71 |
A Hybrid Quadrature Polar Modulator for Enhancing Average-Efficiency of 3G Mobile Transmitter with Power ControlChen, Chi-Tsan 03 September 2007 (has links)
This thesis aims to use a hybrid quadrature polar modulator (HQPM) for enhancing average efficiency of 3G mobile transmitter with power control. The HQPM consists of a quadrature modulator instead of a phase modulator in the polar modulator for processing the RF modulated carrier and a Class-S modulator for processing the envelope signal. In addition, the instantaneous magnitude of the quadrature modulated signal is propotional to the instantaneous envelope magnitude. As a result, the output feed-through and gain-compression phenomenon in the polar modulator can be improved. The digital baseband processor realized by FPGA can generate CDMA2000 1x baseband signal with excellent modulation accuracy. For enhancing the average transmit efficiency, the output PA is realized as Class-E design. But the Vdd/AM and Vdd/PM nonlinear effects of the Class-E PA distort the output signal. To solve this problem, a digital predistorter is presented to compensate the nonlinear distortions. The proposed HQPM-based transmitter can simultaneously achieve high efficiency and high linearity over a wide modulated output power range.
|
72 |
The Sigma-Delta Modulator as a Chaotic Nonlinear Dynamical SystemCampbell, Donald O. January 2007 (has links)
The sigma-delta modulator is a popular signal amplitude quantization error (or noise) shaper used in oversampling analogue-to-digital and digital-to-analogue converter systems. The shaping of the noise frequency spectrum is performed by feeding back the quantization errors through a time delay element filter and feedback loop in the circuit, and by the addition of a possible stochastic dither signal at the quantizer. The aim in audio systems is to limit audible noise and distortions in the reconverted analogue signal. The formulation of the sigma-delta modulator as a discrete dynamical system provides a useful framework for the mathematical analysis of such a complex nonlinear system, as well as a unifying basis from which to consider other systems, from pseudorandom number generators to stochastic resonance processes, that yield equivalent formulations.
The study of chaos and other complementary aspects of internal dynamical behaviour in previous research has left important issues unresolved. Advancement of this study is naturally facilitated by the dynamical systems approach. In this thesis, the general order feedback/feedforward sigma-delta modulator with multi-bit quantizer (no overload) and general input, is modelled and studied mathematically as a dynamical system. This study employs pertinent topological methods and relationships, which follow centrally from the symmetry of the circle map interpretation of the error state space dynamcis. The main approach taken is to reduce the nonlinear system into local or special case linear systems. Systems of sufficient structure are shown to often possess structured random, or random-like behaviour.
An adaptation of Devaney's definition of chaos is applied to the model, and an extensive investigation of the conditions under which the associated chaos conditions hold or do not hold is carried out. This seeks, in part, to address the unresolved research issues. Chaos is shown to hold if all zeros of the noise transfer function lie outside the unit circle of radius two, provided the input is either periodic or persistently random (mod delta). When the filter satisfies a certain continuity condition, the conditions for chaos are extended, and more clear cut classifications emerge. Other specific chaos classifications are established. A study of the statistical properties of the error in dithered quantizers and sigma-delta modulators is pursued using the same state space model. A general treatment of the steady state error probability distribution is introduced, and results for predicting uniform steady state errors under various conditions are found. The uniformity results are applied to RPDF dithered systems to give conditions for a steady state error variance of delta squared over six. Numerical simulations support predictions of the analysis for the first-order case with constant input. An analysis of conditions on the model to obtain bounded internal stability or instability is conducted. The overall investigation of this thesis provides a theoretical approach upon which to orient future work, and initial steps of inquiry that can be advanced more extensively in the future.
|
73 |
Third Order Continuous-Time Sigma-Delta Modulator with 1.5bit QuantizerKang, Ruei-Gen 30 August 2011 (has links)
The thesis proposes a third order continuous-time sigma delta modulator used in GSM. We used a special 1.5bit quantizer, and to use its three different states to reach a differential feedback path. That can improve the resolution of our circuit.
Oversampling and noise shaping are two keys of sigma delta modulator. In structure, the continuous-time features can reduce power consumption.
The proposed sigma delta modulator uses TSMC 0.35 m CMOS process and its sampling frequency is 10.8MHz, bandwidth is200KHz and oversampling ratio is 32.
|
74 |
InP-Based Electro-Absorption Modulator Structures Grown and DLTS SystemChang, Chun-Ying 08 July 2004 (has links)
The thesis includes two aspects. The first part includes designs and optical study of electro-absorption modulator structures. Three structures are designed near 1.5
|
75 |
New-Geometrical-Structure Traveling-Wave Electroabsorption Modulator by Wet EtchingTai, Chih-Yu 25 June 2005 (has links)
Abstract
In this thesis, we propose a new geometrical structure of waveguide for the application of traveling-wave electroabsorption modulator (TWEAM). As approaching to high-speed performance in TWEAM, low parasitic capacitance in the waveguide is necessary to get good microwave propagation properties. In this work, a novel processing called two-step undercut-etching the active region (UEAR) is developed to reduce the parasitic capacitance.
First of all, Beam Propagation Method (BPM) is used to calculate this 2-D structure optical modes ensuring the guiding capability in such kind of waveguides. Based on an equivalent circuit model, the microwave propagation on different structures of waveguide is then investigated to decide the UEAR waveguide structure.
By the selectively etching solution on InP/InGaAsP, the processing by two-step UEAR is developed to reduce the parasitic capacitance in the waveguide core. H3PO4:HCl is used to selectively etch P-InP layer on the top of InGaAsP M.Q.W. (multiple quantum wells, active region). H3PO4:H2O2:H2O is subsequently and selectively remove InGaAsP M.Q.W.s to define the waveguide core.
This processing has been successfully developed. The electrical transmission measurement on this kind of TWEAM shows low reflection S11 of < -17.5dB and a low insertion loss S21 of < ¡V2.7dB from D.C. to 40GHz, indicating high microwave performance on such two-step UEAR waveguide can be achieved due to the low parasitic capacitance.
|
76 |
Design and Implementation of HBT MMICs for W-CDMA Applications Including Evaluation of Package and PCB EffectsWu, Jian-Ming 08 June 2006 (has links)
This research aims to design and implement GaAs HBT MMICs for the two crucial components in W-CDMA transmitters, quadrature modulator and upconverter, with thorough evaluation of the package and PCB effects. To construct a strong theoretical foundation, the small-signal modeling of HBTs and the EM-characterization of package and PCB interconnects are intensively studied. In this dissertation, a novel extrinsic-inductance independent approach is developed for direct extraction of the intrinsic elements in a hybrid-pi equivalent circuit of HBTs. The interconnects of leadless RFIC packages and test PCBs are investigated using the 3-D EM simulation tools and transformed into the equivalent circuits for co-analysis with the designed HBT MMICs. The first HBT MMIC design is a W-CDMA direct-conversion quadrature modulator incorporating a new 90 degrees phase shifter. Although the proposed 90 degrees phase shifter has a remarkable advantage over the others in implementation loss, it is rather susceptible to the package and PCB effects, resulting in a moderate degradation of EVM. The second HBT MMIC design is a W-CDMA upconverter incorporating a popular micromixer. Although the micromixer-based upconverter consumes much less current at low output powers to achieve the same high linearity when compared to a Gilbert mixer-based design, it is quite susceptible to the package and PCB effects, causing a significant degradation in ACPR. Comparison between theory and measurement shows good agreement in evaluating the influences of package and PCB interconnects on both HBT MMICs.
|
77 |
Investigation and Fabrication of the Integration of Traveling- Wave Electroabsorption Modulator and Optical Mode Converter using Wet-Etching methodTsai, Shun-An 10 July 2006 (has links)
Electro¡VAbsorption Modulator has become a very important element in optical fiber communication due to its capability of integrating with other semiconductor devices. In order to get high-speed performance, the small size of waveguides is necessary. But it also brings to high coupling loss, resulting in low optical fiber link. In general, the waveguide mode is elliptical shape with sizes of 1¡Ñ2£gm to 1¡Ñ3£gm, which will definitely lead to high mode mismatch as adapted to conventional single¡Vmode optical fibers of 8£gm circular mode and cause 7~10 dB insertion loss[21]. Typically, micro lens, tapered fibers or taper optical waveguides are used to confine optical fiber mode to waveguide in order to reduce the insertion loss. In the thesis, we have developed a novel structure of tapered optical spot-size mode converter monolithically integrated with traveling-wave electro-absorption modulator (TWEAM) by using whole wet-etching processing.
The optical waveguides are fabricated by wet-etching and subsequent selective undercut etching. By adjusting the wet-etching time, the waveguide core for TWEAM and the tapered spot-size mode converter can thus be engineered. The selective undercut wet etching not only can reduce the optical scattering loss, but also decrease the parasitic capacitance, leading to high optical and microwave transmission of TWEAM. Based on the model described in literature [4-8] and also Beam Propagation Method (BPM), the optical index of epi-layers is used to calculate the three¡Vdimension modal of optical mode and coupling efficiency. The microwave equivalent circuit is used to calculate and design device structure.
In this thesis, the Spot¡VSize Converter monolithically with Traveling¡VWave Electro¡VAbsorption Modulator device is successfully fabricated and demonstrated. TWEAM integrated spot-size optical mode converter is measured and compared with single TWEAM (without converter) with optical wavelength of from 1550nm to 1570nm. The average optical insertion loss of about 4dB is found. The maximum extinction-ratio is about 21dB with modulation efficiency of 21dB/V, E-O response about 12GHz of ¡V3dB bandwidth at 50£[ termination is demonstrated.
|
78 |
Design And Implementation Of A Broadband I-q Vector Modulator And A Feedforward Linearizer For V/uhf BandUnlu Ozkaya, Ayse 01 February 2010 (has links) (PDF)
Considering the requirements of the commercial and military applications on amplitude and phase linearity, it is necessary to reduce nonlinearity of the amplifiers. There are several linearization techniques that are used to reduce nonlinearity effects. Feedforward linearization technique is known as one of the best linearization methods due to its superior linearization performance and broadband operation. Vector modulators which allows amplitude and phase modulation simultaneously, is the most important component of a feedforward system.
In this thesis, first of all a broadband V/UHF vector modulator designed and implemented. Then a feedforward system is investigated and implemented using the designed vector modulator for V/UHF band.
|
79 |
Applications of Two-Point Delta-Sigma Modulation to FHSS TransmittersPan, Chi-Nan 09 July 2003 (has links)
In the first, a time-variant modulus phase lock loop(PLL) model is established. Applying the model, Theorems of fractional-N synthesizers are introduced. We also explain theorems and simulations of Closed-Loop Modulation and Two-Point Delta Sigma Modulation with the model. In the end, a 2.4GHz FHSS transmitter using Two-Point Delta Sigma Modulation which meets Bluetooth specifications is demonstrated.
|
80 |
Design of a 125 mhz tunable continuous-time bandpass modulator for wireless IF applicationsLiu, Xuemei 12 April 2006 (has links)
Bandpass sigma-delta modulators combine oversampling and noise shaping to get
very high resolution in a limited bandwidth. They are widely used in applications that
require narrowband high-resolution conversion at high frequencies. In recent years interests
have been seen in wireless system and software radio using sigma-delta modulators to
digitize signals near the front end of radio receivers. Such applications necessitate clocking
the modulators at a high frequency (MHz or above). Therefore a loop filter is required in
continuous-time circuits (e.g., using transconductors and integrators) rather than discretetime
circuits (e.g., using switched capacitors) where the maximum clocking rate is limited
by the bandwidth of Opamp, switchÂs speed and settling-time of the circuitry.
In this work, the design of a CMOS fourth-order bandpass sigma-delta modulator clocking
at 500 MHz for direct conversion of narrowband signals at 125 MHz is presented. A new
calibration scheme is proposed for the best signal-to-noise-distortion-ratio (SNDR) of the
modulator. The continuous-time loop filter is based on Gm-C resonators. A novel
transconductance amplifier has been developed with high linearity at high frequency. Qfactor
of filter is enhanced by tunable negative impedance which cancels the finite output
impendence of OTA. The fourth-order modulator is implemented using 0.35 mm triplemetal
standard analog CMOS technology. Postlayout simulation in CADENCE
demonstrates that the modulator achieves a SNDR of 50 dB (~8 bit) performance over a 1
MHz bandwidth. The modulatorÂs power consumption is 302 mW from supply power of ±
1.65V.
|
Page generated in 0.0634 seconds