1 |
Procedural Skill Initiation, Chunks & Execution; Contributions of Offline ConsolidationBhatia, Sanjeev Rai 02 October 2013 (has links)
It has been suggested that improvement in the performance of many motor sequence tasks such as playing musical instruments, operating complex machinery or tools, and/or performing a variety of athletic activities results from the learner’s ability to parse the movement into fundamental action primitives called motor chunks. Moreover, it has been suggested that the organization of motor chunks within a sequential behavior can be influenced by consolidation occurring outside the boundary of practice during which reorganization can occur leading to faster sequence production. The present study involved modest practice of a discrete sequence production task (DSPT) followed by subsequent assessment of performance of this task either immediately after the completion of practice or after a 24-hr delay. Of critical interest was the change in performance from the end of training to the test phase in three features of the sequence implementation namely sequence initiation, motor chunk transition, and element execution components. It was anticipated that motor chunk transition would be susceptible to significantly greater offline enhancement in the 24-hr delayed test case. Based on the extant literature it was also expected that sequence initiation and/or execution processes may also be sensitive to offline consolidation. No evidence emerged that supported the proposal that motor chunk transitions revealed additional gains following a longer interval between training and test. It is possible this effect was underestimated because of some imprecision in the manner in which motor chunk transitions were identified. There was clear evidence for offline gains for both sequence initiation and element execution processes. These data are difficult to interpret within the framework of a number of contemporary accounts of sequence production such as the dual-processor model in which sequence production is governed by a cognitive and motor processor.
|
2 |
Neural mechanisms of speech motor learning in persons who stutterOh, Anna 08 April 2016 (has links)
Fluent speech production requires rapid coordination among respiratory, laryngeal, and articulatory processes and is mediated by multiple neural systems (Bohland & Guenther, 2006). Stuttering is a fluency disorder characterized by core deficits in speech motor planning. Previous research indicates people who stutter (PWS) exhibit deficits in speech motor sequence learning and are slower and less accurate over practice relative to fluent speakers (Ludlow, Siren, & Zikira, 2004; Namasivayam & VanLieshout, 2004; Smits-Bandstra & De Nil, 2007; Smits-Bandstra, De Nil, & Saint-Cyr, 2006). Furthermore, the neural bases of impaired speech motor sequence learning in PWS are not well understood. We present a study in which PWS (n=18) and persons with fluent speech (PFS) (n=17) were taught phonotactically illegal (e.g. gbesb) and phonotactically legal (e.g. blerk) speech motor sequences over two practice sessions. Functional magnetic resonance imaging (fMRI) was used to investigate brain regions underlying the production of learned illegal syllables and novel illegal syllables. With practice, subjects produced syllables more accurately, which is indicative of motor sequence learning. Our findings suggest a speech motor performance deficit in PWS. Furthermore, these findings indicate speech motor sequence learning relies on a speech motor sequence learning network.
|
3 |
Speech Motor Sequence Learning in Parkinson Disease and Normal Aging: Acquisition, Consolidation, and AutomatizationWhitfield, Jason A. 01 October 2014 (has links)
No description available.
|
4 |
The role of alpha oscillations in premotor-cerebellar connectivity in motor sequence learning: Insights from transcranial alternating current stimulationSchubert, Christine Viktoria 02 November 2023 (has links)
Alpha oscillations (8-13 Hz) have been suggested to play an important role in dynamic neural processes underlying learning and memory. The goal of this work was to scrutinize the role of alpha oscillations in communication within a cortico-cerebellar network implicated in motor sequence learning. To this end, we conducted two EEG experiments using a serial reaction time task. In the first experiment, we explored changes in alpha power and cross-channel alpha coherence as subjects learned a motor sequence. We found a gradual decrease in spectral alpha power over left premotor cortex (PMC) and sensorimotor cortex (SM1) during learning blocks. In addition, alpha coherence between left PMC/SM1 and left cerebellar crus I was specifically decreased during sequence learning, possibly reflecting a functional decoupling in the broader motor learning network. In the second experiment in a different cohort, we applied 10Hz transcranial alternating current stimulation (tACS), a method shown to entrain local oscillatory activity, to left M1 (lM1) and right cerebellum (rCB) during sequence learning. We observed a tendency for diminished learning following rCB tACS compared to sham, but not following lM1 tACS. Learning-related alpha power following rCB tACS was increased in left PMC, possibly reflecting increase in local inhibitory neural activity. Importantly, learning-specific alpha coherence between left PMC and right cerebellar lobule VIIb was enhanced following rCB tACS. These findings provide strong evidence for a causal role of alpha oscillations in controlling information transfer in a premotor-cerebellar loop during motor sequence learning. Our findings are consistent with a model in which sequence learning may be impaired by enhancing premotor cortical alpha oscillation via external modulation of cerebellar oscillations.:1 List of Abbreviations
2 Introduction
2.1 Motor Learning Stages
2.2 Motor Learning Tasks
2.3 Motor Learning Network
2.4 Theoretical Models of Motor Learning
2.5 Functional Connectivity of Motor Brain Regions
2.6 Effective Connectivity of Motor Brain Regions
2.7 Oscillations in Neuronal Communication
2.8 Alpha Oscillations
2.8.1 Role of Alpha Oscillations in Motor Sequence Learning
2.9 Transcranial Electric Stimulation
2.9.1 Transcranial Alternating Current Stimulation (tACS)
2.10 Summary of Study Rationale
3 Publication
4 Summary
5 List of References
6 Supplementary Materials
7 Contribution of Authors / Darstellung des eigenen Beitrags
8 Declaration of Authorship
9 Curriculum Vitae
10 Publication and Presentation
11 Acknowledgement / Danksagung
|
5 |
Motor Sequence Learning Deficits in Idiopathic Parkinson’s Disease Are Associated With Increased Substantia Nigra ActivityTzvi, Elinor, Bey, Richard, Nitschke, Matthias, Brüggemann, Norbert, Classen, Joseph, Münte, Thomas F., Krämer, Ulrike M., Rumpf, Jost-Julian 27 March 2023 (has links)
Previous studies have shown that persons with Parkinson’s disease (pwPD) share
specific deficits in learning new sequential movements, but the neural substrates of
this impairment remain unclear. In addition, the degree to which striatal dopaminergic
denervation in PD affects the cortico-striato-thalamo-cerebellar motor learning network
remains unknown. We aimed to answer these questions using fMRI in 16 pwPD and 16
healthy age-matched control subjects while they performed an implicit motor sequence
learning task. While learning was absent in both pwPD and controls assessed with
reaction time differences between sequential and random trials, larger error-rates during
the latter suggest that at least some of the complex sequence was encoded. Moreover,
we found that while healthy controls could improve general task performance indexed
by decreased reaction times across both sequence and random blocks, pwPD could
not, suggesting disease-specific deficits in learning of stimulus-response associations.
Using fMRI, we found that this effect in pwPD was correlated with decreased activity
in the hippocampus over time. Importantly, activity in the substantia nigra (SN) and
adjacent bilateral midbrain was specifically increased during sequence learning in
pwPD compared to healthy controls, and significantly correlated with sequence-specific
learning deficits. As increased SN activity was also associated (on trend) with higher
doses of dopaminergic medication as well as disease duration, the results suggest that
learning deficits in PD are associated with disease progression, indexing an increased
drive to recruit dopaminergic neurons in the SN, however, unsuccessfully. Finally, there
were no differences between pwPD and controls in task modulation of the cortico-striato-thalamo-cerebellar network. However, a restricted nigral-striatal model showed
that negative modulation of SN to putamen connection was larger in pwPD compared
to controls during random trials, while no differences between the groups were found
during sequence learning. We speculate that learning-specific SN recruitment leads to a
relative increase in SN- > putamen connectivity, which returns to a pathological reduced
state when no learning takes place
|
6 |
Modulation du système glutamatergique pendant l’apprentissage moteur : une étude de spectroscopie par résonance magnétique fonctionnelleProulx, Sébastien 12 1900 (has links)
La présente étude avait pour but d’explorer les modulations fonctionnelles putaminales du signal de spectroscopie par résonance magnétique (SRM) combiné du glutamate et de la glutamine (Glx), ainsi que de l’acide γ-aminobutyrique (GABA) en lien avec l’apprentissage d’une séquence motrice. Nous avons émis l’hypothèse que les concentrations de Glx seraient spécifiquement augmentées pendant et après la pratique d’une telle tâche, et ce comparativement à une condition d’exécution motrice simple conçue pour minimiser l’apprentissage. La tâche d’appuis séquentiels des doigts (« finger taping task ») utilisée est connue pour induire un apprentissage moteur évoluant en phases, avec une progression initialement rapide lors de la première session d’entraînement (phase rapide), puis lente lors de sessions subséquentes (phase lente). Cet apprentissage est également conçu comme dépendant de processus « on-line » (pendant la pratique) d’acquisition et « off-line » (entre les périodes de pratique) de consolidation de la trace mnésique de l’habilité motrice. Une grande quantité de données impliquent le système de neurotransmission glutamatergique, principalement par l’action de ses récepteurs N-Méthyl-D-aspartate (NMDAR) et métabotropiques (mGluR), dans une multitude de domaine de la mémoire. Quelques-unes de ces études suggèrent que cette relation s’applique aussi à des mémoires de type motrice ou dépendante du striatum. De plus, certains travaux chez l’animal montrent qu’une hausse des concentrations de glutamate et de glutamine peut être associée à l’acquisition et/ou consolidation d’une trace mnésique. Nos mesures de SRM à 3.0 Tesla, dont la qualité ne s’est avérée satisfaisante que pour le Glx, démontrent qu’une telle modulation des concentrations de Glx est effectivement détectable dans le putamen après la performance d’une tâche motrice. Elles ne nous permettent toutefois pas de dissocier cet effet putativement attribuable à la plasticité du putamen associée à l’apprentissage moteur de séquence, de celui de la simple activation neuronale causée par l’exécution motrice. L’interprétation de l’interaction non significative, montrant une plus grande modulation par la tâche motrice simple, mène cependant à l’hypothèse alternative que la plasticité glutamatergique détectée est potentiellement plus spécifique à la phase lente de l’apprentissage, suggérant qu’une seconde expérience ainsi orientée et utilisant une méthode de SRM plus sensible au Glx aurait donc de meilleures chances d’offrir des résultats concluants. / The present study explored motor learning-related functional changes in putaminal combined glutamate and glutamine (Glx) and γ-Aminobutyric acid (GABA) magnetic resonance spectroscopy (MRS) signal. It was hypothesized that Glx concentrations would specifically increase during and after learning of a sequential finger tapping task (sFTT), as compared to execution of a simple motor task designed to elicit minimal learning. Learning of sFTT is known to evolve in an initial fast progressing stage during the first practice session (fast learning stage), followed by a slower progression during later sessions (slow learning stage). It is also thought to depend on both on-line (during practice sessions) acquisition and off-line (between practice sessions) consolidation processes to create, transform and assure retention of a motor skill memory trace. A body of data implicates glutamatergic neurotransmission, especially through its N-Methyl-D-aspartate (NMDAR) and metabotropic (mGluR) receptors, in many memory systems, some of which apply to motor learning and striatal-dependant learning. Moreover, some animal studies suggest that Glx concentrations can be upregulated in relation to memory acquisition and/or consolidation. Our MRS acquisitions, of which the quality happened to be sufficient only for Glx quantification, allowed the detection of an augmentation in putaminal Glx occurring after motor task execution. However, our data could not ascribe this modulation specifically to motor learning related plastic changes, at the exclusion of simple neural activation related to motor execution. Nevertheless, the interpretation of the non-significant interaction, showing a larger Glx change in response to the simple motor task compared to sFTT, leads to the possibility that the detected glutamatergic plasticity may be specifically associated to the slow learning phase. We therefore suggest that testing this alternate hypothesis in a second experiment, using an MRS technique with more sensibility to Glx could yield more convincing results.
|
7 |
Modulation du système glutamatergique pendant l’apprentissage moteur : une étude de spectroscopie par résonance magnétique fonctionnelleProulx, Sébastien 12 1900 (has links)
La présente étude avait pour but d’explorer les modulations fonctionnelles putaminales du signal de spectroscopie par résonance magnétique (SRM) combiné du glutamate et de la glutamine (Glx), ainsi que de l’acide γ-aminobutyrique (GABA) en lien avec l’apprentissage d’une séquence motrice. Nous avons émis l’hypothèse que les concentrations de Glx seraient spécifiquement augmentées pendant et après la pratique d’une telle tâche, et ce comparativement à une condition d’exécution motrice simple conçue pour minimiser l’apprentissage. La tâche d’appuis séquentiels des doigts (« finger taping task ») utilisée est connue pour induire un apprentissage moteur évoluant en phases, avec une progression initialement rapide lors de la première session d’entraînement (phase rapide), puis lente lors de sessions subséquentes (phase lente). Cet apprentissage est également conçu comme dépendant de processus « on-line » (pendant la pratique) d’acquisition et « off-line » (entre les périodes de pratique) de consolidation de la trace mnésique de l’habilité motrice. Une grande quantité de données impliquent le système de neurotransmission glutamatergique, principalement par l’action de ses récepteurs N-Méthyl-D-aspartate (NMDAR) et métabotropiques (mGluR), dans une multitude de domaine de la mémoire. Quelques-unes de ces études suggèrent que cette relation s’applique aussi à des mémoires de type motrice ou dépendante du striatum. De plus, certains travaux chez l’animal montrent qu’une hausse des concentrations de glutamate et de glutamine peut être associée à l’acquisition et/ou consolidation d’une trace mnésique. Nos mesures de SRM à 3.0 Tesla, dont la qualité ne s’est avérée satisfaisante que pour le Glx, démontrent qu’une telle modulation des concentrations de Glx est effectivement détectable dans le putamen après la performance d’une tâche motrice. Elles ne nous permettent toutefois pas de dissocier cet effet putativement attribuable à la plasticité du putamen associée à l’apprentissage moteur de séquence, de celui de la simple activation neuronale causée par l’exécution motrice. L’interprétation de l’interaction non significative, montrant une plus grande modulation par la tâche motrice simple, mène cependant à l’hypothèse alternative que la plasticité glutamatergique détectée est potentiellement plus spécifique à la phase lente de l’apprentissage, suggérant qu’une seconde expérience ainsi orientée et utilisant une méthode de SRM plus sensible au Glx aurait donc de meilleures chances d’offrir des résultats concluants. / The present study explored motor learning-related functional changes in putaminal combined glutamate and glutamine (Glx) and γ-Aminobutyric acid (GABA) magnetic resonance spectroscopy (MRS) signal. It was hypothesized that Glx concentrations would specifically increase during and after learning of a sequential finger tapping task (sFTT), as compared to execution of a simple motor task designed to elicit minimal learning. Learning of sFTT is known to evolve in an initial fast progressing stage during the first practice session (fast learning stage), followed by a slower progression during later sessions (slow learning stage). It is also thought to depend on both on-line (during practice sessions) acquisition and off-line (between practice sessions) consolidation processes to create, transform and assure retention of a motor skill memory trace. A body of data implicates glutamatergic neurotransmission, especially through its N-Methyl-D-aspartate (NMDAR) and metabotropic (mGluR) receptors, in many memory systems, some of which apply to motor learning and striatal-dependant learning. Moreover, some animal studies suggest that Glx concentrations can be upregulated in relation to memory acquisition and/or consolidation. Our MRS acquisitions, of which the quality happened to be sufficient only for Glx quantification, allowed the detection of an augmentation in putaminal Glx occurring after motor task execution. However, our data could not ascribe this modulation specifically to motor learning related plastic changes, at the exclusion of simple neural activation related to motor execution. Nevertheless, the interpretation of the non-significant interaction, showing a larger Glx change in response to the simple motor task compared to sFTT, leads to the possibility that the detected glutamatergic plasticity may be specifically associated to the slow learning phase. We therefore suggest that testing this alternate hypothesis in a second experiment, using an MRS technique with more sensibility to Glx could yield more convincing results.
|
8 |
Acquisition et consolidation de représentations distribuées de séquences motrices, mesurées par IRMfPinsard, Basile 09 1900 (has links)
No description available.
|
9 |
Corrélats neuroanatomiques de l’apprentissage de séquences motrices chez les personnes jeunes et âgéesVien, Catherine 05 1900 (has links)
No description available.
|
10 |
肢體感測回饋對序列動作學習之影響 / The effects of body posture visual feedback on motor sequence learning黃郁茹, Huang, Yu Ju Unknown Date (has links)
本研究以使用者為中心之設計角度出發,探討 Kinect 提供的肢體感測回饋,如何影響序列動作學習,並試圖找出在設計回饋資訊時應注意的要素。本研究提出兩項假設,探討在序列動作學習時,有無肢體感測回饋資訊,對動作表現的影響:
H1 使用者在序列動作學習時,提供其肢體感測回饋,可以提高使用者「動作部位精確度」的學習效果。
H2 使用者在序列動作學習時,提供其肢體感測回饋,可以提高使用者對「序列動作完整度」的學習效果。
本研究招募60位受測者,隨機分配到控制組與實驗組。控制組僅提供示範影片,實驗組則同時提供肢體感測回饋。受測者隨示範者練習5次後,在沒有線索輔助下,將所學的六組動作演練一次。研究者同時全程錄影演練過程。結束後,受測者需填答問卷。
透過影片分析,研究者針對「動作部位精確度」及「序列動作完整度」進行評分,以檢視控制組與實驗組在動作表現上之差異。實驗結果卻與研究預期相反,在「動作部位精確度 」與「序列動作完整度」,實驗組都表現較差,且達顯著水準。亦即提供肢體感測回饋,並未提升序列動作的精確度或完整度表現。針對此實驗結果,綜合問卷所得之受測者需求分析,本研究歸因於肢體感測回饋資訊設計不良所致。回饋訊息未能針對使用者需求設計。受測者最需要知道的資訊:動作正確與否、如何修正以及評分標準,實驗組並未能有效獲得。因此,本研究提出肢體感測回饋資訊設計上的三點建議:
1. 系統應給予學習者宏觀概念圖,事先告知學習者序列動作之項目順序。
2. 系統應讓學習者清楚瞭解每個動作之學習項目。
3. 系統除了提供學習者表現獲知的回饋資訊,更需提供修正線索。 / This research was based on user-center design thinking, and discussed how the body posture visual feedback provided by Kinect influenced the learner on motor sequence learning. We tried to find out the key elements of designing feedback. Here we proposed two hypotheses to probe the effects of body posture visual feedback on motor sequence learning:
H1 When learning motor sequence, users provided body posture sensing feedback would learn better in “accuracy of moving parts”.
H2 When learning motor sequence, users provided body posture sensing feedback would learn better in “completeness of sequence order”.
We recruited 60 subjects, and they were distributed into control and experiment group randomly. The control group learned the motor sequence only with demonstrating video; experiment group, on the other side, were provided body posture visual feedback at the same time. All the subjects should practice the motor sequence, which included 6 items, 5 times, then tried to demonstrate the sequence without any cue. They were videotaped at the same time. After that, they should fill out a questionnaire.
The researcher scored “accuracy of moving parts”, and “completeness of sequence order” through video analysis, then comparing the differences between two groups. The results were different from what we expected. The experiment group performed significantly worse than control group both in “accuracy of moving parts” and “completeness of sequence order”, which meant providing body posture visual feedback did not enhance the performance of motor sequence learning in both aspects. In the light of the results and the requirements suggested in the questionnaire by subjects, we thought the results caused by bad design of body posture visual feedback, which couldn't fit the users’ needs. The subjects didn’t get the information they need most, like the correctness of their performance, how to adjust the performance and the criteria of scroing. Therefore, we proposed three suggestions on designing body posture visual feedback:
1. The system should provide learners the macro concept of the whole sequence order in advance.
2. The system should let leaners to understand all the movements clearly and thoroughly.
3. The system should provide the information of “Knowledge of Performance”; and further, providing the hints of adjustments.
|
Page generated in 0.097 seconds