• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Katalytische molekular geprägte Polymere : Herstellung und Anwendung in einem Thermistor / Catalytically molecular imprinted polymers : synthesis and application in a thermistor

Lettau, Kristian January 2007 (has links)
Biomakromoleküle sind in der Natur für viele Abläufe in lebenden Organismen verantwortlich. Dies reicht vom Aufbau der extrazellulären Matrix und dem Cytoskelett über die Erkennung von Botenstoffen durch Rezeptoren bis hin zur Katalyse der verschiedensten Reaktionen in den Zellen selbst. Diese Aufgaben werden zum größten Teil von Proteinen übernommen, und besonders das spezifische Erkennen der Interaktionspartner ist für alle diese Moleküle äußerst wichtig, um eine fehlerfreie Funktion zu gewährleisten. Als Alternative zur evolutiven Erzeugung von optimalen Bindern und Katalysatoren auf der Basis von Aminosäuren und Nukleotiden wurden von Wulff, Shea und Mosbach synthetische molekular geprägte Polymere (molecularly imprinted polymers, MIPs) konzipiert. Das Prinzip dieser künstlichen Erkennungselemente beruht auf der Tatsache, dass sich funktionelle Monomere spezifisch um eine Schablone (Templat) anordnen. Werden diese Monomere dann vernetzend polymerisiert, entsteht ein Polymer mit molekularen Kavitäten, in denen die Funktionalitäten komplementär zum Templat fixiert sind. Dadurch ist die selektive Bindung des Templats in diese Kavitäten möglich. Aufgrund ihrer hohen chemischen und thermischen Stabilität und ihrer geringen Kosten haben “bio-inspirierte” molekular geprägte Polymere das Potential, biologische Erkennungselemente in der Affinitätschromatographie sowie in Biosensoren und Biochips zu ersetzen. Trotz einiger publizierter Sensorkonfigurationen steht der große Durchbruch noch aus. Ein Hindernis für Routineanwendungen ist die Signalgenerierung bei Bindung des Analyten an das Polymer. Eine Möglichkeit für die markerfreie Detektion ist die Benutzung von Kalorimetern, die Bindungs- oder Reaktionswärmen direkt messen können. In der Enzymtechnologie wird der Enzym-Thermistor für diesen Zweck eingesetzt, da enzymatische Reaktionen eine Enthalpie in einer Größenordnung von 5 – 100 kJ/mol besitzen. In dieser Arbeit wird die Herstellung von katalytisch geprägten Polymeren nach dem Verfahren des Oberflächenprägens erstmalig beschrieben. Die Methode zur Immobilisierung des Templats auf der Oberfläche von porösem Kieselgel sowie die Polymerzusammensetzung wurden optimiert. Weiter wird die Evaluation der katalytischen Eigenschaften über einen optischen Test, sowie das erste Mal die Kombination eines kalorimetrischen Transduktors – des Thermistors – mit der Analyterkennung durch ein katalytisch aktives MIP gezeigt. Bei diesen Messungen konnte zum ersten Mal gleichzeitig die Bindung/Desorption, sowie die katalytische Umwandlung des Substrats durch konzentrationsabhängige Wärmesignale nachgewiesen werden. / Bio macromolecules are responsible in nature for many reactions in living organisms. This reaches from the structure of the extra cellular matrix and the cytoskeleton over the recognition of ligands by receptors up to the catalysis of the most diverse reactions in the cells themselves. These tasks are taken over to the largest part by proteins, and particularly specific recognizing of the interaction partners is extremely important for all these molecules, in order to ensure an error free function. As alternative to the evolutionary production of optimal binders and catalysts on the basis of amino acids and nucleotides, synthetic molecularly imprinted polymer (MIPs) were invented by Wulff, Shea and Moosbach. The principle of these artificial recognition elements is based on the fact that functional monomers specifically arrange themselves around a template. If these monomers are copolymerized with crosslinking monomers, a polymer with molecular cavities is created, in which the functionalities are fixed complementary to the template. Thus the selective binding of the template is possible into these cavities. Due to their high chemical and thermal stability and their small costs "bioinspired" molecularly imprinted polymers have the potential to replace biological recognition elements in affinity chromatography as well as in biosensors and biochips. Despite some published sensor configurations the large break-through is still pending. An obstacle for routine application of is the signal generation on connection of the analyte to the polymer. A possibility for marker-free detection is the use of calorimeters, which can measure heats of reaction or adsorption directly. In enzyme technology the enzyme thermistor is used for this purpose, as enzymatic reactions possess enthalpies in an order of 5 - 100 kJ/mol. In this work the production of catalytically imprinted polymers is described for the first time by the procedure of surface imprinting. The method for immobilization of the template on the surface of porous silicagel as well as the polymer composition were optimized. The evaluation of the catalytic characteristics is shown by an optical test, as well as the first time the combination of a calorimetric transducer - the thermistor - with the analyte recognition by a catalytically active MIP. With these measurements for the first time the binding/desorption, as well as the catalytic transformation of the substrate could be proven at the same time by concentration-dependent heat signals.
2

Sensory molecularly imprinted polymer (MIP) coatings for nanoparticle- and fiber optic-based assays

Wagner, Sabine 22 March 2019 (has links)
Für den Nachweis dieser Schadstoffe in niedrigen Konzentrationsbereichen sind schnelle und empfindliche Analysemethoden erforderlich. Molekular geprägte Polymere (MIPs) wurden als synthetische Materialien entwickelt, um die molekulare Erkennung von natürlichen Rezeptoren nachzuahmen, aufgrund ihrer Fähigkeit, selektiv eine Vielzahl von Analyten zu erkennen, ihre Stabilität und ihrer einfachen Herstellung. Sie sind zunehmend in der chemischen Sensorik als Rezeptormaterial für den Nachweis bestimmter Analyten bei niedrigen Konzentrationen zu finden, insbesondere in Kombination mit Fluoreszenz aufgrund dessen hoher Empfindlichkeit. Ziel dieser Arbeit war die Entwicklung von optischen Sensormaterialien unter Verwendung von MIPs als Erkennungselemente im Zusammenhang mit Fluoreszenz zum sensitiven Nachweis von Herbiziden und Antibiotika in Wasser- und Lebensmittelproben and deren Kombination mit verschiedenen Vorrichtungsformaten für die zukünftige Detektion einer breiten Palette von wichtigen Analyten. / For the detection of these contaminants in low concentration ranges fast and sensitive analytical tools are required. Molecularly imprinted polymers (MIPs) have been used as synthetic materials mimicking molecular recognition by natural receptors due to their ability to recognize selectively a wide range of analytes, their stability and ease of synthesis. They have gained more and more attention in chemical sensing as receptor material for the detection of suitable groups of analytes at low concentrations especially in combination with fluorescence due to the latter’s high sensitivity. This work aimed the development of optical sensor materials using MIPs as recognition elements connected with fluorescence for the sensitive detection of herbicides and antibiotics in water and food samples and their combination with various device formats for the future detection of a wide range of analytes.
3

Molecularly Imprinted Polymer-Based Sensors for Priority Pollutants

Zarejousheghani, Mashaalah, Rahimi, Parvaneh, Borsdorf, Helko, Zimmermann, Stefan, Joseph, Yvonne 08 July 2024 (has links)
Globally, there is growing concern about the health risks of water and air pollution. The U.S. Environmental Protection Agency (EPA) has developed a list of priority pollutants containing 129 different chemical compounds. All of these chemicals are of significant interest due to their serious health and safety issues. Permanent exposure to some concentrations of these chemicals can cause severe and irrecoverable health effects, which can be easily prevented by their early identification. Molecularly imprinted polymers (MIPs) offer great potential for selective adsorption of chemicals from water and air samples. These selective artificial bio(mimetic) receptors are promising candidates for modification of sensors, especially disposable sensors, due to their low-cost, long-term stability, ease of engineering, simplicity of production and their applicability for a wide range of targets. Herein, innovative strategies used to develop MIP-based sensors for EPA priority pollutants will be reviewed.
4

Entwicklung eines miniaturisierten Fluoreszenzsensors basierend auf molekular geprägten Polymeren / Development of a miniaturized fluorescence sensor based on molecularly imprinted polymers

Kunath, Stephanie 03 June 2013 (has links) (PDF)
Die vorliegende Arbeit befasst sich mit der Entwicklung von Biosensoren mit dem Ziel, mit Hilfe der Kopplung molekular geprägter Polymere (MIPs) als neuartiges Rezeptormaterial und dem sensitiven Nachweisprinzip der Fluoreszenz eine neue Qualität des Analytnachweises zu erreichen. Es wurde eine neue Strategie zur Optimierung der Bindungseigenschaften von molekular geprägten Polymeren in wässrigen Lösungsmitteln entwickelt, die die Kopplung aus Design of Experiments und der Optimierung multipler Zielgrößen umfasst. Damit konnten die Polymerbindungseigenschaften für alle vier betrachteten Parameter wesentlich verbessert werden. Mit Hilfe stationärer und zeitaufgelöster Fluoreszenztechniken wurde die Aufklärung der Wechselwirkung zwischen MIP und Analyt auf molekularer Ebene sowie die Charakterisierung einer neuen Nachweisstrategie basierend auf einen Förster-Resonanzenergietransfer-Mechanismus realisiert. Es wurde ferner ein MIP-Sensor für biologische Proben mit mikrofluidischer Probenzuführung aufgebaut und mittels Fluoreszenzspektrometer als konventionelles Nachweisverfahren etabliert. Darauf aufbauend wurde der optische Nachweis miniaturisiert und somit miniaturisierte Lichtquellen und Detektoren sowie eine faser-optische Lichtleitung eingesetzt. Davon ausgehend erfolgte die Optimierung des Messaufbaus hinsichtlich der Sensitivität und Nachweisgrenze des fluoreszierenden Analyten. Schließlich wurden erstmalig fluoreszenzmarkierte MIP-Partikel zur Lokalisation und Quantifizierung auf Zelloberflächen eingesetzt, d.h. diese dienten als Antikörperersatz der Immunfärbung. / This thesis deals with the development of biosensors with the aim to couple molecularly imprinted polymers (MIPs) as new receptor material with the sensitive detection principle of fluorescence in order to improve analyte detection. A new strategy for optimization of binding parameters of molecularly imprinted polymers in aqueous media was developed which is based on the coupling of design of experiments and the optimization of multiple objective parameters. Due to that the polymer binding properties for all four considered parameters could be optimized considerably. With the help of steady state and time-resolved fluorescence techniques the interaction between MIP and analyte could be clarified on a molecular basis. Furthermore the characterization of a new detection strategy based on a Förster resonance energy transfer mechanism was realized. Moreover a MIP sensor with microfluidic sample handling for biological samples was built-up and established with fluorescence spectroscopy as conventional detection method. Based on that, the optical detection was miniaturized with respect to light sources, detectors as well as optical fibers for light guidance. This set-up was optimized concerning sensitivity and limit of detection of the fluorescent analyte. Finally, for the first time fluorescently marked MIP particles were applied for imaging on cell surfaces – meaning that they were used for immunostaining as antibody mimics.
5

Entwicklung eines miniaturisierten Fluoreszenzsensors basierend auf molekular geprägten Polymeren

Kunath, Stephanie 18 February 2013 (has links)
Die vorliegende Arbeit befasst sich mit der Entwicklung von Biosensoren mit dem Ziel, mit Hilfe der Kopplung molekular geprägter Polymere (MIPs) als neuartiges Rezeptormaterial und dem sensitiven Nachweisprinzip der Fluoreszenz eine neue Qualität des Analytnachweises zu erreichen. Es wurde eine neue Strategie zur Optimierung der Bindungseigenschaften von molekular geprägten Polymeren in wässrigen Lösungsmitteln entwickelt, die die Kopplung aus Design of Experiments und der Optimierung multipler Zielgrößen umfasst. Damit konnten die Polymerbindungseigenschaften für alle vier betrachteten Parameter wesentlich verbessert werden. Mit Hilfe stationärer und zeitaufgelöster Fluoreszenztechniken wurde die Aufklärung der Wechselwirkung zwischen MIP und Analyt auf molekularer Ebene sowie die Charakterisierung einer neuen Nachweisstrategie basierend auf einen Förster-Resonanzenergietransfer-Mechanismus realisiert. Es wurde ferner ein MIP-Sensor für biologische Proben mit mikrofluidischer Probenzuführung aufgebaut und mittels Fluoreszenzspektrometer als konventionelles Nachweisverfahren etabliert. Darauf aufbauend wurde der optische Nachweis miniaturisiert und somit miniaturisierte Lichtquellen und Detektoren sowie eine faser-optische Lichtleitung eingesetzt. Davon ausgehend erfolgte die Optimierung des Messaufbaus hinsichtlich der Sensitivität und Nachweisgrenze des fluoreszierenden Analyten. Schließlich wurden erstmalig fluoreszenzmarkierte MIP-Partikel zur Lokalisation und Quantifizierung auf Zelloberflächen eingesetzt, d.h. diese dienten als Antikörperersatz der Immunfärbung. / This thesis deals with the development of biosensors with the aim to couple molecularly imprinted polymers (MIPs) as new receptor material with the sensitive detection principle of fluorescence in order to improve analyte detection. A new strategy for optimization of binding parameters of molecularly imprinted polymers in aqueous media was developed which is based on the coupling of design of experiments and the optimization of multiple objective parameters. Due to that the polymer binding properties for all four considered parameters could be optimized considerably. With the help of steady state and time-resolved fluorescence techniques the interaction between MIP and analyte could be clarified on a molecular basis. Furthermore the characterization of a new detection strategy based on a Förster resonance energy transfer mechanism was realized. Moreover a MIP sensor with microfluidic sample handling for biological samples was built-up and established with fluorescence spectroscopy as conventional detection method. Based on that, the optical detection was miniaturized with respect to light sources, detectors as well as optical fibers for light guidance. This set-up was optimized concerning sensitivity and limit of detection of the fluorescent analyte. Finally, for the first time fluorescently marked MIP particles were applied for imaging on cell surfaces – meaning that they were used for immunostaining as antibody mimics.

Page generated in 0.0723 seconds