35
2-6-4 PC options ………..……………………………….………39
2-6-5 Groundwater Model ………..……………………………….………39
2-6-5-1 Conceptual model ………..……………………………….………40
2-6-5-2 Input ………..……………………………….………41
2-6-5-3 Properties ………..……………………………….………41
2-6-5-4 Boundary conditions ………..……………………………….………41
2-6-5-5 Observation wells ………..……………………………….………42
2-6-5-6 Solver ………..……………………………….………42
2-6-5-7 Calibration ………..……………………………….………42
3 Geological setting ………..……………………………….………44
3-1 Preface ………..……………………………….………44
3-2 Tectonic and structure …………………………………………..…...44
3-3 Stratigraphy ………..……………………………….………46
3-3-1 Tayarat formation ………..……………………………….………47
3-3-2 Umm Er Radhumma formation ………………………………....47
3-3-3 Dammam formation ………..……………………………….………48
3-3-4 Euphrates formation………..…………………………………………48
3-4 Topography and Ubaiydh Wadi …………………………………49
4 Climate and meteorology.…………………………………..………51
4-1 Preface ………..……………………………….………51
4-2 Precipitation ………..……………………………….………51
4-3 Temperature ………..……………………………….………52
4-4 Potential evaporation …………………………………………53
4-5 Relative humidity ………..……………………………….………54
4-6 Wind ………..……………………………….………55
4-7 Sunshine duration ………..……………………………….………56
5 Hydrogeology ………..……………………………….………57
5-1 Preface ………..……………………………….………57
5-2 Tayarat aquifer ………..……………………………….………57
5-2-1 Pressure conditions ………..……………………………….………57
5-2-2 Hydraulic characteristics …………………………………………57
5-2-3 Water quality ………..……………………………….………58
5-3 Um Er Radumma aquifer …………………………………………58
5-3-1 Pressure conditions ………..……………………………….………58
5-3-2 Hydraulic characteristics …………………………………………58
5-3-3 Water quality ………..……………………………….………59
5-4 Dammam aquifer ………..……………………………….………59
5-4-1 Pressure conditions ………..……………………………….………59
5-4-2 Hydraulic characteristics …………………………………………60
5-4-3 Water quality ………..……………………………….………60
6 Result and discussion …………………………………………61
6-1 Topographic contour map …………………………………………61
6-2 Geological cross section …………………………………………62
6-3 Lineaments evaluation …………………………………………65
6-4 Groundwater flow ………..……………………………….………66
6-5 Pumping test evaluation …………………………………………70
6-6 Catchment calculation …………………………………………72
6-7 Water balance and Recharge ……………………………….…76
6-8 Groundwater model ………..……………………………….………78
6.8.1 Model sensitivity ………..……………………………….………80
6.8.2 Groundwater management ……………………………….…83
7 Conclusion and recommendations …………………………………84
7.1 Conclusion ………..……………………………….…….…84
7.2 Recommendations ………..……………………………….…….…85
8 References ………..……………………………….………86
9 Appendixes ………..……………………………….………90
10 Field work Photos ………..……………………………….………115
11 Author CV. ………..……………………………….………116
|
78 |
Potential Use of Abandoned Underground Coal Mine AS-029 as a Reservoir for Ground Source Heat Pumps, Athens, OHMadera-Martorell, Andreana 23 September 2020 (has links)
No description available.
|
79 |
Groundwater Flow Across the Coyote Wash Fault and Cedar Mesa Anticline near St. Johns, ArizonaLatour, Stephanie Lynn 14 August 2023 (has links) (PDF)
As the demand for water increases across the southwestern United States, the region's utilization of and dependence on water stored in groundwater aquifers has risen in kind. The Coconino Aquifer (C-aquifer) underlies much of the southwestern Colorado Plateau and is a primary source of groundwater in northeastern Arizona. One of the largest commercial users of water from the C-aquifer in Apache County, Arizona, is Springerville Generating Station, a coal-fired power plant owned and operated by Tucson Electric Power. The area surrounding the power plant, located between the cities of Springerville and St. Johns, Arizona (the Springerville-St. Johns area), is geologically complex: it contains the Cedar Mesa anticline, an underlying CO2 reservoir, extensive travertine deposits, and several faults, including the Coyote Wash fault. The Coyote Wash fault and Cedar Mesa anticline play a significant role in the relationships between the St. Johns CO2 gas field, groundwater flow, and the travertine deposits. Yet, the interaction between the structures and the effect they have on groundwater flow is poorly constrained. By mapping the subsurface geology utilizing borehole records and by creating a groundwater model of the area, this study determined that the Cedar Mesa anticline acts as a partial horizontal barrier to groundwater flow, whereas the Coyote Wash fault does not act as such a barrier. Particle tracking for the model indicates that despite the reduced water volume in the aquifer after decades of groundwater extraction, flow still occurs across the hinge of the Cedar Mesa anticline, accelerated by active pumping wells located west of the anticline axis. The model indicates that prior to the activation of the pumping wells, outflow from the C-aquifer would have occurred with greater frequency to Lyman Lake and along the extent of the Little Colorado River located downstream from the lake. The study also identified a zone of high hydraulic conductivity located between the Cedar Mesa anticline and the Coyote Wash fault that continues west of the Coyote Wash fault and may align with the Buttes anticline. This model of groundwater flow conditions improves the understanding of the complex subsurface geology and groundwater flow dynamics in the area.
|
80 |
GROUND WATER FLOW MODELING AND TRANSIENT PARTICLE TRACKING, APPLICATIONS FOR THE TRANSPORT OF <i>CRYPTOSPORIDIUM PARVUM</i> IN AN UNCONFINED BURIED BEDROCK VALLEY AQUIFER, SPRINGFIELD, OHIOMERK, BRENDAN PAUL January 2005 (has links)
No description available.
|
Page generated in 0.0467 seconds