• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 9
  • 8
  • 4
  • Tagged with
  • 36
  • 36
  • 19
  • 17
  • 14
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Gradation-Based Framework for Asphalt Mixtures

Lira Miranda, Bernardita Francisca January 2012 (has links)
Asphalt mixture microstructure is formed by aggregates, bitumen binder and air voids. Aggregates make for up to 90% of the mixtures volume and the structure formed by them will depend mostly on their size distribution and shape. The study presented in this thesis has as main objective to develop a framework that allows the characterization of asphalt mixtures based on the aggregates gradation and its impact on pavement performance. Moreover, the study aims to identify the range of aggregate sizes which form the load carrying structure, called Primary Structure, and determine its quality. The method has been developed as a numerical procedure based on packing theory of spheres. Parameters like porosity, coordination number and disruption factor of the Primary Structure; and a binder distribution parameter for the different sub-structures have been used to evaluate the quality of the load carrying structure and predict the impact on several failure modes. The distribution of bitumen binder has been derived from a geometrical model which relates porosity of the mixture with film thickness of particles considering the overlapping reduction as the film grows. The model obtained is a closer approximation to a physical characteristic of the compacted mixture separated according to different elements of the structure. The framework has been evaluated on several field and laboratory mixtures and predictions have been made about their rutting performance and moisture resistance. The calculated parameters have compared favourably with the performances reported from the field and laboratory testing. The developed gradation analysis framework has proven to be a tool to identify those mixtures with a poor rutting performance based on the gradation of the aggregates. The Gradation - Based Framework has satisfactory distinguished between good and bad performance of asphalt mixtures when related to permanent deformation and moisture damage. The calculated parameters have allowed identifying and understanding the main mechanisms and variables involved in permanent deformation and moisture damage of asphalt mixtures. The developed model can be used as a tool to determine the optimal gradation to assure good performance for hot mix asphalt pavements. / QC 20120626
12

The Effects of Coarse Aggregate Cleanliness on Asphalt Concrete Compactability and Moisture Susceptibility

Williams, Kevin Lamar 11 August 2012 (has links)
Twelve field projects were studied where fortyour locations were evaluated to assess the cause or causes of asphalt concrete that exhibits ‘tender zone’ characteristics and to investigate the tendency of these mixes to be susceptible to moisture damage. Data was collected during construction and samples were obtained to conduct laboratory tests. Field and laboratory data was used to develop multiple regression equations to predict final in place air voids and moisture susceptibility. The overall conclusion was that compactability appeared to be predicted in a reasonable manner while moisture susceptibility did not. The Methylene Blue test appears promising when used in conjunction with cold feed and/or mix moisture as a means of providing guidance for achieving higher in place density. The tensile strength ratio (TSR) test as performed in this research on laboratory compacted specimens was found to be questionable in terms of its ability to predict field moisture susceptibility.
13

The Use of Atomic Force Microscopy in Evaluating Warm Mix Asphalt

Abu Qtaish, Lana 12 June 2013 (has links)
No description available.
14

Reducing Moisture Damage in Asphalt Mixes Using Recycled Waste Additives

Boyes, Anthony John 01 December 2011 (has links) (PDF)
This thesis has determined that using fly ash as a mineral filler in asphalt pavements can help strengthen and reduce asphalt moisture damage. Also, dynamic shear rheometer tests show that these additives have a stiffening effect on asphalt binder. Moisture related damage is considered one of the main causes of asphalt pavement failure. As water infiltrates a layer of asphalt, it slowly strips away asphalt binder, weakening the aggregate/binder bond. This process, combined with the cyclic loading of traffic, can lead to several different types of asphalt failure including rutting, raveling, bleeding, and cracking. For several decades, research has been conducted to find a solution to this problem. Currently in practice, hydrated lime and a variety of amine-based chemicals are being used as anti-stripping agents. However, as an emphasis towards sustainability has increased, waste products are now being investigated for this purpose. This thesis investigated the anti-stripping effectiveness of two waste products: fly ash and cement kiln dust (CKD), and compared them with hydrated lime and an amine-based chemical additive. The results indicate that class C fly ash can be used as an asphalt anti-stripping additive; however it is more costly than lime or amine chemicals.
15

Moisture Content and Mould Risk in Concrete Outer Walls / Fuktinnehåll och Mögelrisk i Ytterväggar av Betong

Björnsdóttir, Jóhanna Eir, Jóhannsson, Jóhann Björn January 2018 (has links)
Previous studies on the typical Icelandic external wall have shown thatcondensation occurs at the interior surface of the concrete and field inspectionshave supported this conclusion. The primary objective ofthis study is to analyse the hygrothermal behaviour of the typical Icelandicwall and evaluate the mould risk at the interior surface of theconcrete.A comparative study is performed to compare the hygrothermalperformance and mould growth risk of two concrete outer wall structureswith interior and exterior insulation, by performing a parametricstudy using the simulation program WUFI® Pro.Additional parametric studies are performed in order to analyse theeffect of various material properties of the Icelandic building materialson the hygrothermal behaviour of the wall. This part also utilizedWUFI® Pro.To investigate the thermal bridge of the Icelandic wall, simulationswere conducted with the COMSOL Multiphysics software to evaluatethe linear thermal bridge and the risk of condensation at the joint.Lastly, an experiment was set up at the Innovation Center Iceland tomodel the interior insulated wall-slab section. The experimental setupwas completed during this time but the results will be analysedfurther after the thesis work.The results from this study indicate that the typical Icelandic wall ismore sensitive to rain than to interior moisture load and that no condensationoccurs within the wall structure. As concrete is inorganic,the risk of mould growth in the wall structure is limited, however,with increased driving rain load the mould risk increases. The resultsalso revealed that the moisture content of the interior insulated wallwas a great deal higher compared to the exterior insulated wall. Furthermore,the humidity level at the interior surface of the concrete inthe interior insulated wall exceeded the recommended critical humiditylevel based on general suggestions. Finally, results indicated thatusing a more dense concrete resulted in higher relative humidity at theinterior surface but a lower total water content of the wall.
16

Performance Assessment of Warm Mix Asphalt (WMA) Pavements in Presence of Water by Using Nano scale Techniques, and Traditional Laboratory Tests

Al-Rawashdeh, Abdalla S. 11 September 2012 (has links)
No description available.
17

Byggföretagens hantering av fuktsäkerhetsprojektering – med fokus på projektörer / The Management of Moisture Safety Design by the Construction Companies   – with focus on the Planners

Aghaie Azghandi, Mohammed Ali, Ahmad, Omar January 2019 (has links)
Fuktskador uppstår vanligtvis på grund av felaktig planering, projektering och utförande under hela byggprocessen. Dessa felaktigheter resulterar i stora åtgärdskostnader som kan minimeras eller till och med elimineras om fuktsäkerhetsarbetet är väl genomförd. Projekteringsskedet är ett viktigt skede, där en noggrann och korrekt genomförd fuktsäkerhetsprojektering är av stor betydelse för det försatta fuktsäkerhetsarbetet under byggprocessen. Projektörernas roll i detta skede är att utföra en fuktsäkerhetsprojektering utifrån de ställda kraven från byggherren.  Syftet med detta examensarbete är att ta reda på projektörernas val av metod vid genomförandet av fuktsäkerhetsprojektering och granska om behovet av eventuell kompetensutveckling, inom fukt, bland projektörerna är nödvändig.     De två metoder som har använts för att uppnå syftet i detta examensarbete är intervjuer och litteraturstudier.  Målgruppen i detta examensarbete är byggföretagen i Sverige. Det som granskas är hur de hanterar fuktsäkerhetsarbetet i projekteringsskedet, med fokus på hur fuktsäkerhetsprojekteringen utförs. Av de aktörer som medverkar i projekteringsskedet riktas all fokus på projektörerna.   Tre av fem projektörer är missnöjda med den egna fuktkompetensen vilket överensstämmer med de fuktsakkunnigas uppfattning om projektörernas fuktkompetens. Under intervjuerna har flera fuktsakkunniga påpekat behovet av ökat fuktkompetens bland projektörerna. Den bristande fuktkompetensen leder till att projektörerna inte kan beakta eller upptäcka eventuella fuktrisker vid fuktsäkerhetsprojekteringen. Metod som 80 % av projektörerna tillämpar vid fuktsäkerhetsprojektering är ByggaF metoden. Projektörerna kunskap om ByggaF är fortfarande låg enligt de fuktsakkunniga och av den anledningen kan projektörerna inte tillämpa ByggaF metoden i sin helhet. Kompetens och erfarenhet är de viktigaste faktorerna som en projektör måste ha med sig, för att kunna beakta och upptäcka vad som är fel krävs det kunskap samt erfarenhet om vad som är rätt.        Utifrån responsen från både byggnadsnämnden och deltagarna, framgår det att en granskning av dokumentationen gällande fuktsäkerhetsarbetet inte, alltid, begärs in av byggnadsnämnden.    Slutsatsen är att projektörer måste införskaffa sig kompetens inom fukt och ByggaF metoden. / Moisture damage usually occurs due to incorrect planning, design and execution throughout the construction process. These inaccuracies result in large cost of action that can be minimized or even eliminated if the moisture safety work is done properly. The design phase is an important stage and a properly implemented moisture safety design can be of great importance for the moisture safety work during the construction process. The planners’ role at this stage is to carry out a moisture safety work based on the requirements of the developer. The purpose of this exam is to find out the choice of method made by the planners’ in the implementation of moisture safety design and to review the need of competence development among the planners’ about moisture.    The two methods that have been used to achieve the purpose of this exam are interviews and literature studies. The target group in this exam is the construction companies in Sweden. The way of how the companies handle of moisture safety design is being reviewed in the design stage.  Of all involved actors in the design phase, the focus is on the planners'. Three out of five planners' are dissatisfied with their own moisture competence, which is in line with the opinion of the experts' of moisture about the planners' competence.   During the interviews, several experts' of moisture have pointed out the need for increased moisture competence among the planners'. The lack competence means that the planners' cannot consider or detect possible moisture risks during the moisture safety design. The method that is used by 80% of the planners' during moisture safety design is the ByggaF method. The planners' knowledge of ByggaF is still low according to the experts' of moisture and for this reason the planners' cannot apply entirely the ByggaF method. The tools that planners' need to have with them is knowledge and experience. In order to discover what is wrong, you need to have both the knowledge and experience about what is right.  Based on the response from both the building committee and the participants, a review of the documentation regarding the moisture safety work is not always requested by the building committee.  The conclusion is that projectors must acquire competence in both moisture and the ByggaF method.
18

Investigation into Asphalt Concrete Material and Volumetric Properties that Promote Moisture Damage

Lambert, Jean-Luc 19 September 2013 (has links)
The research presented in this thesis: (1) quantifies and qualifies the Surface Free Energy (SFE) of neat and Liquid Anti-Strip (LAS) modified asphalt binders (binder); and (2) identifies volumetric mix properties that inhibit or assist in the susceptibility of Hot Mix Asphalt (HMA) to moisture damage based on time dependent phenomenological mechanical responses. These two research elements provide insight into the physical, chemical, mechanical and volumetric mix properties that inhibit or facilitate moisture damage in HMA. Moisture damage is a mechanism that causes distress and failure in asphalt concrete (AC) pavements due to a loss of durability resulting from the presence of moisture, in the form of a vapour or liquid, originating internally or externally. This reduces the pavements performance by promoting distresses such as: longitudinal cracking, spalling, rutting, shoving, stripping and ravelling. When moisture originates or is introduced in the AC a weakening of adhesion and cohesion of the material occurs, due in part to: binder properties, aggregate properties, volumetric mix properties, environmental conditions, traffic volume and loads, pavement design and construction practices. The research performed was split in two parts. The first part consisted of conducting SFE measurements on two PG 58-34 binders with different sources. One binder was modified with a LAS agent at concentrations of 0.5%, 2.0% and 5.0% by mass of binder and the other binder was kept neat. The neat and LAS modified binders were subjected to short-term aging by oxidation and then tested with a goniometer to determine their SFE and wettability. The SFE measurements revealed that an LAS concentration of 0.5% maximizes: (1) the work of adhesion of an unaged and aged binder, and (2) the ability of the binder to repel water. Furthermore, the process of aging increases the hydrophobicity or tendency of the binder to repel water regardless of the LAS concentration. Hence, an LAS concentration of 0.5% minimizes the potential for moisture damage in HMA. The second part of the research consisted of investigating the potential for moisture damage of seven bituminous type B (Bit B) and eight bituminous type C (Bit C) mix specified by Manitoba Infrastructure and Transportation. Laboratory testing of the resilient modulus and creep compliance was conducted to determine the fundamental mechanical response of the material. The resilient modulus and creep compliance test program were conducted on samples before and after moisture conditioning. As a result of the testing program, it was observed that the susceptibility of AC to moisture damage based on volumetric mix properties can be dependent on the air voids ratio, aggregate gradation and binder content of the mix.
19

Investigation into Asphalt Concrete Material and Volumetric Properties that Promote Moisture Damage

Lambert, Jean-Luc 19 September 2013 (has links)
The research presented in this thesis: (1) quantifies and qualifies the Surface Free Energy (SFE) of neat and Liquid Anti-Strip (LAS) modified asphalt binders (binder); and (2) identifies volumetric mix properties that inhibit or assist in the susceptibility of Hot Mix Asphalt (HMA) to moisture damage based on time dependent phenomenological mechanical responses. These two research elements provide insight into the physical, chemical, mechanical and volumetric mix properties that inhibit or facilitate moisture damage in HMA. Moisture damage is a mechanism that causes distress and failure in asphalt concrete (AC) pavements due to a loss of durability resulting from the presence of moisture, in the form of a vapour or liquid, originating internally or externally. This reduces the pavements performance by promoting distresses such as: longitudinal cracking, spalling, rutting, shoving, stripping and ravelling. When moisture originates or is introduced in the AC a weakening of adhesion and cohesion of the material occurs, due in part to: binder properties, aggregate properties, volumetric mix properties, environmental conditions, traffic volume and loads, pavement design and construction practices. The research performed was split in two parts. The first part consisted of conducting SFE measurements on two PG 58-34 binders with different sources. One binder was modified with a LAS agent at concentrations of 0.5%, 2.0% and 5.0% by mass of binder and the other binder was kept neat. The neat and LAS modified binders were subjected to short-term aging by oxidation and then tested with a goniometer to determine their SFE and wettability. The SFE measurements revealed that an LAS concentration of 0.5% maximizes: (1) the work of adhesion of an unaged and aged binder, and (2) the ability of the binder to repel water. Furthermore, the process of aging increases the hydrophobicity or tendency of the binder to repel water regardless of the LAS concentration. Hence, an LAS concentration of 0.5% minimizes the potential for moisture damage in HMA. The second part of the research consisted of investigating the potential for moisture damage of seven bituminous type B (Bit B) and eight bituminous type C (Bit C) mix specified by Manitoba Infrastructure and Transportation. Laboratory testing of the resilient modulus and creep compliance was conducted to determine the fundamental mechanical response of the material. The resilient modulus and creep compliance test program were conducted on samples before and after moisture conditioning. As a result of the testing program, it was observed that the susceptibility of AC to moisture damage based on volumetric mix properties can be dependent on the air voids ratio, aggregate gradation and binder content of the mix.
20

O Efeito da modificaÃÃo de ligante asfÃltico com o lÃquido da castanha de caju (LCC) na resistÃncia ao dano por umidade em misturas asfÃlticas / Evaluation of moisture damage in hot mixture asphalt (HMA) containing cashew nut shell liquid (CNSL) modified asphalt binder

Edeilto de Almeida Ribeiro 04 July 2011 (has links)
O dano por umidade à um defeito frequente e um dos principais responsÃveis pelo desgaste prematuro de pavimentos. Esta pesquisa apresenta uma avaliaÃÃo do potencial do LCC como modificador de ligante asfÃltico com relaÃÃo à resistÃncia ao dano por umidadeem misturas asfÃlticas.Propriedades fÃsico-quÃmicas do LÃquido da Castanha de Caju (LCC) mostram-se potencialmente Ãteis para conferir ao Cimento AsfÃltico de PetrÃleo (CAP) maior adesÃo com os agregados.Utilizou-se um CAP convencional classificado por penetraÃÃo como 50/70 e um CAP modificado com 2% de LCC caracterizados quÃmica e reologicamente. Os agregados foram caracterizados atravÃs da fluorescÃncia de Raio-X e com relaÃÃo à forma. Foram dosadas, segundo o mÃtodo Superpave, diferentes misturas asfÃlticas contendo como ligante: CAP, CAP modificado com LCC e CAP e cal como fÃler. A caracterizaÃÃo mecÃnica das misturas foi realizada atravÃs dos ensaios Lottman modificado, MÃdulo de ResiliÃncia (MR) e desgaste CÃntabro. Utilizou-se o Processamento Digital de Imagens (PDI) para verificar o deslocamento da pelÃcula de CAP. Constatou-se que o LCC diminuiu a viscosidade e reduziu as Temperaturas de Usinagem e CompactaÃÃo (TUC) do CAP. Ambas as amostras, CAP e CAP modificado com 2% de LCC, foram classificadas como PG 70-28. Os agregados foram classificados como granÃticos, sub-arredondados, com baixa esfericidade e de textura lisa. Os resultados mostraram que a mistura com CAP modificado com LCC apresentou menor percentual de descolamento da pelÃcula de CAP e desempenho mecÃnico satisfatÃrio se comparada Ãs outras misturas analisadas. Espera-se que o LCC possa ser utilizado como aditivo gerando misturas asfÃlticas menos suscetÃveis à aÃÃo deletÃria da Ãgua. / Moisture damage is a frequent distress on pavements and is considered a major contributor to premature deterioration. Physicochemical properties of the Cashew Nut Shell Liquid (CNSL) showed to be potentially useful to improve the adhesion between asphalt binder and aggregates.The main objective of this study is to evaluate the potential of the CNSL modified asphalt binder to increase the hot mixture asphalt (HMA) resistance to moisture damage, and as a promoter of adhesiveness between binder and aggregates.Pure and modified asphalt binders with different CNSL contents were characterized chemically and rheologically. The aggregates were characterized by X-ray fluorescence and using Aggregate Imaging Measurement System (AIMS). HMAs with binders modified with CNSL were designed using the Superpave methodology. HMA mechanical characterization consisted of modified Lottman test, Resilient Modulus and Cantabro. Results were compared with those obtained using two different HMAs: (i) one with conventional asphalt binder and natural aggregates, and (ii) another one using 2% of lime as a filer. The stripping resistance of asphalt binderswere characterizedthrough digital image processing (DIP). The findings showed the CNSL decreased the asphalt binder viscosity. Both, the pure and the modified asphalt binder, were classified as PG 70-28. The granitic aggregates were classified as sub rounded, with low sphericity and smooth texture. The findings showed that the HMA contain binder modified with CNSL had better stripping resistance and behavior mechanical performance than other evaluated HMAs. Itâs expected that the effectiveness of the CNSL can be used as an additive to prevent striping in asphalt mixtures and to provide a greater resistance to breakdown caused by water.

Page generated in 0.0818 seconds