• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 31
  • 21
  • 5
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 76
  • 76
  • 25
  • 23
  • 22
  • 10
  • 10
  • 9
  • 9
  • 9
  • 8
  • 8
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Photopolymerization-Induced Crystallization in Relation to Solid-Liquid Phase Diagrams of Blends of Blends of Poly(ethylene oxide)/Multi-functional Acrylate Monomers

Park, Soo Jeoung 26 August 2008 (has links)
No description available.
22

Multi-component Elastomer Composites for Next Generation Electronics and Machines

Barron III, Edward John 14 December 2023 (has links)
Multi-component soft materials offer innovative solutions for traditional and emerging technologies by possessing unique combinations of tunable functionality and adaptive mechanical response. These materials often incorporate functional inclusions such as metals or ceramics in elastomers to create deformable composite structures with high thermal or electrical conductivities, magnetic material response, or stimuli-responsive shape and rigidity tuning. In recent years, these materials have become enabling for wearable electronics and soft machines which has led to the development of new material architectures that provide advanced functionalities while maintaining a low mechanical modulus and high extensibility. In this work, we develop methods for the fabrication and utilization of advanced material architectures which integrate room temperature liquid metals (LM), low melting point alloys (LMPA), and magnetic powders and fluids with soft elastomers to introduce multifunctionality to electronic and machine systems. LM-elastomer composites which have high thermal and electrical conductivities are enabling for heat transfer applications and soft, extensible wiring for wearable electronics and soft robots. These materials have been utilized to create emerging devices such as electronics that are capable of improving human health and efficiency, as well as robots capable of adapting their functions based on environmental need. One possible area where LM composites could be applied is in marine environments, where wearable electronics can improve safety for divers, and soft machines could be utilized for underwater exploration. In Chapter 2, we provide the first study to quantify the effects of underwater aging in freshwater and saltwater environments on the important mechanical and functional properties of LM composites for long-term underwater use. It is found that LM composites are largely resistant to changes in their mechanical properties, as well as both thermal and electrical functionality due to long-term underwater aging. In Chapter 3, we introduce a new chemical approach for the tough bonding of LM composites to diverse substrates, which increases adhesion by up to 100x, improving the integration of these materials with rigid electronics. It is shown that the fracture energy and thermal conductivity of these materials can be tuned by controlling the size and volume loading of the LM inclusions. The utility of this method is then shown through the permanent bonding of LM composites to rigid electronics for use as thermal interface materials. \\ Chapter 4 introduces a multi-component shape morphing material that leverages an LMPA endoskeleton and soft LM resistive heaters to produce rapid (< 0.1 s) and reversible shape change. The morphing material utilizes a unique 'reversible plasticity' mechanism enabled by patterned kirigami cuts that allows for instantaneous shape fixing into load bearing shapes without the need for sustained power. The material properties are enabling for the creation of shape morphing robots, which we show through by integration of on board power and control to create a multi-modal morphing drone capable of land and air transport as well as through an underwater machine that can be reversibly deployed to obtain cargo. For magnetic elastomers, the magneto-mechanical properties of state-of-the-art magnetorheological elastomers (MREs) with diverse structures are studied. These materials have long been studied for their ability to rapidly tune stiffness in the presence of a magnetic field. Chapter 5 introduces a new form of hybrid MRE material architecture which utilizes a combination of magnetic powders and fluids to achieve high magnetic permeability and low stiffness for wearable electronic applications. The zero-field magneto-mechanical properties of MREs with rigid particles, magnetic fluids, and a combination of the two are studied. The inclusions are modeled through an Eshelby analysis which demonstrates magnetic fluids can be utilized to increase magnetic response while decreasing the stiffness of the composite material. The stiffness tuning capabilities of these material architectures are then explored in Chapter 6, where we introduce a predictive model that captures the stiffness tuning response of MREs across diverse microstructures and compositions. This model guides the creation of materials with rapid (~ 20 ms) and extreme stiffness tuning (70x) which we utilize to create a soft adaptive gripper capable of handling objects of diverse geometries. / Doctor of Philosophy / Multi-component soft materials offer innovative solutions for traditional and emerging technologies by possessing unique combinations of tunable functionality and adaptive mechanical properties. These materials often incorporate functional inclusions such as metals or ceramics in elastomers in order to create deformable composite structures with high thermal or electrical conductivities, magnetic material response, or user-controlled shape morphing and stiffness change. In recent years, these materials have become enabling for wearable electronics and soft machines which has led to the development of new materials that provide advanced functionalities while maintaining a low stiffness and high extensibility. In this work, we develop methods for the fabrication and utilization of advanced materials that integrate room temperature liquid metals (LM), low melting point alloys (LMPA), and magnetic powders and fluids with soft elastomers to introduce multifunctionality to electronic and machine systems. LM-elastomer composites which have high thermal and electrical conductivities are enabling for heat transfer and stretchable electronic applications for wearable electronics and soft robots. These materials have been utilized to create emerging devices such as electronics that are capable of improving human health and efficiency, as well as robots capable of adapting their functions based on environmental need. One possible area where LM composites could be applied is in marine environments, where wearable electronics can improve safety for divers, and soft robots could be utilized for underwater exploration. In Chapter 2, we provide the first study to quantify the effects of underwater aging in freshwater and saltwater environments on the important mechanical and functional properties of LM composites for long-term underwater use. It is found that LM composites are largely resistant to changes in their mechanical properties, as well as both thermal and electrical functionality due to long-term underwater aging. In Chapter 3, we introduce a new chemical approach for the tough bonding of LM composites to diverse substrates, which increases adhesion by up to 100x, improving the integration of these materials with rigid electronics. It is shown that the adhesion and thermal conductivity of these materials can be tuned by controlling the size and volume loading of the LM inclusions. The utility of this method is then shown through the permanent bonding of LM composites to rigid electronics for use as thermal interface materials. Chapter 4 introduces a multi-component shape morphing material that leverages an LMPA endoskeleton and soft LM resistive heaters to produce rapid (< 0.1 s) and reversible shape change. The morphing material utilizes a unique 'reversible plasticity' mechanism enabled by patterned kirigami cuts that allows for instantaneous shape fixing into load bearing shapes without the need for sustained power. The material properties are enabling for the creation of shape morphing robots, which we show through by integration of on board power and control to create a multi-modal morphing drone capable of land and air transport as well as through an underwater machine that can be reversibly deployed to obtain cargo. For magnetic elastomers, the magnetic and mechanical properties of state-of-the-art magnetorheological elastomers (MREs) with diverse structures are studied. These materials have long been studied for their ability to rapidly change stiffness in the presence of a magnetic field. Chapter 5 introduces a new form of hybrid MRE material architecture which utilizes a combination of magnetic powders and fluids to achieve exceptional magnetic properties and low stiffness for wearable electronic applications. The mechanical properties of MREs with rigid particles, magnetic fluids, and a combination of the two are studied. The inclusions are modeled through a mechanical analysis which demonstrates magnetic fluids can be utilized to increase magnetic character while decreasing the stiffness of the composite material. The stiffness tuning capabilities of these material architectures are then explored in Chapter 6, where we introduce a predictive model that captures the stiffness tuning response of MREs across diverse microstructures and compositions. This model guides the creation of materials with rapid (~ 20 ms) and extreme stiffness tuning (70x) which we utilize to create a soft adaptive gripper capable of handling objects of diverse geometries.
23

Overview of tailoring cementitious composites with various nanomaterials

Li, L., Wang, X., Han, B., Ashour, Ashraf 02 November 2023 (has links)
No / Incorporating nanomaterials brings great changes in tailoring the nano-/micro-/macroscale structures of bulk cement paste phase and interfacial transition zone in the cementitious composites through the nano-core effect, thus achieving stronger, more durable, and smart/multi-functional cementitious composites. Owing to the nano-modification of cement paste in combination with the supplement of nanoscale continuity for multiscale raw materials of cementitious composites, nanomaterials gradually show the potential to become the indispensable seventh component of cementitious composites besides cement, water, fine aggregates, coarse aggregates, chemical additives, and mineral additives. Therefore tailoring cementitious composites with nanomaterials provides a promising approach to develop the new generation of cementitious composites (e.g., ultra-high performance, smart/multi-functional, and resilient) and sustainable infrastructures. This chapter aims to provide a systematic overview of tailoring cementitious composites with various types of nanomaterials. It initially covers the principle of tailoring cementitious composites with nanomaterials and dispersion of nanomaterials in cementitious composites. It then presents the properties of cementitious composites with 0D, 1D, and 2D nanomaterials, namely, hydration, rheology, workability, durability, functional, and mechanical properties. It also highlights various applications of cementitious composites with nanomaterials, including structural health monitoring, traffic detection, and pollutant purification. This chapter concludes by presenting the future prospects of cementitious composites with nanomaterials.
24

Thoughts on Architecture…

Simino, Sarah 25 August 1999 (has links)
Architecture is more than mere building. Architecture is a process involving the study, observation, and solution of aesthetic and pragmatic problems. The act of building solves the pragmatic questions, but it is the architect's intellectual commitment and line of inquiry that ultimately produces architecture. This inquiry provided the opportunity to develop and elaborate a position on the thinking and making of architecture. The study of the urban condition, structure, enclosure, multi-functional elements and photography became a base of knowledge from which to begin. The range of ideas presented were the result of a line of inquiry that became this thesis. Quality is not inherent in an object. It must be expressed through the ideas by which it was created. In the same respect, this project does not represent the concepts, it presents them. "...the first imperative is to gain the critical knowledge that will permit the choice of the coordinates within which his or her career will develop; these are the coordinates to which his or her buildings will refer." Raphael Moneo / Master of Architecture
25

Revitalizing Downtown Houston - Bringing Back the Human Scale

Devlin, John M. 27 July 2016 (has links)
no abstract provided by author / Master of Architecture
26

MODELING AND DESIGN METHODOLOGIES FOR SOUND ABSORBING POROUS MATERIALS WHEN USED AS LAYERED VIBRATION DAMPERS

Yutong Xue (7500887) 17 October 2019 (has links)
<div>Modeling methodologies based on state-of-the-art and classic theories of acoustics have been developed to provide a comprehensive toolbox, which can be used to model multilayer systems that involve acoustical and/or damping treatments, and to optimize these treatments' performance by designing their geometrical structures. The objective of this work was to understand, predict and optimize conventional sound absorbing porous media's near-field damping performance, so that automotive and aerospace industries can take full advantage of layered porous treatments' lightness and multi-functionality: i.e., absorption of airborne sound and reduction of structure-borne vibration, for noise control applications. First, acoustical models that include the Transfer Matrix Method and the Arbitrary Coefficient Method were developed to build connections between the bulk properties and acoustical properties of porous media when coupled into layered systems. Given a specified layered system consisting of a vibrating panel and a porous damping treatment, the acoustics models were then incorporated into the Near-field Damping model to predict the acoustical near-field and spatial response of the panel, based on which the near-field damping performance can be evaluated for a limp or an elastic porous layer when applied on different structures including an infinitely-extended panel, a partially-constrained panel, an aircraft fuselage-like structure and a vehicle floor pan-like structure. Furthermore, the relations between the material's microstructural details and bulk properties were established via an Air-Flow Resistivity model for porous media that are made of fibers, and the optimal fiber size that provides the largest damping for certain vibrating structures was identified. Relatively large fibers were found to be better at reducing lower frequency vibrations; fibers made of polymer were found to have manufacturing benefits over fibers made of glass to achieve equivalent optimal damping performance; and elastic fibers were found to have both manufacturing and damping advantages over limp fibers.</div>
27

Reliability Analysis and Optimization of Systems Containing Multi-Functional Entities

Xu, Yiwen January 2015 (has links)
Enabling more than one function in an entity provides a new cost-effective way to develop a highly reliable system. In this dissertation, we study the reliability of systems containing multi-functional entities. We derive the expressions for reliability of one-shot systems and reliability of each function. A step further, a redundancy allocation problem (RAP) with the objective of maximizing system reliability is formulated. Unlike constructing a system with only single-functional entities, the number of copies of a specific function to be included in each multi-functional entity (i.e., functional redundancy) needs to be determined as part of the design. Moreover, a start-up strategy for turning on specific functions in these components must be decided prior to system operation. We develop a heuristic algorithm and include it in a two-stage Genetic Algorithm (GA) to solve the new RAP. We also apply a modified Tabu search (TS) method for solving such NP-hard problems. Our numerical studies illustrate that the two-stage GA and the TS method are quite effective in searching for high quality solutions. The concept of multi-functional entities can be also applied in probabilistic site selection problem (PSSP). Unlike traditional PSSP with failures either at nodes or on edges, we consider a more general problem, in which both nodes and edges could fail and the edge-level redundancy is included. We formulate the problem as an integer programming optimization problem. To reduce the searching space, two corresponding simplified models formulated as integer linear programming problems are solved for providing a lower bound to the primal problem. Finally, a big challenge in reliability analysis is how to determine the failure distribution of components. This is especially significant for multi-functional entities as more levels of redundancy are considered. We provide an automated model-selection method to construct the best phase-type (PH) distribution for a given data set in terms of the model complexity and the adequacy of statistical fitting. To efficiently utilize the Akaike Information Criterion for balancing the likelihood value and the number of free parameters, the proposed method is carried out in two stages. The detailed subproblems and the related solution procedures are developed and illustrated through numerical studies. The results verify the effectiveness of the proposed model-selection method in constructing PH distributions.
28

Konstrukce multifunkčního obráběcího centra / Design of multi-functional machining centre

Zbožínek, Adam January 2011 (has links)
The master´s thesis describes basic notions in the domain of automatic tools exchange of machining centres. It describes systems which are used today and their basic division. The practical part deals with the construction of the system of automatic exchange of tools for multifunction lathe centre.
29

Radiation Pattern Reconfigurable Horn Antenna Based on Parasitic Layer Concept

Tanagardi, Mehmet 01 August 2019 (has links)
In recent years, multi-functional reconfigurable antennas (MRA) has attracted much attention in wireless communication. The reconfigurable antenna can adapt itself with changing system conditions, and it can provide different multi-functionalities which can give better system performances. Instead of using multiple antennas, a single reconfigurable antenna can provide the same performance and occupy less space. By using the parasitic layer technique, an antenna can be turned into a reconfigurable antenna. The main objective of this thesis is to study radiation pattern reconfiguration of the horn antenna by using the parasitic layer concept. The MRA consists of a single horn, dielectric loaded truncated pyramid (DLTP), and the parasitic layer. The antenna that is chosen in this thesis is the horn antenna because it provides high directivity. DLTP is used for magnification purpose. The results show that three modes of operations that provide better performances compared to the single horn antenna are achieved.
30

Konceptutveckling av brödrost och toastjärn / Concept development of toaster and sandwich toaster

Taylan, Ilayda January 2023 (has links)
Detta examensarbete presenterar en nydanande lösning på ett ofta förbisett problem i vår vardag, nämligen bristen på en maskin som inte bara rostar bröd, utan också tillagar toast på ett effektivt och praktiskt sätt. Genom att utforska marknaden och identifiera detta gap i marknaden har det utvecklats en multifunktionell maskin som möter detta behov. Rapporten tar läsaren genom förstudie, marknadsanalyser, enkätundersökningar, laborationer, idégenereringen, designprocessen och slutliga modellen på konceptutvecklingen. Detta arbete representerar en lösning på en praktisk utmaning i vår vardag och ger en inblick i produktutvecklingsprocessen. Arbetet har tagit fram och utforskat tre olika koncept, där en utvärdering avgjort vilket koncept som skall vidareutvecklas. Det huvudsakliga fokuset på idégenereringen samt konceptutvecklingen har varit att uppfylla kravspecifikationen som formades utifrån problembeskrivningen, marknadsanalysen samt enkätundersökningen. Resultatet av arbetet blev en produkt med god prestanda, som även är hållbar, estetiskt tilltalande och säker. Den framtagna idén har presenterats med illustrationer av CAD-modeller. För att inte motverka den hållbara utvecklingen har produkten valt att tillverkas av material som både är tåliga och återvinningsbara, på så sätt erbjuds kunden en maskin med längre livslängd men även en maskin som inte bidrar till någon ytterligare miljöfara. / This thesis presents a solution to an often overlooked problem in our everyday life, which is the lack of a machine that not only toasts bread, but also cooks toastie in an efficient and practical way. By exploring the market and identifying this gap in the market, a multi-functional machine has been developed that meets this need. The report takes the reader through feasibility studies, market analyses, surveys, labs, the idea generation phase, the design process, and the final model of the new concept development. This work represents a solution to a practical challenge in our everyday life and provides an insight into the product development process. The work has developed and explored three different concepts, where an evaluation decided which concept should be further developed. The main focus on idea generation and concept development has been to fulfill the requirement specification that was based on the problem description, the market analysis, and the survey. The result of the work was a product with good performance, which is also durable, aesthetically pleasing, and safe. The developed idea has been presented with illustrations of CAD models. In order not to counteract sustainable development, the product has chosen to be manufactured from materials that are both durable and recyclable, in this way the customer is offered a machine with a longer lifespan but also a machine that does not contribute to any additional environmental hazards.

Page generated in 0.1275 seconds