181 |
Exploring the role and the function of Aryl Hydrocarbon Receptor (AhR) and Aryl Hydrocarbon Nuclear Translocator (ARNT) in T cellsRosenzweig, Ella January 2012 (has links)
The Aryl Hydrocarbon Receptor (AhR) and the Aryl Hydrocarbon Nuclear Translocator (ARNT) play a role in mediating transcriptional responses to environmental pollutants, including the highly toxic compound 2,3,7,8-tetrachlorodibenzo -p-dioxin (TCDD) but also endogenous physiological ligands. More recent studies have also indicated that the AhR plays a role in the immune system notably in effector Th17 cells where it seems to be critical for the production of the IL-22 cytokine. It is known that AhR ligands such as dioxins can suppress CD8 T cell mediated antiviral immune responses but it is not known whether this reflects a direct role of the AhR in CD8 T cells.Accordingly, one objective of the present study was to explore AhR and ARNT expression in CD8 T cells. The initial strategy was to probe AhR and ARNT expression by western blot analysis. A second approach was to develop a mouse model that would fate mark single lymphocytes that have activated AhR signaling pathways. A third strategy was to examine the impact of deletion of AhR and ARNT on CD8 T-cell function.The data show that AhR and ARNT expression in CD8 T cells is limited to immune activated effector cells and these transcription factors are not expressed in naïve CD8 T cells. There are only low levels of AhR complexes in conventional CD8 positive cytotoxic T cells. To investigate AhR function at the single cell level we developed a mouse model to fate mark cells that have activated AhR signaling. In this model a mouse expressing Cre recombinase ‘knocked in’ to the CYP1A locus (CYP1A1Cre+/-) was backcrossed to the R26REYFP reporter mouse. In R26REYFP mice, a gene encoding EYFP is knocked into the ubiquitously expressed Rosa26 locus preceded by a loxP flanked stop sequence. CYP1A1 expression is controlled by AhR/ARNT complexes and the concept of our model was that cells that express AhR and ARNT complexes and are triggered with AhR ligands will express Cre recombinase and delete the loxP flanked stop sequence in the R26REYFP reporter locus and hence begin to express YFP.In vitro experiments demonstrated the validity of this AhR reporter model. The in vitro data reveal that expression of functional AhR/ARNT complexes occurs during Th17 and Tc17 cell differentiation but only a very low frequency of cytotoxic T cells activates the AhR. In vivo data found no evidence for AhR activation during T cell development in the thymus but show strong evidence for activation of AhR/ARNT signaling in innate lymphocytes in the gut. The ARNT transcription factor is highly expressed in cytotoxic T cells. These cells do not express functional AhR complexes, yet we considered that ARNT might play a role in CD8 T cell biology because of its ability to dimerise with the transcription factor Hif-1a. Our studies of T cells lacking ARNT expression revealed that in CD4 T cells the ARNT transcription factor regulates IL-17 and IL-22 production. In CD8 T cells we discovered that Hif-1a/ARNT signaling controls glycolysis in immune activated cells by sustaining expression of glucose transporters and multiple rate limiting glycolytic enzymes. ARNT was not required for CD8 T cell proliferation but was required for immune activated CD8 T cells to normally differentiate to express perforin and granzymes and to acquire the migratory program of effector T cells. Importantly, we discovered that Hif-1a/ARNT signaling is regulated by mTOR (mammalian target of rapamycin) thus revealing a fundamental mechanism linking nutrient sensing and transcriptional control of CD8 T-cell differentiation.
|
182 |
A participação da via fosfatidilinositol3-quinase (PI3K)/mTOR no carcinoma epidermoide oral / The participation of the pathway Phosphatidylinositol 3-kinase (PI3K) / mTOR in oral squamous cell carcinomaDuarte, Andressa 15 March 2018 (has links)
O carcinoma epidermoide oral (CEO) possui alta incidência no Brasil, correspondendo a aproximadamente 95% das neoplasias malignas orais. A biologia molecular do carcinoma de cabeça e pescoço é complexa e se desenvolve a partir da disfunção de várias vias inter-relacionadas. A via das PI3K/mTOR é conhecida por regular várias funções celulares, como a regulação do ciclo celular, migração, angiogênese, morfologia e organização do citoesqueleto. O presente trabalho teve como objetivo avaliar o impacto do bloqueio da via PI3K e mTOR na sobrevida celular, na adesão e na morfologia de células endoteliais, relacionando-o com o processo angiogênico. Em cultura de células, observamos que as inibições farmacológicas de PI3K ou do mTOR diminuem a viabilidade celular do CEO. Houve redução da expressão de PARP, um marcador de apoptose e pS6, uma proteína dowstream na sinalização do mTOR, após o tratamento das células de CEO com os inibidores de mTOR. Além disso, demonstramos que o tratamento com os inibidores de mTOR diminuem a capacidade das células do CEO em formarem clones. Foi observado ainda que o cultivo de célula endoteliais da veia umbilical humana (HUVEC, do inglês Human Umbilical Vein Endothelial Cells) em meio condicionado (MC) proveniente de células de CEO, tratadas com inibidores de mTOR, resultaram em aumento da adesão celular e modificação na morfologia celular. Para investigar a influência dos fatores liberados pelas células tumorais na migração das células HUVECs, foi realizado ensaio de wound healing, em células HUVECs cultivadas em MC. Observamos maior migração das células HUVECs cultivadas em MC quando este era proveniente de células cancerosas tratadas com inibidor de mTOR. Ainda, investigamos a expressão da via VEGF nessa migração por meio do ensaio de ELISA. Observamos que no MC proveniente de células cancerosas tratadas com inibidor de mTOR havia maior presença de VEGF. Nossos dados sugerem que a via da PI3K/mTOR está envolvida na proliferação das células do CEO. Porém, a inibição de mTOR em células cancerosas pode liberar fatores, tais como VEGF, que influenciam na morfologia e migração de células HUVEC. / Oral squamous cell carcinoma (OSCC) has a high incidence in Brazil, corresponding to approximately 95% of oral malignancies. The molecular biology of head and neck carcinoma is complex and develops from the dysfunction of several interrelated pathways. The PI3K/mTOR pathway is known to regulate various cellular functions, such as cell cycle regulation, migration, angiogenesis, cytology, and cytoskeletal organization. The aim of the present study was to evaluate the impact of PI3K and mTOR pathway blockade on cell survival, endothelial cell adhesion and morphology, and to correlate it with the angiogenic process. In cell culture, we observed that pharmacological inhibitions of PI3K or mTOR decrease the OSCC\'s cellular viability. There was a reduction in the expression of PARP, a marker of apoptosis and pS6, a dowstream protein in mTOR signaling, after treatment of OSCC cells with mTOR inhibitors. In addition, we have demonstrated that treatment with mTOR inhibitors decreases the ability of the OSCC cells to form clones. It was further noted that human umbilical vein endothelial cell (HUVEC) culture in conditioned media (CM) from OSCC cells treated with mTOR inhibitors resulted in increased cell adhesion and modification in cell morphology. To investigate the influence of the factors released by the tumor cells in the migration of HUVEC cells, a wound healing assay was performed on HUVEC cells cultured in CM. We observed a greater migration of HUVECs cells cultured in CM when it came from cancer cells treated with mTOR inhibitor. Furthermore, we investigated the role of the VEGF pathway in this migration through the ELISA assay. We observed that in CM from cancer cells treated with mTOR inhibitor there was a greater presence of VEGF. Our data suggest that the PI3K/mTOR pathway is involved in the proliferation of OSCC cells. However, inhibition of mTOR in cancer cells may release factors, such as VEGF, which influence the morphology and migration of HUVEC cells.
|
183 |
Modeling and Therapeutic Development for the Tuberous Sclerosis Related Neoplasm LymphangioleiomyomatosisDelaney, Sean Phillip 06 November 2019 (has links)
The multisystemic tumors characteristic of the monogenic neoplastic diseases, tuberous sclerosis complex (TSC) and lymphangioleiomyomatosis (LAM), share common signaling aberrations upon the loss of heterozygosity in either the TSC1 or TSC2 genes. However, their physical manifestations are vastly different and can generally be classified as being either neurological (TSC) or mesenchymal (TSC & LAM; referred to herein as LAM for simplicity) in origin. In this study, I present a comprehensive stem cell model of LAM utilizing multiple TSC2 knockout (TSC2-/-) pluripotent stem cell lines differentiated to the putative cell of origin for mesenchymal tumors, neural crest cells (NCCs). TSC2-/- NCCs faithfully recapitulate LAM phenotypes and temporal RNA-seq analysis of neural and neural crest differentiation was performed to model disease pathogenesis. Analysis revealed immediate activation of stress response signaling resulting in protein aggregation and lysosome and autophagosome accumulation upon neuralization in TSC2-/- cells. This resulted in acute and lasting effects specific to neural progenitor cells (NPCs), that are transient and ameliorated in NCCs. These lineage-specific effects resulted in selective sensitization of NPCs to cell death via proteasome inhibition, suggesting a potential therapeutic avenue for neurological TSC, but not LAM. Thus, a genome-wide CRISPR knockout screen was performed in TSC2-/- NCCs. Analysis of synthetic lethal genes reveals pathways previously targeted for LAM, but provides gene-level resolution to the vulnerable nodes within these pathways. Importantly, 18 novel gene targets were identified that display synthetic lethality to TSC2-/- cells with high specificity. 3 genes within this list were targetable using commercially available small molecule inhibitors, one of which, FGFR1, shows highly selective lethal targeting of TSC2-/- NCCs. Importantly, this model system, paired with the expansive resource of transcriptomic and synthetic lethal data, serves as a foundation for the development of next generation treatment strategies for LAM, and potentially the entire spectrum of TSC manifestations.
|
184 |
THE IMPACT OF INSULIN DYSREGULATION ON PROTEIN METABOLISM IN HORSESLoos, Caroline Margot Marcelle 01 January 2018 (has links)
Insulin plays a vital role in whole-body metabolism and provides a major anabolic stimulus for cellular signaling pathways, including those involved in the metabolism of glucose and protein. Consequently, insulin dysregulation (ID) is known to alter molecular signal transduction in insulin-sensitive tissues such as skeletal muscle, thereby disrupting glucose metabolism and compromising protein synthetic capacity. Our first objective was to induce ID in healthy horses by administering dexamethasone (DEX), a potent glucocorticoid, for 21 days. We evaluated the effects on insulin-stimulated muscle protein signaling components involved in the mammalian target of rapamycin (mTOR) pathway. DEX-induced ID reduced insulin-stimulated activation of downstream (rpS6, 4EBP-1) mTOR signaling and increased atrogin-1 abundance, a marker for protein breakdown (P < 0.05). Additionally, 21 days of DEX elevated plasma amino acids levels in insulin-stimulated conditions, indicative of reduced uptake or increase release into circulation (P < 0.05). The second objective was to evaluate the short-term effects of DEX treatment in healthy horses. Plasma insulin, glucose and amino acid dynamics and activation of mTOR signaling pathways following an oral sugar test (OST) or intake of a high protein meal were evaluated before and after 7 days of DEX treatment, and after 7 days of no treatment. Seven days of DEX treatment increased basal levels of glucose, insulin and several amino acids (P < 0.05). Additionally horses treated with DEX had an exacerbated insulin response to the OST and consumption of the high protein meal in comparison to control horses (P < 0.05). The majority of blood metabolites returned to basal levels after 7 days of recovery from DEX treatment, indicating these effects were transient. Short-term DEX treatment decreased overall activation of mTOR and FoxO3 but increased total FoxO3 and IRS-1 abundance (P < 0.05). Postprandial activation of rpS6 was greater in horses treated with DEX for 7 days but was lower in those horses after 7 days of recovery from treatment (P < 0.05). Postprandial activation of ULK and AMPK tended to be greater in DEX treated horses (P < 0.1). Akt phosphorylation and mysotatin abundance were lower after the OST in DEX treated horses (P < 0.05). The final objective was to evaluate whether similar changes in postprandial metabolic responses would be seen in horses with naturally occurring ID. Plasma insulin, glucose and amino acid responses following ingestion of a high protein meal were determined in mature horses with equine metabolic syndrome (EMS). Horses with EMS had higher basal plasma insulin concentrations but lower levels of aspartate, glutamate, asparagine and plasma urea nitrogen in comparison to healthy controls (P < 0.05). Consumption of a high protein meal resulted in a 9-fold greater insulin response and higher postprandial levels of various amino acids (P < 0.05). Together this research indicates that ID affects whole body protein metabolism by altering cellular signaling pathways in healthy and diseased horses.
|
185 |
Effects of Mammalian Target of Rapamycin Inhibition on Circuitry Changes in the Dentate Gyrus of Mice after Focal Brain InjuryButler, Corwin R. 01 January 2016 (has links)
Post-traumatic epilepsy is a common outcome of severe traumatic brain injury (TBI). The development of spontaneous seizures after traumatic brain injury generally follows a latent period of little to no symptoms. The series of events occurring in this latent period are not well understood. Additionally, there is no current treatment to prevent the development of epilepsy after TBI (i.e. antiepileptogenics). One cell signaling pathway activated in models of TBI and in models of epilepsy is the mammalian target of rapamycin (mTOR). mTOR activity is sustained for weeks after the initial insult in models of TBI, and the inhibition of mTOR using rapamycin has shown promising pre-clinical outcomes in rodent models. This makes rapamycin an ideal therapeutic to test various outcomes associated with epileptogenesis after TBI. The results from this study suggest that rapamycin treatment after controlled cortical impact reduces aberrant axonal sprouting of ipsilateral dentate granule cells, prevents increased neurogenesis in the subgranular zone, and differentially alters phasic and tonic inhibition in dentate granule cells. However, rapamycin treatment did not prevent all forms of axon sprouting in the dentate gyrus or cell loss in selected regions of the hippocampus. Collectively these results support a role of mTOR activity in both excitatory and inhibitory plasticity in the mouse dentate gyrus after TBI.
|
186 |
Efeitos das suplementações de caseína e da sua associação com as proteínas do soro do leite sobre a via de sinalização da mTOR em músculos esqueléticos de ratos /January 2019 (has links)
Resumo: Objetivo: O objetivo do estudo foi comparar os efeitos de uma dose-única de caseína micelar (MCa) com a ingestão de caseína micelar associada à proteína do soro do leite (whey protein) (1:1) sobre a resposta aminoacidêmica e a via de sinalização do alvo da rapamicina (mTOR) em músculos esqueléticos de ratos durante a fase de inatividade (período de luz ambiente). Métodos: Após 10h de jejum durante a fase ativa, os ratos foram alimentados com MCa ou PB (5,6g proteína por kg de massa corporal) por gavagem e a água foi usada como veículo (grupo controle, PLA). Em 30 e 450 min após a suplementação das proteínas, os animais foram sacrificados e as amostras de sangue e do músculo gastrocnêmio foram coletadas para análises bioquímicas. Resultados: Os níveis plasmáticos dos aminoácidos de cadeia ramificada (BCAA) aumentaram após as suplementações de MCa (3 vezes) e PB (3,2 vezes). Ainda mais relevante, os níveis estimulatórios da fosforilação da mTOR e do seu alvo downstream p70S6K foram maiores 30 min após MCa (2,6 e 2,9 vezes, respectivamente) e PB (2,8 e 3,8 vezes, respectivamente) quando comparado com PLA. As concentrações plasmáticas de leucina forma correlacionadas com a ativação da mTOR (r = 0,60; p < 0,05) e p70S6K (r = 0,77; p < 0,05) em 30 min. Não existiu diferença para as concentrações plasmáticas de BCAA e a via de sinalização da mTOR em 450 min. Conclusão: Nós concluímos que a suplementação de MCa e PB resultaram em um efeito anabólico semelhante no músculo esquelético ... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: Objective: The aim of the study was to compare the effects of single-dose supplementation of a protein blend (PB) composed of micellar casein and whey protein (1:1) with isolated micellar casein (MCa) on aminoacidemic response and the mammalian target of the rapamycin (mTOR) signaling pathway 30 and 450 min after the beginning of the inactive phase in Wistar rats. Methods: After 10h of fasting during the active phase, rats were fed with MCa or PB (5.6g protein per kg of body mass) by gavage and water was used as the vehicle (PLA, placebo group). At 30 and 450 min after protein supplementation, the animals were euthanized and blood and gastrocnemius muscle samples were collected for biochemical and immunoblot analysis. Results: Plasma BCAA levels increased after MCa (3-fold) and PB (3.2-fold) supplementations. More importantly, the stimulatory phosphorylation levels of mTOR and its downstream target ribosomal protein S6 kinase (p70S6K) were higher 30 min after MCa (2.6 and 2.9-fold, respectively) and PB (2.8 and 3.8-fold, respectively) when compared with PLA. Plasma leucine levels were correlated with activation of mTOR (r = 0.60, p < 0.05) and p70S6K (r = 0.77; p < 0.05) at 30 min. There were no differences for plasma amino acids levels and the mTOR signaling pathway at 450 min. Conclusions: MCa and PB supplementations resulted in a similar anabolic milieu in rat skeletal muscle by inducing a transient increase in BCAA plasma levels and activation of the mTOR/p70S6K axis. / Mestre
|
187 |
Modèles précliniques de schwannomes vestibulaires pour l'évaluation d’une stratégie de réduction de dose d’irradiation par combinaison avec des thérapies ciblées / Preclinical models of vestibular schwannomas for the evaluation of radiation dose reduction in combination with targeted therapiesBonne, Nicolas-Xavier 31 October 2018 (has links)
Contexte : Le schwannome vestibulaire (SV) est une tumeur bénigne de la gaine du nerf vestibulaire. La plupart des SV présentent une inactivation somatique bi-allèlique du gène suppresseur de tumeur NF2. L’inactivation congénitale du gène NF2 est impliquée dans le développement de la Neurofibromatose de type 2, une maladie génétique autosomique dominante prédisposant au développement de tumeurs multiples du système nerveux central et en particulier de schwannomes vestibulaires bilatéraux. Le traitement des schwannomes vestibulaires repose sur la chirurgie ou la radiothérapie délivrée en conditions stéréotaxiques. La réduction de la dose d’irradiation des schwannomes vestibulaires a permis d’améliorer le pronostic fonctionnel auditif tout en garantissant un taux de réponse satisfaisant. Pourtant de nombreux patients présenteront une surdité neurosensorielle progressive. Afin de poursuivre cette réduction de dose d’irradiation, des modèles biologiques fidèles récapitulant le statut d’inactivation du gène NF2 et la surdité neurosensorielle sont nécessaires à l’élaboration d’une approche préclinique.Problématique : Nous avons proposé de développer des systèmes modèles in-vitro et in-vivo compatibles avec l’étude de la radiosensibilité des schwannomes vestibulaires en combinaison avec des thérapies ciblant les voies de signalisation spécifiquement activées par la perte de fonction NF2.Méthodes : Les lignées cellulaires humaines de schwannomes vestibulaires NF2 (HEI_193, HEI_182), et de cellules de Schwann vestibulaire contrôle (HEI_286) ont été cultivées en essai clonogénique afin de déterminer le nombre d’unité formatrices de colonies à doses croissantes d’inhibiteur mTOR (Rapamycine), PI3K (GDC_0941), mTOR et PI3K (BEZ_235) pour déterminer le 50% d’inhibition de croissance (GI50%) puis en combinaison à doses croissantes de radiation gamma (Co60). La lignée cellulaire murine inactivée pour nf2 (SC4#9) a été utilisée pour réaliser des greffes syngéniques orthotopiques. La croissance des tumeurs a été suivie par IRM et bioluminescence et l’audition déterminée par potentiels évoqués auditifs. L’analyse histologique des cochlées a été réalisée par coloration en hématoxyline et éosine puis par fluorescence après clarification cochléaire. Des volumes complets ont été obtenus par microscopie confocale à balayage laser.Résultats : Les essais clonogéniques réalisés en Agarose ont identifié une radiorésistance relative des lignées humaines de schwannomes mutées pour NF2 par comparaison au contrôle humain non muté. Cette résistance identifiée en réponse à l’exposition à une dose unique d’irradiation gamma peut être contournée par l’inhibition de la voie mTOR au moment de l’irradiation restituant une sensibilité comparable au contrôle humain non muté. Une tendance à un bénéfice de l’association d’une inhibition mTOR à un inhibiteur PI3 kinase a été retrouvée à une dose maximum d’irradiation. Un modèle murin de schwannome vestibulaire qui récapitule la croissance dans l’angle ponto-cérébelleux et la perte d’audition a été développé par injection stéréotaxique dans le paquet acoustico faciale. Le suivi de croissance de ce schwannome a été caractérisé par IRM et bio-luminescence in-vivo. Enfin un protocole de clarification cochléaire a été adapté aux mammifères murins pour permettre l’étude histologique de cochlées intactes compatible avec l’étude de l’otoxicité des schwannomes et/ou de leur traitement .Conclusion : Les modèles décrits dans cette thèse permettent l’évaluation pré-clinique de stratégies thérapeutiques combinant thérapie ciblée et irradiation gamma en dose unique. L’amélioration des connaissances des mécanismes participant à l’ototoxicité des schwannomes et de leur traitement permettra d’améliorer le ciblage moléculaire afin de réduire les effets auditifs secondaires de la radiochirurgie. / Context: Vestibular schwannomas (VS) are benign neoplasm arising from the Schwann cells of the vestibular nerve. Most of sporadic VS carry a bi-allelic inactivation of the tumor suppressor gene NF2. Congenital inactivation of the NF2 gene is linked to the onset of Neurofibromatosis type 2 (NF2), a genetic condition predisposing to the development of multiple benign tumor of the central nervous system with bilateral VS as a hallmark. Treatment of VS is either surgical or by use of radiation therapy delivered in stereotactic condition. A significant dose reduction has led to improving the hearing outcomes while maintaining good tumor control. Meanwhile a significant number of treated patients will develop a progressive sensorineural hearing loss (SNHL). Laboratory models that faithfully recapitulate NF2 gene inactivation and SNHL are needed to pursue the reduction of the dose delivered.Aim: We aimed at developing new models in-vitro and in-vivo for the study of vestibular schwannoma radio sensitivity in combination with selected compounds that selectively target the pathways activated secondary to NF2 loss of function.Methodes: Human vestibular schwannoma cell lines (HEI_193, HEI_182) and control human Schwann cell line (HEI_286) were used in clonogenic assay to determine the number of colony forming unit (CFU) spontaneously and at increasing dosing of mTOR inhibitor (Rapamycin), PI3 kinase inhibitor (GDC_0941), PI3K-mTOR dual inhibitor (BEZ_235) to determine the 50% growth inhibitory threshold (GI50%) then in combination with increasing radiation regimen of gamma radiation emitted by a source of Co60. The mouse cell line inactivated for nf2 (SC4#9) was used to generate orthotropic syngrafts. The growth of the tumor was monitored using MRI and bioluminescence imaging and hearing was tested by recording auditory brainstem responses. Pathology of the cochlea were obtained from paraffin embedded sections and then using fluorescence confocal microscopy of whole mounted transparent cochleae.Results: Soft agar clonogenic assays were used and identified a resistance to radiation therapy in human cell lines of VS inactivated for NF2 when compared to the non-mutated control. This radiation resistance could be overcome by pre-exposure to the mTOR inhibitor Rapamycin allowing a return to the radiosensibility of non-mutated control. There was a tendency toward a beneficial effect when using a dual inhibition of the mTOR and PI3 kinase at a maximum dose of exposure to radiation. A mouse model of VS has been developed by stereotactic seeding of nf2 deficient cell line SC4#9 targeting the cochleo-vestibular nerve complex. It recapitulates the growth in the suitable micro-environment and secondary SNHL. The growth has been characterized using MRI and in-vivo bioluminescence imaging. Hearing loss was confirmed using sequential ABR. Last a protocol for the clarification of whole mounted cochleae has been adapted to species of rodents suitable for the pathological study of ototoxic change secondary to VS and/or its treatment.Conclusion: The models presented in this thesis may be used for the preclinical evaluation of combined therapeutic approaches with single dose gamma radiation. A better understanding of the mechanisms involved in ototoxicity secondary to VS and of its treatment would improve the molecular targeting in order to warrant better auditory outcomes.
|
188 |
Mechanisms of Sensitization to Apoptosis in Multiple MyelomaHammarberg, Anna January 2007 (has links)
<p>Multiple myeloma (MM) is a hematological tumor of plasma blast/plasma cell origin heterogeneous with respect to the morphological differentiation stage of the tumor cells, genetic alterations and course of disease. A challenge in MM research is to overcome resistance to therapy, which inevitably arises. In this thesis, we have used different strategies to sensitize MM cells to apoptosis and explored possible mechanisms of apoptotic control by the insulin-like growth factor-1 receptor (IGF-1R) survival pathway.</p><p>mTOR is a key molecule in the regulation of translation activated by survival signaling pathways in MM. We demonstrate that the mTOR-inhibitor rapamycin alone induced apoptosis in primary MM cells. In addition, rapamycin sensitized MM cells to apoptosis induced by dexamethasone, a glucocorticoid frequently used in MM therapy. MM survival factors IGF-1 and IL-6 could neither restore phosphorylation of the mTOR target p70S6K, nor cell growth inhibited by rapamycin and dexamethasone.</p><p>To study the regulation of inhibitors of apoptosis (IAP), we induced apoptosis and cell cycle arrest with dexamethasone and simultaneously abrogated IGF-1R signaling using the antagonistic antibody αIR3 or the selective IGF-1R inhibitor picropodophyllin (PPP). Dexamethasone transiently up-regulated c-IAP2. The subsequent down-regulation of c-IAP2 and XIAP was associated with the onset of apoptosis. c-IAP2 and XIAP levels further decreased when enhancing dexamethasone-induced apoptosis using αIR3 or PPP indicating a role for IAPs in regulating resistance to apoptosis in MM.</p><p>Finally, we explored glycogen synthase kinase (GSK)3 as a possible pro-apoptotic molecule and its role in regulating sensitization to apoptosis. We show that inhibition of GSK3 counteracts growth inhibition induced by dexamethasone alone and in combinatorial treatments with inhibitors against PI 3-kinase, mitogen-activated protein kinase (MEK), mTOR and IGF-1R. CT99021 also reversed cell cycle arrest induced by LY294002 or rapamycin. Importantly, the GSK3 inhibitor CT99021 sustained viability in untreated and dexamethasone-treated primary MM cells.</p>
|
189 |
Mechanisms of Sensitization to Apoptosis in Multiple MyelomaHammarberg, Anna January 2007 (has links)
Multiple myeloma (MM) is a hematological tumor of plasma blast/plasma cell origin heterogeneous with respect to the morphological differentiation stage of the tumor cells, genetic alterations and course of disease. A challenge in MM research is to overcome resistance to therapy, which inevitably arises. In this thesis, we have used different strategies to sensitize MM cells to apoptosis and explored possible mechanisms of apoptotic control by the insulin-like growth factor-1 receptor (IGF-1R) survival pathway. mTOR is a key molecule in the regulation of translation activated by survival signaling pathways in MM. We demonstrate that the mTOR-inhibitor rapamycin alone induced apoptosis in primary MM cells. In addition, rapamycin sensitized MM cells to apoptosis induced by dexamethasone, a glucocorticoid frequently used in MM therapy. MM survival factors IGF-1 and IL-6 could neither restore phosphorylation of the mTOR target p70S6K, nor cell growth inhibited by rapamycin and dexamethasone. To study the regulation of inhibitors of apoptosis (IAP), we induced apoptosis and cell cycle arrest with dexamethasone and simultaneously abrogated IGF-1R signaling using the antagonistic antibody αIR3 or the selective IGF-1R inhibitor picropodophyllin (PPP). Dexamethasone transiently up-regulated c-IAP2. The subsequent down-regulation of c-IAP2 and XIAP was associated with the onset of apoptosis. c-IAP2 and XIAP levels further decreased when enhancing dexamethasone-induced apoptosis using αIR3 or PPP indicating a role for IAPs in regulating resistance to apoptosis in MM. Finally, we explored glycogen synthase kinase (GSK)3 as a possible pro-apoptotic molecule and its role in regulating sensitization to apoptosis. We show that inhibition of GSK3 counteracts growth inhibition induced by dexamethasone alone and in combinatorial treatments with inhibitors against PI 3-kinase, mitogen-activated protein kinase (MEK), mTOR and IGF-1R. CT99021 also reversed cell cycle arrest induced by LY294002 or rapamycin. Importantly, the GSK3 inhibitor CT99021 sustained viability in untreated and dexamethasone-treated primary MM cells.
|
190 |
Classical Antifolates: Synthesis of 5-Substituted, 6-Substituted and 7-Substituted Pyrrolo[2,3-d]Pyrimidines as Targeted Anticancer TherapiesWang, Yiqiang 22 April 2015 (has links)
This dissertation comprises an introduction, background and current research progress in the area of classical antifolates as the targeted anticancer therapies.<br>In this study, twelve series of classical 5-, 6- and 7-substituted pyrrolo[2,3-d]pyrimidines were designed and synthesized. Extensive structure modifications of the pyrrolo[2,3-d] pyrimidine scaffold were investigated to determine selective transport via FR or/and PCFT and tumor targeted antifolates with GARFTase or multiple folate metabolizing enzyme inhibition.<br>The design strategies employed include: variation of the side chain substitution position (5-,6- and 7-substituted); variation of the side chain length (n=1-6); isosteric replacement of the 1,4-disubstituted phenyl ring with 1,2- and 1,3- disubstituted phenyl ring and 2,5- disubstituted thiophenyl ring; replacement the L-glutamate with variation at the á and ã carboxylic acids.<br>As a part of this study, a total of one hundred and fifty six new compounds (including new intermediates) were synthesized and separated. Of these, twelve series consisting of forty two classical antifolate final compounds were submitted for biological evaluation. In addition, bulk synthesis of some potent final compounds (2, 2.0 g; 161, 500 mg; 175, 1.0 g; 166, 500 mg; 194, 500 mg) was carried out to facilitate in vivo evaluation.<br>More importantly, a new Heck coupling of the thiophene iodide 301 and allyl alcohols to synthesize aldehydes in one step was discovered. Due to its potential use in analog synthesis of clinically used antifolates such as RTX and PMX, this mild conditioned and easy to handle Heck coupling reaction is highly attractive.<br>During this study, the SAR of folate transporters (RFC, FR and PCFT) and GARFTase inhibitors were extensively explored. The 6-substituted straight chain compound 166 (n=7) was extremely potent against KB tumor cells (IC50=1.3 nM, about 80-fold more potent than clinically used PMX) without any RFC activity. The 5- substituted phenyl compound 175 (n=4) showed AICARFTase as the primary target with potent KB tumor cell inhibition (IC50=7.9 nM, about 8-fold more potent than PMX) and also indirectly inhibited the mTOR pathway leading to tumor cell apoptosis. Due to their potent antitumor activities, these two compounds serve as leads for future structural optimization. / Mylan School of Pharmacy and the Graduate School of Pharmaceutical Sciences; / Medicinal Chemistry / PhD; / Dissertation;
|
Page generated in 0.0416 seconds