Spelling suggestions: "subject:"pérennisation"" "subject:"moyennant""
11 |
Étude multi-échelle de modèles probabilistes pour les systèmes excitables avec composante spatiale.Genadot, Alexandre 04 November 2013 (has links) (PDF)
L'objet de cette thèse est l'étude mathématique de modèles probabilistes pour la génération et la propagation d'un potentiel d'action dans les neurones et plus généralement de modèles aléatoires pour les systèmes excitables. En effet, nous souhaitons étudier l'influence du bruit sur certains systèmes excitables multi-échelles possédant une composante spatiale, que ce soit le bruit contenu intrinsèquement dans le système ou le bruit provenant du milieu. Ci-dessous, nous décrivons d'abord le contenu mathématique de la thèse. Nous abordons ensuite la situation physiologique décrite par les modèles que nous considérons. Pour étudier le bruit intrinsèque, nous considérons des processus de Markov déterministes par morceaux à valeurs dans des espaces de Hilbert ("Hilbert-valued PDMP"). Nous nous sommes intéressés à l'aspect multi-échelles de ces processus et à leur comportement en temps long. Dans un premier temps, nous étudions le cas où la composante rapide est une composante discrète du PDMP. Nous démontrons un théorème limite lorsque la composante rapide est infiniment accélérée. Ainsi, nous obtenons la convergence d'une classe de "Hilbert-valued PDMP" contenant plusieurs échelles de temps vers des modèles dits moyennés qui sont, dans certains cas, aussi des PDMP. Nous étudions ensuite les fluctuations du modèle multi-échelles autour du modèle moyenné en montrant que celles-ci sont gaussiennes à travers la preuve d'un théorème de type "central limit". Dans un deuxième temps, nous abordons le cas où la composante rapide est elle-même un PDMP. Cela requiert de connaître la mesure invariante d'un PDMP à valeurs dans un espace de Hilbert. Nous montrons, sous certaines conditions, qu'il existe une unique mesure invariante et la convergence exponentielle du processus vers cette mesure. Pour des PDMP dits diagonaux, la mesure invariante est explicitée. Ces résultats nous permettent d'obtenir un théorème de moyennisation pour des PDMP "rapides" couplés à des chaînes de Markov à temps continu "lentes". Pour étudier le bruit externe, nous considérons des systèmes d'équations aux dérivées partielles stochastiques (EDPS) conduites par des bruits colorés. Sur des domaines bornés de $\mathbb{R}^2$ ou $\mathbb{R}^3$, nous menons l'analyse numérique d'un schéma de type différences finies en temps et éléments finis en espace. Pour une classe d'EDPS linéaires, nous étudions l'erreur de convergence forte de notre schéma. Nous prouvons que l'ordre de convergence forte est deux fois moindre que l'ordre de convergence faible. Par des simulations, nous montrons l'émergence de phénomènes d'ondes ré-entrantes dues à la présence du bruit dans des domaines de dimension deux pour les modèles de Barkley et Mitchell-Schaeffer.
|
12 |
Commande sans capteur des moteurs synchrones à aimants permanents par injection de signaux / Sensorless control of synchronous permanent magnet motors by signal injectionJebai, Al Kassem 15 March 2013 (has links)
Cette thèse étudie la problématique du fonctionnement sans capteur et à basse vitesse des moteurs synchrones à aimant permanent par l'injection des signaux. Nous nous focalisons sur les effets de la saturation magnétique car leur compensation est primordiale pour résoudre cette problématique. Nous proposons une méthode originale pour modéliser la saturation magnétique en utilisant une approche énergétique (les formulations Lagrangienne et Hamiltonienne), où les symétries physiques sont exploitées pour simplifier l'expression de l'énergie magnétique. Les données expérimentales montrent qu'un polynôme de degré 4 est suffisant pour décrire avec précision les effets de la saturation. Ensuite, nous proposons une analyse claire et originale basée sur la moyennisation de second ordre et qui explique comment obtenir l'information de position à partir de l'injection des signaux (en utilisant le modèle proposé). Nous donnons une relation explicite entre les oscillations des courants statoriques et la position du rotor; cette relation est utilisée en temps réel. Ce modèle de saturation magnétique ainsi que la procédure d'estimation de position ont été testés et validés sur deux types de moteurs : avec des aimants permanents à l'intérieur ou sur la surface du rotor. Les résultats expérimentaux obtenus sur un banc de test montrent que les erreurs d'estimation de la position du rotor n'excèdent pas quelques degrés électriques dans la zone d'opération à basse vitesse. / This thesis addresses the problematic of sensorless low speed operation of permanent magnet synchronous motors (PMSM) by signal injection. We focus on the effects of magnetic and cross saturations because their compensation is paramount to solve this problematic. We propose an original way of modeling magnetic saturation using an energy approach (Lagrangian and Hamiltonian formulations), where the physical symmetries are exploited to simplify the expression of the magnetic energy. Experimental data show that a simple polynomial of degree 4 is sufficient to describe accurately magnetic saturation effects. Then we propose a clear and original analysis based on second-order averaging of how to recover the position information from signal injection (using the proposed model). We give an explicit relation between stator current ripples and rotor position; this relation is used in real time operation. Such magnetic saturation model and the resulting position estimates were tested and validated on two types of motors: with interior and surface permanent magnets (IPM and SPM). Experimental results obtained on a test bench show that estimation errors of the rotor position do not exceed few electrical degrees in the low speed operating domain.
|
13 |
Nonequilibrium statistical mechanics of a crystal interacting with medium / Mécanique statistique hors d'équilibre d'un cristal interagissant avec un milieu continuDymov, Andrey 17 June 2015 (has links)
Dans cette thèse nous étudions des systèmes hamiltoniens de particules en interaction, où chaque particule est faiblement couplée avec son propre thermostat de type Langevin de température positive arbitraire. Les modèles peuvent être vu comme des cristaux plongés dans un milieu continue et interagissants faiblement avec ce dernier.Nous nous intéressons au transport d'énergie dans les systèmes quand les couplages des particules avec leurs thermostats tendent vers zéro simultanément avec les couplages entre eux.Nous examinons deux situations opposées, quand la mesure de Lebesgue des resonances du système de particules découplées est nulle et quand elle est pleine. Dans le premier cas, en utilisant la méthode de moyennisation stochastique, nous démontrons que dans la limite ci-dessus le comportement de l'énergie locale des particules sur des intervalles de temps longs, et dans le régime stationnaire est donné par une équation autonome stochastique, laquelle predit uniquement le transport d'énergie non hamiltonien.Dans le second cas, en utilisant la méthode de moyennisation resonante stochastique, nous prouvons que la dynamique limite de l'énergie locale est contrôlée par une équation efficace stochastique. La dernière prevoit le transport d'energie hamiltonien entre les particules. Cependant, elle n'est pas autonome pour l'énergie locale. En utilisant cette asymptotique, nous montrons que dans la limite ci-dessus le flux d'énergie hamiltonien du système satisfait des relations qui ressemblent à la loi de Fourier et à la formule de Green-Kubo (cependant, elles ne le sont pas).La plupart des résultats et convergences que nous obtenons dans la thèse sont uniformes par rapport au nombre de particules dans les systèmes, qui rend nos résultats pertinents du point de vue de la physique statistique. / In the present thesis we study Hamiltonian systems of particles with weak nearest-neighbour interaction, where each particle is weakly coupled with its own stochastic Langevin-type thermostat of arbitrary positive temperature.The models can be seen as crystals plugged in some medium and weakly interacting with it.We are interested in the energy transport through the systems when the couplings of the particles with the thermostats go to zero simultaneously with their couplings with each other.We investigate two opposite situations, when resonances of the system of uncoupled particles have Lebesgue measure zero and when they are of full Lebesgue measure.In the first case, using the method of stochastic averaging, we prove that under the limit above behaviour of the local energy of particles on long time intervals and in a stationary regime is given by an autonomous stochastic equation, which does not provide any Hamiltonian energy transport.For the second situation, using the method of resonant stochastic averaging, we show that the limiting dynamics of the local energy is governed by a stochastic effective equation. The latter provides Hamiltonian energy transport between the particles, however, is not an autonomous equation for the local energy. Using this asymptotics, we prove that under the limit above the Hamiltonian energy flow in the system satisfies some relations which resemble the Fourier law and the Green-Kubo formula (however, which are not).Most of results and convergences obtained in the thesis are uniform with respect to the number of particles in the systems, what makes our results relevant from the point of view of statistical physics.
|
14 |
Stochastic description of rare events for complex dynamics in the Solar System / Modélisation stochastique d'événements rares dans des systèmes dynamiques complexes de notre système solaireWoillez, Éric 21 September 2018 (has links)
Cette thèse considère quatre systèmes physiques complexes pour lesquels il est exceptionnellement possible d’identifier des variables lentes qui contrôlent l'évolution à temps long du système complet. La séparation d'échelle de temps entre ces variables lentes et les autres variables permet d'utiliser la technique de moyennisation stochastique pour obtenir une dynamique effective pour les variables lentes. Cette thèse considère la possibilité de prédire les événements rares dans le système solaire. Nous avons étudié deux types d’événements rares. Le premier est un renversement possible de l'axe de rotation de la Terre en l'absence des effets de marée de la Lune. Le second est la désintégration de l'ensemble du système solaire interne suite à une instabilité dans l'orbite de Mercure. Pour chacun des deux problèmes, il existe des variables lentes non triviales, qui ne sont pas données par des variables physiques naturelles. La moyennisation stochastique a permis de découvrir le mécanisme physique qui conduit à ces événements rares et de donner, par une approche purement théorique, l'ordre de grandeur de la probabilité de ces phénomènes. Nous avons également montré que la déstabilisation de Mercure sur un temps inférieur à l'âge du système solaire obéit à un mécanisme d'instanton bien décrit par la théorie des grandes déviations. Le travail effectué dans cette thèse ouvre donc un nouveau champ d'action pour l'utilisation d'algorithmes de calcul d'événements rares. Nous avons utilisé pour la première fois les théorèmes de moyennisation stochastique dans le cadre de la mécanique céleste pour quantifier l'effet stochastique des astéroïdes sur la trajectoire des planètes. Enfin, une partie du travail porte sur un problème de turbulence géophysique: dans l'atmosphère de Jupiter, on peut observer des structures zonales (jets) à grande échelles évoluant beaucoup plus lentement que les tourbillons environnants. Nous montrons qu'il est pour la première fois possible d'obtenir explicitement le profil de ces jets par moyennisation des degrés de liberté turbulents rapides. / The present thesis describes four complex dynamical systems. In each system, the long-term behavior is controlled by a few number of slow variables that can be clearly identified. We show that in the limit of a large timescale separation between the slow variables and the other variables, stochastic averaging can be performed and leads to an effective dynamics for the set of slow variables. This thesis also deals with rare events predictions in the solar system. We consider two possible rare events. The first one is a very large variation of the spin axis orientation of a Moonless Earth. The second one is the disintegration of the inner solar system because of an instability in Mercury’s orbit. Both systems are controlled by non-trivial slow variables that are not given by simple physical quantities. Stochastic averaging has led to the discovery of the mechanism leading to those rare events and gives theoretical bases to compute the rare events probabilities. We also show that Mercury’s short-term destabilizations (compared to the age of the solar system) follow an instanton mechanism, and can be predicted using large deviation theory. The special algorithms devoted to the computation of rare event probabilities can thus find surprising applications in the field of celestial mechanics. We have used for the first time stochastic averaging in the field of celestial mechanics to give a relevant orders of magnitude for the long-term perturbation of planetary orbits by asteroids. A part of the work is about geophysical fluid mechanics. In Jupiter atmosphere, large scale structures (jets) can be observed, the typical time of evolution of which is much larger than that of the surrounding turbulence. We show for the first time that the mean wind velocity can be obtained explicitly by averaging the fast turbulent degrees of freedom.
|
15 |
Algorithmes stochastiques pour la statistique robuste en grande dimension / Stochastic algorithms for robust statistics in high dimensionGodichon-Baggioni, Antoine 17 June 2016 (has links)
Cette thèse porte sur l'étude d'algorithmes stochastiques en grande dimension ainsi qu'à leur application en statistique robuste. Dans la suite, l'expression grande dimension pourra aussi bien signifier que la taille des échantillons étudiés est grande ou encore que les variables considérées sont à valeurs dans des espaces de grande dimension (pas nécessairement finie). Afin d'analyser ce type de données, il peut être avantageux de considérer des algorithmes qui soient rapides, qui ne nécessitent pas de stocker toutes les données, et qui permettent de mettre à jour facilement les estimations. Dans de grandes masses de données en grande dimension, la détection automatique de points atypiques est souvent délicate. Cependant, ces points, même s'ils sont peu nombreux, peuvent fortement perturber des indicateurs simples tels que la moyenne ou la covariance. On va se concentrer sur des estimateurs robustes, qui ne sont pas trop sensibles aux données atypiques. Dans une première partie, on s'intéresse à l'estimation récursive de la médiane géométrique, un indicateur de position robuste, et qui peut donc être préférée à la moyenne lorsqu'une partie des données étudiées est contaminée. Pour cela, on introduit un algorithme de Robbins-Monro ainsi que sa version moyennée, avant de construire des boules de confiance non asymptotiques et d'exhiber leurs vitesses de convergence $L^{p}$ et presque sûre.La deuxième partie traite de l'estimation de la "Median Covariation Matrix" (MCM), qui est un indicateur de dispersion robuste lié à la médiane, et qui, si la variable étudiée suit une loi symétrique, a les mêmes sous-espaces propres que la matrice de variance-covariance. Ces dernières propriétés rendent l'étude de la MCM particulièrement intéressante pour l'Analyse en Composantes Principales Robuste. On va donc introduire un algorithme itératif qui permet d'estimer simultanément la médiane géométrique et la MCM ainsi que les $q$ principaux vecteurs propres de cette dernière. On donne, dans un premier temps, la forte consistance des estimateurs de la MCM avant d'exhiber les vitesses de convergence en moyenne quadratique.Dans une troisième partie, en s'inspirant du travail effectué sur les estimateurs de la médiane et de la "Median Covariation Matrix", on exhibe les vitesses de convergence presque sûre et $L^{p}$ des algorithmes de gradient stochastiques et de leur version moyennée dans des espaces de Hilbert, avec des hypothèses moins restrictives que celles présentes dans la littérature. On présente alors deux applications en statistique robuste: estimation de quantiles géométriques et régression logistique robuste.Dans la dernière partie, on cherche à ajuster une sphère sur un nuage de points répartis autour d'une sphère complète où tronquée. Plus précisément, on considère une variable aléatoire ayant une distribution sphérique tronquée, et on cherche à estimer son centre ainsi que son rayon. Pour ce faire, on introduit un algorithme de gradient stochastique projeté et son moyenné. Sous des hypothèses raisonnables, on établit leurs vitesses de convergence en moyenne quadratique ainsi que la normalité asymptotique de l'algorithme moyenné. / This thesis focus on stochastic algorithms in high dimension as well as their application in robust statistics. In what follows, the expression high dimension may be used when the the size of the studied sample is large or when the variables we consider take values in high dimensional spaces (not necessarily finite). In order to analyze these kind of data, it can be interesting to consider algorithms which are fast, which do not need to store all the data, and which allow to update easily the estimates. In large sample of high dimensional data, outliers detection is often complicated. Nevertheless, these outliers, even if they are not many, can strongly disturb simple indicators like the mean and the covariance. We will focus on robust estimates, which are not too much sensitive to outliers.In a first part, we are interested in the recursive estimation of the geometric median, which is a robust indicator of location which can so be preferred to the mean when a part of the studied data is contaminated. For this purpose, we introduce a Robbins-Monro algorithm as well as its averaged version, before building non asymptotic confidence balls for these estimates, and exhibiting their $L^{p}$ and almost sure rates of convergence.In a second part, we focus on the estimation of the Median Covariation Matrix (MCM), which is a robust dispersion indicator linked to the geometric median. Furthermore, if the studied variable has a symmetric law, this indicator has the same eigenvectors as the covariance matrix. This last property represent a real interest to study the MCM, especially for Robust Principal Component Analysis. We so introduce a recursive algorithm which enables us to estimate simultaneously the geometric median, the MCM, and its $q$ main eigenvectors. We give, in a first time, the strong consistency of the estimators of the MCM, before exhibiting their rates of convergence in quadratic mean.In a third part, in the light of the work on the estimates of the median and of the Median Covariation Matrix, we exhibit the almost sure and $L^{p}$ rates of convergence of averaged stochastic gradient algorithms in Hilbert spaces, with less restrictive assumptions than in the literature. Then, two applications in robust statistics are given: estimation of the geometric quantiles and application in robust logistic regression.In the last part, we aim to fit a sphere on a noisy points cloud spread around a complete or truncated sphere. More precisely, we consider a random variable with a truncated spherical distribution, and we want to estimate its center as well as its radius. In this aim, we introduce a projected stochastic gradient algorithm and its averaged version. We establish the strong consistency of these estimators as well as their rates of convergence in quadratic mean. Finally, the asymptotic normality of the averaged algorithm is given.
|
16 |
Contrôle adiabatique des systèmes quantiques / Adiabatic control of quantum systemsAugier, Nicolas 27 September 2019 (has links)
Le but principal de la thèse est d'étudier les liens entre les singularités du spectre d'un Hamiltonien quantique contrôlé et les questions de contrôlabilité de l'équation Schr"odinger associée.La principale question qui se pose est de savoir comment contrôler une famille de systèmes quantiques dépendant des paramètres avec une entrée de commande commune. Ce problème de contrôlabilité d'ensemble est lié à la conception d'une stratégie de contrôle robuste lorsqu'un paramètre (une fréquence de résonance ou une inhomogénéité de champ de contrôle par exemple) est inconnu, et constitue un enjeu important pour les expérimentateurs.Grâce à l'étude des familles à un paramètre de Hamiltoniens et de leurs singularités génériques, nous donnons une stratégie de contrôle explicite pour le problème de contrôlabilité d'ensemble lorsque les conditions géométriques sur le spectre des Hamiltoniens sont satisfaites. Le résultat est basé sur la théorie de l'approximation adiabatique et sur la présence de courbes d'intersections coniques de valeurs propres du Hamiltonien contrôlé. La technique proposée fonctionne pour des systèmes évoluant à la fois dans des espaces de Hilbert de dimension finie et de dimension infinie. Nous étudions ensuite le problème de la contrôlabilité d'ensemble sous des hypothèses moins restrictives sur le spectre, à savoir la présence de singularités non-coniques. Sous des conditions génériques, de telles singularités n'apparaissent pas pour des systèmes uniques, mais apparaissent pour des familles de systèmes à un paramètre.Pour l'étude d'un système unique, nous nous concentrons sur une classe de courbes dans l'espace des contrôles, appelées les courbes non-mixantes (définies dans cite{Bos}), qui peuvent optimiser la dynamique adiabatique près des intersections coniques et non coniques. Elles sont liées à la géométrie des espaces propres du Hamiltonien contrôlé et l'approximation adiabatique possède une meilleure précision le long de celles-ci.Nous proposons d'étudier la compatibilité de l'approximation adiabatique avec la Rotating Wave Approximation. De telles approximations sont généralement combinées par les physiciens. Mon travail montre que cela ne se justifie pour les systèmes quantiques à dimensions finies que dans certaines conditions sur les échelles de temps. Nous étudions également les questions de contrôle d'ensemble dans ce cas. / The main purpose of the thesis is to study the links between the singularities of the spectrum of a controlled quantum Hamiltonian and the controllability issues of the associated Schr"odinger equation.The principal issue that is developed is how to control a parameter-dependent family of quantum systems with a common control input. This problem of ensemble controllability is linked to the design of a robust control strategy when a parameter (a resonance frequency or a control field inhomogeneity for instance) is unknown, and is an important issue for experimentalists.Thanks to the study one-parametric families of Hamiltonians and their generic singularities, we give an explicit control strategy for the ensemble controllability problem when geometric conditions on the spectrum of the Hamiltonian are satisfied. The result is based on adiabatic approximation theory and on the presence of curves of conical eigenvalue intersections of the controlled Hamiltonian. The proposed technique works for systems evolving both in finite-dimensional and infinite-dimensional Hilbert spaces. Then we study the problem of ensemble controllability under less restrictive hypotheses on the spectrum, namely the presence of non-conical singularities. Under generic conditions such non-conical singularities are not present for single systems, but appear for one-parametric families of systems.For the study of a single system, we focus on a class of curves in the space of controls, called the non-mixing curves (defined in cite{Bos}), that can optimize the adiabatic dynamics near conical and non-conical intersections. They are linked to the geometry of the eigenspaces of the controlled Hamiltonian and the adiabatic approximation holds with higher precision along them.We propose to study the compatibility of the adiabatic approximation with the rotating wave approximation. Such approximations are usually done in cascade by physicists. My work shows that this is justified for finite dimensional quantum systems only under certain conditions on the time scales. We also study ensemble control issues in this case.
|
17 |
Méthodes géométriques et numériques en contrôle optimal et applications au transfert orbital à poussée faible et à la nage à faible nombre de Reynolds / Geometric and numerical methods in optimal control and applications to the swimming problem at low Reynolds number and to low thrust orbital transferRouot, Jérémy 21 November 2016 (has links)
Dans la première partie, on propose une étude sur le problème de nage à faible nombre de Reynolds à partir d'unnageur modélisant la nage des copépodes et du nageur historique de Purcell.En minimisant l’énergie dissipée par les forces de trainée sur le fluide, laquelle est reliée au concept d’efficacitéd’une nage, on utilise les outils géométriques et numériques du contrôle optimal. Le principe du maximum estutilisé pour calculer les contrôles optimaux périodiques satisfaisant une condition de transversalité fine reliée à laminimisation de l’énergie mécanique pour un déplacement fixé où à la maximisation de l’efficacité. Ce sont desproblèmes sous-Riemanniens ce qui permet d’utiliser des techniques efficaces telles que l’approximation nilpotentepour calculer des nages de faible amplitude et qui est utilisée pour calculer des nages sur le vrai système parcontinuation. Les conditions nécessaires et suffisantes du second ordre sont calculées pour sélectionner desminimiseurs faible dans le cas d’une famille de nages périodiques.Dans la seconde partie, on s‘intéresse à la trajectoire d’un engin spatial contrôlé sous l’action d’un champ à forcecentral et où l’on considère les perturbations conservatives dues à l’effet lunaire et à l’aplatissement de la Terre àses pôles. Notre approche est basée sur des techniques moyennisation appliquées sur le système issu du principedu maximum. Nous donnons des résultats de convergence entre le système moyenné et le système non moyenné.Enfin, nous simulons les trajectoires du système non moyennée en utilisant les solutions du système moyennépour initialiser des méthodes numériques indirectes / The first part of this work is devoted to the study of the swimming at low Reynolds number where we consider a2-link swimmer to model the motion of a Copepod and the seminal model of the Purcell Three-link swimmer. Wepropose a geometric and numerical approach using optimal control theory assuming that the motion occursminimizing the energy dissipated by the drag fluid forces related with a concept of efficiency of a stroke. TheMaximum Principle is used to compute periodic controls considered as minimizing control using propertransversality conditions, in relation with periodicity, minimizing the energy dissipated for a fixed displacement ormaximizing the efficiency of a stroke. These problems fall into the framework of sub-Riemannian geometry whichprovides efficient techniques to tackle these problems : the nilpotent approximation is used to compute strokeswith small amplitudes which are continued numerically for the true system. Second order optimality, necessary orsufficient, are presented to select weak minimizers in the framework of periodic optimal controls.In the second part, we study the motion of a controlled spacecraft in a central field taking into account thegravitational interaction of the Moon and the oblateness of the Earth. Our purpose is to study the time minimalorbital transfer problem with low thrust. Due to the small control amplitude, our approach is to define anaveraged system from the Maximum Principle and study the related approximations to the non averaged system.We provide proofs of convergence and give numerical results where we use the averaged system to solve the nonaveraged system using indirect method
|
Page generated in 0.0909 seconds