• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 12
  • 12
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Voltage Controlled Non-Volatile Spin State and Conductance Switching of a Molecular Thin Film Heterostructure

Mosey, Aaron 05 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Thermal constraints and the quantum limit will soon put a boundary on the scale of new micro and nano magnetoelectronic devices. This necessitates a push into the limits of harnessable natural phenomena to facilitate a post-Moore’s era of design. Requirements for thermodynamic stability at room temperature, fast (Ghz) switching, and low energy cost narrow the list of candidates. Here we show voltage controllable, room temperature, stable locking of the spin state, and the corresponding conductivity change, when molecular spin crossover thin films are deposited on a ferroelectric substrate. This opens the door to the creation of a non-volatile, room temperature, molecular multiferroic gated voltage controlled device.
2

Controlled Deposition Of Magnetic Molecules And Nanoparticles On Atomically Flat Gold Surfaces

Haque, Md. Firoze 01 January 2008 (has links)
In this thesis I am presenting a detailed study to optimize the deposition of magnetic molecules and gold nanoparticles in atomically flat surfaces by self-assembling them from solution. Epitaxially grown and atomically flat gold surface on mica is used as substrate for this study. These surfaces have roughness of the order one tenth of a nanometer and are perfect to image molecules and nanoparticles in the 1-10 nanometers range. The purpose of these studies is to find the suitable parameters and conditions necessary to deposit a monolayer of nano-substance on chips containing gold nanowires which will eventually be used to form single electron transistors by electromigration breaking of the nanowire. Maximization of the covered surface area is crucial to optimize the yield of finding a molecule/nanoparticle near the gap formed in the nanowire after electromigration breaking. Coverage of the surface by molecules/nanoparticles mainly depends on the deposition time and concentration of the solution used for the self-assembly. Deposition of the samples under study was done for different solution concentrations and deposition times until a self-assembly monolayer covering most of the surface area is obtained. Imaging of the surfaces after deposition was done by tapping-mode AFM. Analysis of the AFM images was performed and deposition parameters (i.e. coverage or molecule/particle size distribution) were obtained. The subjects of this investigation were a molecular polyoxometalate, a single-molecule magnet and functionalized gold nanoparticles. The obtained results agree with the structure of each of the studied systems. Using the optimized deposition parameters found in this investigation, single-electron transport measurements have been carried out. Preliminary results indicate the right choice of the deposition parameters.
3

Magnetic and Thermal Properties of Molecular Magnet [FeII(£G)FeII(£N)(ox)2(Phen)2]n

Ho, Chin-jun 14 June 2007 (has links)
The molecular magnet [FeII(£G)FeII(£N)(ox)2(Phen)2]n, whose chemical formula is C28H16Fe2N4O8 for unity, has been studied by magnetization measurements, neutron diffraction, and field-dependent specific heat. From the magnetization measurements, the quasi-ferrimagnetic behavior at T>Tm region can be well described with alternating Land&#x00E9; factors within 1D Ising chain model. However, in T<Tm region, the construction of long-range magnetic ordering due to the increase of interchain interaction was investigated, which is consistent with the anomaly shown in the low temperature specific heat measurement. Furthermore, an intrinsic antiferromagnetic configuration is deduced from analyzing Bragg pattern of neutron scattering. In specific heat measurement, a £f-type anomaly indicating the long-range magnetic ordering was observed. In addition, the magnetic entropy due to this anomaly is much smaller than expected value indicating the spin fluctuated as short-range ordering at T>Tm.
4

Estudo do tunelamento da magnetização em magnetos moleculares de Mn 12 via q-histerons / Study of magnetization tunneling in Mn 12 molecular magnets through q-hysterons

Almeida, Priscila Todero de, 1988- 11 January 2013 (has links)
Orientador: Kleber Roberto Pirota / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin / Made available in DSpace on 2018-08-23T16:30:39Z (GMT). No. of bitstreams: 1 Almeida_PriscilaToderode_M.pdf: 4163268 bytes, checksum: 28aa8c398a21212739c3588c9ce78593 (MD5) Previous issue date: 2013 / Resumo: O principal objetivo desse trabalho consiste em uma nova abordagem para o tunelamento da magnetização do magneto molecular Mn12, embasado em uma ampliação do modelo de Preisach. Introduziremos novos operadores que levam em conta a possibilidade de efeitos quânticos. Implementamos esse novo modelo num programa de simulação que é capaz de simular curvas de histerese e curvas de relaxação magnética sem recorrer a resolução de hamiltonianas de spin. Além disso, este programa utiliza simulação estocástica, apresentando os resultados em poucos minutos. Os resultados obtidos concordam com os experimentos realizados de histerese e relaxação magnética. Apesar de ser um modelo de simulação simples, reproduz adequadamente a fenomenologia, pois introduz os dois ingredientes essenciais de um sistema com inversão da magnetização por efeito túnel termicamente ativado: a ativação térmica, descrita pela ocupação de níveis segundo a distribuição de Boltzmann e a possibilidade do efeito túnel descrita pelo modelo de Landau¿Zenner. A consistência física do modelo é estudada através da variação de parâmetros do modelo de forma sistemática / Abstract: The main objective of this work consists of a new approach concerning the tunneling of the magnetization of the molecular magnet Mn12, based on an extension of the Preisach model. We will introduce new operators that take into account the possibility of quantum effects. Thus, we have implemented this new model in a simulation software that is capable of simulating hysteresis curves and magnetic relaxation curves without utilizing resolution of spin Hamiltonians. Also, this program uses stochastic simulation, presenting the results in only a few minutes. The results obtained agree with the hysteresis and relaxation experiments. Despite being a simple simulation model, it adequately reproduces the phenomenology, because it introduces two key ingredients of a system with inversion of magnetization by thermally activated tunnel effect: the thermal activation, described by the occupation of levels according to the Boltzmann distribution and the possibility of tunnel effect described by the Landau-Zenner model. The physical consistency of the model is studied by systematically varying the model¿s parameters / Mestrado / Física / Mestra em Física
5

Low-Energy Spin Dynamics in geometrically frustrated 3d-Magnets and Single-Ion Spin Systems: µ+SR studies on BaTi0:5Mn0:5O3 and NaCaCo2F7 and 57Fe-Mössbauer spectroscopy on Fe-diluted Li2(Li1-xFex)N

Bräuninger, Sascha Albert 28 February 2020 (has links)
In this work, I present nuclear probe spectroscopy studies, in detail, µ+SR and 57Fe-Mössbauer spectroscopy on solid-state systems with localized magnetic moments of 3d transition-metal ions supported by density functional theory calculations. Local probes are able to extract local quantities, e.g. the spin dynamics of the 57Fe site or the local, mostly interstitial µ+ site to distinguish between di_erent magnetic phases. The density functional theory calculations help to identify the muon site position from which the local quantity depends. My µ+SR studies on frustrated 3d magnets with quenched disorder concern the physics of phase transitions, avoided order-by-disorder, quantum uctuations or the appearance of spin-liquid-by-disorder. µ+SR is able to identify quantum spinliquid-like ground states without symmetry breaking or static magnetic order by the magnetic field at the muon site. BaTi0.5Mn0.5O3 is a magnetically highly-frustrated double perovskite with quenched disorder.It shows no freezing temperature or no frequency dependence of x1as expected for a spin glass. Microscopically, it is proposed that local interactions between magnetic orphan spins, dimers, and magnetic trimers of Mn4+ play an important role. The µ+SR experiment on BaTi0.5Mn0.5O3 shows an increase of the dynamical muon spin relaxation rate below 3 K which saturates down to 0.019 K coexisting with residual short-range magnetic order (<20% of the signal). A clear difference is observed in comparison with the classical cluster-spin glass SrTi0.5Mn0.5O3 which shows a peak of the zero-field muon spin relaxation rate: a persistent low-energy spin dynamics is present in BaTi0.5Mn0.5O3 down to 20 K. My DFT calculations propose a positive muon site insight the Ba plane close to O atoms. Here, a slight preference of the muon site close to Mn4+ is possible which could put the muon close the orphan spins, dimers, and magnetic trimers, respectively, avoiding the nonmagnetic Ti4+ face-sharing octahedra. Theoretically, a specific ground state of BaTi0.5Mn0.5O3 is not proposed. A clear discrimination between a quantum spin liquid ground state and a mimicry state with the appearance of spin-liquid-by-disorder is not possible from the existing data. I present a µ+SR study on the bond-disordered magnetically highly frustrated pyrochlore fluoride NaCaCo2F7. Neutron spectroscopy studies on NaCaCo2F7 revealed static short-range order consistent with a continuous manifold of cluster-like states being a superposition of noncoplanar ψ2(m3z2-r2) and coplanar ψ3(mx2-y2) states with a correlation length of around 16Å. No evidence for static magnetic long-range order is found in NaCaCo2F7 probed by µ+SR confirming the absence of an order-by-disorder mechanism. The experimental results are not consistent with a classical local-planar XY cluster-spin glassiness. In these µSR experiments, two muon sites are observed. The relative occupancy of both muon sites is nearly temperature independent. Muon site I is a collinear diamagnetic F-µ+-F bound state pulling two F- close towards the muon revealed by the muon spin time evolution. To investigate the pure F-µ+-F bound state in a broad temperature range I have performed an additional µ+SR study on CaF2. This study solved open questions of muon diffusion around 290 K which was observed in NaCaCo2F7 as well. The F-µ+-F spin relaxation indicates the slowing down of the magnetic Co2+ spin fluctuations upon cooling towards the NMR spin freezing temperature Tf≈ 2.4 K. The relaxation rate saturates below 800 mK and remains constant down to 20 mK. The dominant part of the magnetic short-range relaxation signal is a dynamical relaxation as probed by longitudinal magnetic-field experiments. Muon site II exhibits a strong dynamical relaxation rate at 290 K and below and shows persistent µ+ spin dynamics down to 20 mK. Qualitatively, muon site II shows persistent µ+ spin dynamics with one order of magnitude higher dynamical relaxation rates compared to muon site I. DFT calculations of a comparison of the unperturbed unit cells of NaCaCo2F7 and NaCaNi2F7, which has shown just one muon site experimentally, are consistent with a decrease of the energy differences of energy minima and support the experimentally observed muon site ambivalence. In summary, the µ+SR studies propose NaCaCo2F7 as a quantum cluster-spin glass candidate. I present a systematic 57Fe-Mössbauer study on highly diluted Fe centers in Li2(Li1-xFex)N as a function of temperature and magnetic field applied transverse and longitudinal with respect to the single-ion anisotropy axis. Here, Fe is embedded in an α-Li3N matrix. The oxidation state of Fe and possible ferromagnetic nature are in controversial discussions in the literature. Below 30 K the Fe centers exhibit a giant magnetic hyperfine field of BA=70.25(2) T parallel to the axis of strongest electric field gradient Vzz=-154.0(1) V / Å 2. This observation is consistent with a Fe1+d7 charge state with unquenched orbital moment and J=7/2. Fluctuations of the magnetic hyperfine field are observed between 50 K and 300 K and described by the Blume two-level relaxation model consistent with single-atomic magnetism as proven by the invariance of Blume relaxation parameters for the concentration tuning x< 0.025 excluding a ferromagnetic nature. From the temperature dependence of the fluctuation rate an Orbach spin-lattice relaxation process is deduced. An Arrhenius analysis yields a single thermal-activation barrier of EA=570(6) K and an attempt frequency v0=309(10) GHz. Mössbauer spectroscopy studies with applied transverse magnetic fields up to 5 T reveal a large increase of the fluctuation rate by two orders of magnitude. In longitudinal magnetic fields a splitting of the fluctuation rate into two branches is observed. The experimental observations are qualitatively reproduced by a single-ion spin Hamiltonian analysis. It demonstrates that for dominant magnetic quantum tunneling relaxation processes a weak axial single-ion anisotropy D of the order of a few Kelvin can cause a two orders of magnitude larger energy barrier for longitudinal spin fluctuations.
6

Landau-Zener transitions in noisy environment and many-body systems

Sun, Deqiang 16 January 2010 (has links)
This dissertation discusses the Landau-Zener (LZ) theory and its application in noisy environments and in many-body systems. The first project considers the effect of fast quantum noise on LZ transitions. There are two important time intervals separated by the characteristic LZ time. For each interval we derive and solve the evolution equation, and match the solutions at the boundaries to get a complete solution. Outside the LZ time interval, we derive the master equation, which differs from the classical equation by a quantum commutation term. Inside the LZ time interval, the mixed longitudinal-transverse noise correlation renormalizes the LZ gap and the system evolves according to the renormalized LZ gap. In the extreme quantum regime at zero temperature our theory gives a beautiful result which coincides with that of other authors. Our initial attempts to solve two experimental puzzles - an isotope effect and the quantized hysteresis curve of a single molecular magnet - are also discussed. The second project considers an ultracold dilute Fermi gas in a magnetic field sweeping across the broad Feshbach resonance. The broad resonance condition allows us to use the single mode approximation and to neglect the energy dispersion of the fermions. We then propose the Global Spin Model Hamiltonian, whose ground state we solve exactly, which yields the static limit properties of the BEC-BCS crossover. We also study the dynamics of the Global Spin Model by converting it to a LZ problem. The resulting molecular production from the initial fermions is described by a LZ-like formula with a strongly renormalized LZ gap that is independent of the initial fermion density. We predict that molecular production during a field-sweep strongly depends on the initial value of magnetic field. We predict that in the inverse process of molecular dissociation, immediately after the sweeping stops there appear Cooper pairs with parallel electronic spins and opposite momenta.
7

Spintronique moléculaire : étude de la dynamique d'un spin nucléaire unique / Electronic read-out of a single nuclear spin based on a molecular spin transistor

Vincent, Romain 06 December 2012 (has links)
Cette thèse se situe à la croisée de trois domaines : la spintronique qui s'attache à utiliser le degré de liberté du spin de l'électron afin de fabriquer de nouveaux dispositifs électroniques; l'électronique moléculaire qui cherche à profiter des progrès de la chimie moderne afin de fournir des alternatives au tout semi-conducteur de la micro-électronique; le magnétisme moléculaire qui cherche à synthétiser des aimants moléculaires aux propriétés toujours plus riches. Notre travail a consisté à produire un dispositif électronique à base d'aimant moléculaire et d'utiliser le spin de l'électron afin d'étudier les propriétés magnétiques à l'échelle d'une molécule. Des dispositifs semblables pourraient, dans l'avenir, constituer l'une des briques élémentaires de l'information quantique. Nous avons pour cela opté pour un transistor moléculaire à effet de champ, ayant pour canal un aimant moléculaire aux propriétés magnétiques bien connues : le Terbium double-decker ou TbPc2. Grâce à ce dispositif, nous avons, dans un premier temps, mis en évidence le retournement de l'aimantation d'une molécule unique par effet tunnel ou QTM (quantum tunneling of the magnetization). En effet, nous avons démontré que ce retournement entraînait une modification soudaine de la conductance de notre système. En effectuant une étude statistique sur les valeurs du champ de retournement, nous avons mis en évidence la présence de résonances que nous avons pu attribuer au phénomène de QTM. Nous avons également mesuré l'état d'un spin nucléaire unique : chaque résonance étant associée à un état de spin nucléaire. Nous avons étudié la température du spin nucléaire et montré que celle-ci pouvait être influencée par l'environnement électrostatique du système. En outre, le temps de vie d'un état de spin nucléaire a été extrait et estimé à quelques secondes, vérifiant que le système était faiblement perturbé par notre technique de mesure. Ces travaux jettent les bases de la construction du premier Qbit à base d'aimants moléculaires. Par des techniques de radiofréquence, le spin nucléaire pourrait être manipulé, la lecture se faisant ensuite par une mesure en conductance. / This PhD thesis is at a cross-road between three different fields : the spintronics which uses the spin degree of freedom of the electron to build new devices ; the molecular electronics which tries to take advantage of the new development of the chemistry, to give a workaround to the all semiconductor paradigm of the microelectronics industry; and the molecular magnetism which synthesizes molecular magnet with properties of an increasing richness. Our work has been dedicated to the fabrication of a molecular magnet based electronic device with which we could use the spin of the electron to study the magnetic properties at a single molecule level. Such device could, in the future, be used in the field of quantum information. We have decided to fabricate a field effect molecular transistor in which a well known molecular magnet, the Terbium double-decker or TbPc2, acts as a channel. Thanks to this device, we evidenced the quantum tunnelling of the magnetization (QTM) at single molecule level. We demonstrated that the magnetic moment reversal induces an abrupt change in the differential conductance of the system. By performing a statistical study, we highlighted four resonances that were attributed to QTM. We also measured a single nuclear spin state : each resonance being directly associated with one particular nuclear spin state. We studied the nuclear spin temperature and showed that it could be influenced by the electrostatic environment. Furthermore, the spin state lifetime was assessed and estimated to few seconds, highlighting the low invasive character of our measurement technique. This work give the foundation of the first molecular magnet based Qbit. With radio frequency techniques, the nuclear spin could be manipulated, the readout being performed through conductance measurement.
8

Lecture d'un couple de qudits nucléaires avec un transistor moléculaire / Read-out of a nuclear qudit couple with a molecular transistor

Biard, Hugo 13 February 2019 (has links)
La réalisation d’un ordinateur quantique est l’un des objectifs scientifiques les plus ambitieux et prometteurs de ce début de siècle.La force du calcul quantique réside dans sa capacité à se placer dans une superposition d’états et à utiliser les interférences entre eux pour dépasser la limite intrinsèque des ordinateurs classiques, qui est la description discrète des phénomènes physiques pourtant continus. Cela leur permettrait théoriquement de simplifier et de résoudre des problèmes insolubles pour les ordinateurs classiques.La première étape dans la réalisation d’un ordinateur quantique est sa brique de base : le bit-quantique, ou qubit. Il s’agit de l’analogue quantique du bit classique, qui permet de stocker l’information sous la forme de 0 ou de 1. Dans le cas quantique, l’information est formée par la superposition de ces deux états, en un nombre infini de possibilités. Si cette étape a été réalisée à de nombreuses reprises par la communauté, en utilisant des qubits de différentes natures, le couplage entre plusieurs d’entre eux reste difficile et limité en nombre. En effet, le système quantique ainsi formé a tendance à perdre sa cohérence ; ou dit autrement, à se détruire.Parmi les nombreuses possibilités de qubit existant, j’utilise le spin nucléaire. Ils ont l’avantage d’être relativement bien découplés de leur environnement, ce qui permet de les protéger des sources extérieures de décohérence et ainsi d’avoir un temps de vie supérieur aux spins électroniques.Cet avantage a un prix : il est plus difficile d’accéder à leur lecture.Pour ce faire, j’ai fabriqué un transistor moléculaire afin de connecter une molécule unique à deux centres magnétiques, le Tb2Pc3, aux électrodes de source et drain. L’aimant monomoléculaire utilisé possède deux centres magnétiques (les ions Tb3+) dont les spins électroniques J=6 sont couplés entre eux via une interaction dipolaire. De plus, chacun d’entre eux est couplé à son spin nucléaire I=3/2 via l’interaction hyperfine. On a ainsi un couple de deux qudits (d=4), ce qui porte la dimension de l’espace de Hilbert à 16, et ce à l’intérieur d’une unique molécule.Dans un premier temps, j’ai élaboré le diagramme Zeeman de la molécule, qui est sa réponse énergétique à un champ magnétique extérieur. Je détaille ensuite la fabrication des échantillons, et notamment l’utilisation de la technique d’électromigration. Je présente ensuite les mesures en transport électrique, aux très basses températures (milliKelvins) et sous champ magnétique, qui permettent de détecter le retournement du couple de spins électroniques, dont la position est dépendante de l’état du couple de spins nucléaires : c’est ainsi qu’est réalisée la lecture des états du couple de qudits.Une étude de la dynamique du système est alors réalisée par des mesures de corrélations entre la position des retournements des spins électroniques entre deux balayages consécutifs. On obtient ainsi, à la fois une meilleure visualisation des états du système, mais aussi de sa relaxation entre deux balayages en champ magnétique.Enfin, j’ai pu extraire sa température effective à l’aide d’une distribution de Maxwell-Boltzmann. De l’ordre de 300 mT, elle est cohérente avec la littérature, ainsi qu’avec celles extraites sur deux autres transistors moléculaires obtenus à d’autres moments de ma thèse.En résumé, cette thèse montre pour la première fois l’utilisation d’un transistor à molécule unique pour accéder à lecture d’un couple de qudits. Le grand nombre de molécules existantes, et le grand nombre de qubits ou qudits qui pourrait y être couplé, fait de la spintronique moléculaire une voie très prometteuse vers de possibles futurs ordinateurs quantiques moléculaires.La prochaine étape sera d’opérer la manipulation cohérente d’un tel système, notamment via l’utilisation de l’effet Stark, comme cela a déjà été réalisé à l’aide d’une molécule ne comportant qu’un centre magnétique. / The realization of a quantum computer is one of the most ambitious and promising scientific objectives of the beginning of this century.The strength of quantum computing lies in its ability to use a superposition of states and the interferences between them to overcome the intrinsic limit of classical computers, which is the discrete description of the continuous physical phenomena. This would theoretically allow them to simplify and solve impossible problems for conventional computers.The first step in the realization of a quantum computer, is its basic block: the quantum-bit, or qubit. It is the quantum analogue of the classical bit, which stores information in the form of 0 or 1. In the quantum case, information is formed by the superposition of these two states, leading to an infinity of possibilities. If this step has been done many times by the community, using qubits of different natures, the coupling between several of them remains difficult and limited in number. Indeed, the quantum systems thus formed tend to lose their coherence; or said otherwise, to destroy itself.Among the many possibilities of existing qubit, I have used the nuclear spin. They have the advantage of being relatively well decoupled from their environment, which makes it possible to protect them from external sources of decoherence, and thus to have a longer lifetime than electronic spins.This advantage has a price: it is more difficult to access their reading.To do this, I have made a molecular transistor to connect a single molecule possessing two magnetic centers, the Tb2Pc3, to the source and drain electrodes. The monomolecular magnet used has two magnetic centers (the Tb3 + ions), whose electronic spins J = 6, are coupled to each other via a dipolar interaction. In addition, each of them is coupled to its nuclear spin I = 3/2 via the hyperfine interaction. We thus have a pair of two qudits (d = 4), which brings the size of the Hilbert space to 16, and this inside a single molecule.At first, I have developed the Zeeman diagram of the molecule, which is its energy response to an external magnetic field. Then, I detail the manufacture of the samples, and in particular the use of the electromigration technique. Next, I present the electrical transport measurements, at very low temperatures (milliKelvins) and under a magnetic field, which make it possible to detect the reversal of the electronic spins, which position is dependent on the state of the pair of nuclear spins: it is how the reading of the states of qudits couple is performed.A study of the dynamics of the system is then carried out by correlation measurements among the position of the reversals of the electronic spins between two consecutive scans. This gives a better visualization of the states of the system, but also its relaxation.Finally, I was able to extract its effective temperature, using a Maxwell-Boltzmann distribution. Of the order of 300 mT, it is consistent with the literature, as well as with those extracted on two other molecular transistors obtained at other times of my thesis.In summary, this thesis shows for the first time the use of a single-molecule transistor to access reading of a qudits couple. The large number of existing molecules, and the large number of qubits or qudits that could be coupled inside one of them, makes molecular spintronics a very promising way for possible future molecular quantum computers.The next step will be to operate the coherent manipulation of such a system, in particular via the use of the Stark effect, as it has already been done using a molecule having only a magnetic center.
9

Carbon-based magnetic nanomaterials

Zagaynova, Valeria January 2012 (has links)
Magnetism of carbon-based materials is a challenging area for both fundamental research and possible applications. We present studies of low-dimensional carbon-based magnetic systems (fullerene-diluted molecular magnets, carbon nanotubes, graphite fluoride, and nanoporous carbon) by means of SQUID magnetometer, X-ray diffraction and vibrational spectroscopy, the latter techniques used as complementary instruments to find a correlation between the magnetic behaviour and the structure of the samples.In the first part of the thesis, characteristic features of the magnetization process in aligned films of carbon nanotubes with low concentration of iron are discussed. It is shown that the magnetism of such structures is influenced by quantum effects, and the anisotropy behaviour is opposite to what is observed in heavily doped nanotubes.In the second part, Mn12-based single molecular magnets with various carboxylic ligands and their 1:1 fullerene-diluted complexes are studied. We prove that magnetic properties of such systems strongly depend on the environment, and, in principle, it is possible to design a magnet with desirable properties. One of the studied compounds demonstrated a record blocking temperature for a single molecular magnet. Both fullerene-diluted complexes demonstrated “magnetization training” effect in alternating magnetic fields and the ability to preserve magnetic moment.The third and the fourth parts of the thesis are dedicated to the analysis of various contributions to the magnetic susceptibility of metal-free carbon-based systems – intercalated compounds of graphite fluorides and nanoporous oxygen-eroded graphite. The magnetic properties of these systems are strongly dependent on structure, and can be delicately tuned by altering the π-electron system of graphite, i. e. by degree of fluorination of intercalated compounds and by introduction of boron impurity to the host matrix of nanoporous graphite. / Magnetism av kolbaserade material är ett utmanande område för både grundforskning och möjliga tillämpningar. Vi presenterar studier med låg-dimensionella kolbaserade magnetiska system (fulleren-utspädda molekylära magneter, kolnanorör, grafit fluorid och nanoporösa kol) med hjälp av SQUID magnetometer, röntgendiffraktion och vibrerande spektroskopi, de senare tekniker som används som komplement instrument för att finna sambandet mellan den magnetiska uppträdande och strukturen hos proven. I den första delen av avhandlingen är egenheter från magnetisering processen i linje filmer av kolnanorör med låg koncentration av järn diskuteras. Det visas att magnetism av sådana strukturer påverkas av kvantmekaniska effekter och anisotropin beteende är motsatsen till vad som observerats i kraftigt dopade nanorör. I den tvåa delen är Mn12-baserade enda-molekyl magneter med olika karboxylsyror ligander och deras 1:1 fulleren-utspädda komplex studeras. Vi visar att magnetiska egenskaperna hos sådana system beror i hög grad på miljön, och i princip är det möjligt att utforma en magnet med önskvärda egenskaper. En av de studerade föreningarna visade en post blockeringstemperaturen för en enda molekylär magnet. Både fulleren-utspädda komplex visade "magnetisering utbildning" effekt i alternerande magnetfält och möjligheten att bevara magnetiskt moment. Den tredje och fjärde delarna av avhandlingen är avsedda för inneboende magnetism av analys av olika bidrag till magnetisk susceptibilitet av metall-fritt kol-baserade system -inskjutna föreningar grafit fluorider och nanoporösa O2-eroderade grafit. Magnetiska egenskaperna hos dessa system är starkt beroende av strukturen, och kan fint avstämmas genom att man ändrar π-elektronsystem av grafit, i. e. med graden av fluorering av inskjutna föreningar och genom införandet av bor föroreningar till värd matris av nanoporösa grafit.
10

Fluctuations quantiques dans des systèmes de spins et de charges en interaction / Quantum fluctuations in interacting spin and charge systems

Ferhat, Karim 12 December 2017 (has links)
Cette thèse s'intéresse à deux types de systèmes de différents degrés de liberté en interaction, et soumis à des fluctuations quantiques.Dans le premier projet abordé dans le manuscrit, on établit un diagramme de phase d'électrons en interactions dans un cristal bidimensionnel à géométrie kagome. Ce diagramme de phase est dressé en fonction de deux paramètres étant les interactions coulombiennes entre électrons sur un même atome pour le premier, et sur des atomes plus proches voisins pour le second. Les énergies caractéristiques de ces deux interactions sont quantifiées par rapport à une énergie de référence étant celle des fluctuations quantiques. On met alors en évidence quatre phases dont deux sont nouvelles, alors que les deux autres font le lien avec la littérature déjà existante, et sont en accord avec cette dernière. Ces deux nouvelles phases émergent lorsque l'énergie de répulsion coulombienne entre électrons sur un même atome domine devant l’énergie caractéristique des fluctuations quantiques. En présence d’une forte répulsion coulombienne entre électrons sur des atomes plus proches voisins, les charges électroniques ne peuvent se délocaliser pour former des ondes de Bloch et sont soumis à ce que l’on appelle une contrainte locale de charge. Apparaissent alors sous la compétition de ces deux interactions coulombiennes, des modes unidimensionnels collectifs le long des chaines d’atomes antiferromagnétiquement ordonnées. Ces modes ont la particularité d’être stabilisés à la fois par les fluctuations des degrés de liberté de spin, et de charge des électrons. La seconde de ces nouvelles phases émerge lorsque la répulsion coulombienne entre électrons sur des atomes voisins devient faible devant les fluctuations quantiques. La contrainte locale est alors relâchée et les électrons forment des ondes de Bloch le long de ce qui s’apparente à des bulles quantiques unidimensionnelles et polarisées en spin. Ces bulles sont alors piégées dans un cristal d’électrons inversement polarisés, avec lesquels elles sont en interaction antiferromagnétique.Le second projet porte sur l’étude d’un aimant moléculaire de Terbium Double-Decker. Cette molécule peut être modélisée par trois degrés de liberté interagissant en cascade les uns avec les autres. Le premier d’entre eux est un degré de liberté de spin nucléaire porté par le noyau de l’ion terbium de la molécule. Ce spin nucléaire est en interaction d’échange avec un degré de liberté de spin électronique porté par les électrons de l’ion terbium. Enfin, en première approximation, ce spin électronique génère un champ dipolaire auquel sont soumis les deux ligands de l’aimant moléculaire. Ces deux ligands sont couplés à deux électrodes de source et de drain, assurant le transport d’électrons uniques à travers ces deniers. Le tout forme donc un transistor à électron unique dans lequel les ligands servent de boîte quantique. Par mesure de magnéto-conductance, il est donc possible par une lecture en cascade, de remonter à l’état du spin électronique et du spin nucléaire. La première étape du projet a donc consisté à établir un modèle décrivant l’aimant moléculaire couplé à ces deux électrodes, afin de prédire les mesures de conductance réalisées au travers du transistor lors des thèses de Stefen Thiele et Clément Godfrin. Les résultats théoriques et expérimentaux obtenus sont en accord quantitatifs.D’autres part, à l’aide de champs électriques radio-fréquences, il est possible de manipuler expérimentalement et de façon cohérente le spin nucléaire. Cette manipulation cohérente du spin nucléaire se fait par l’intermédiaire du nuage électronique de l’ion, et permet ainsi d’être en mesure de réaliser un algorithme quantique sur le spin nucléaire de l’ion terbium. La réalisation d’un programme de simulation a permis de guider la réalisation expérimentale de l’algorithme de Grover, lequel a été implémenté avec succès au cours de la thèse de Clément Godfrin. / This thesis focuses on two different spin and charge systems, interacting under the effect of quantum fluctuations.The first project highlights the phase diagram of interacting electrons on a kagome lattice. This diagram is driven by two Coulomb repulsions. The first is a on site repulsion, and the second a nearest neighbor one. These two repulsions are in competition with quantum fluctuations of electronic charges. Four phases are depicted, two are unknown and the two other are in agreement with the literature. The two new phases are stabilized in the strong on site repulsion regime. When nearest neighbor repulsions are strong enough to induce a charge local constraint, the system enters in a so called Heisenberg-Loop Phase. These loops are antiferromagnetically arranged and can be described by a Heisenberg-like model in which both charge and spin play surprisingly a role in the exchange interaction. The second new phase is stabilized in the regime where nearest neighbor interactions are too weak to maintain the local constraint. Then, half of the electrons are delocalized in unidimensional Bloch states similar to quantum polarized electronic bubbles. These bubbles are trapped in an inversely polarized electronic cristal formed by the other electrons. This peculiar phase is favored by both quantum charge fluctuations in the bubbles, and antiferromagnetic exchanges between their electrons and the cristal ones.The second project deals with a Terbium Double-Decker molecular magnet. This molecule is modeled by three interacting degrees of freedom. The first is a nuclear spin of the Terbium ion, and the second is the electronic spin of this same ion. The two spins interact via a magnetic exchange.In a first approximation, the effect of the electronic spin is to induce a dipolar field. Finally, the last degree of freedom is carried by two ligands under the influence of the dipolar field. The ligands play the role of a read-out quantum dot, and by conductance measurements through this last one, we can probe the electronic spin and then, the nuclear spin. The first step of this project highlights the modeling of the global system. Then numerical computations are depicted and are in a quantitative agreement with the experimental measurements realized during the thesis of Stefan Thiele and Clément Godfrin.On the other hand, by applying electrical Radio Frequency Fields, we can drive quantum fluctuations on the nuclear spin. This quantum manipulation of the spin is realized by the dynamic deformation of the electron cloud under the effect of the Radio Frequency Field. As a result, we are able to implement a Grover Quantum Algorithm on the nuclear field. This thesis focuses on the realization of a simulation program that was a tool used by Clément Godfrin to successfully implement the Grover Algorithm.

Page generated in 0.0722 seconds