• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 30
  • 11
  • 7
  • 7
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 67
  • 67
  • 12
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Etude et intégration en SOI d’amplificateurs de puissance reconfigurables pour applications multi-modes multi-bandes / High efficiency reconfigurable RF power amplifiers in SOI CMOS technology for multi standard applications

Tant, Gauthier 19 November 2015 (has links)
Cette thèse porte sur l'étude et l'intégration en technologie SOI CMOS d'un circuit amplificateur de puissance multimode multibande (MMPA) reconfigurable capable d'adresser les modes 2G/3G/4G sur plusieurs bandes de fréquences. Les modules MMPA actuels (modules hybrides) reposent sur l'utilisation de plusieurs technologies, en particulier la technologie GaAs en ce qui concerne les chaines d'amplification, et représentent une part importante du coût et de l'encombrement d'une tête d'émission radiofréquences. La solution originale proposée dans cette thèse représente une avancée significative en termes d'intégration par rapport à l'état de l'art et les premiers résultats mesurés démontrent la pertinence de l'architecture proposée. Une étude sur l'optimisation du rendement énergétique au niveau de l'étage de puissance en présence de signaux modulés en amplitude et phase de type 3G et 4G est également proposée. Cette étude adresse les potentialités des techniques de modulation de la charge et de l'alimentation et permet de comparer les deux approches.Après une présentation du contexte et de l'état de l'art, une méthodologie de conception originale reposant sur l'étude de différentes classes de fonctionnement est proposée. Cette méthodologie permet en particulier de pré-dimensionner les cellules de puissance reconfigurables ainsi que leurs impédances de source et de charge en fonction des contraintes de puissance et de linéarité dans les différents modes pour avoir le meilleur rendement. Elle permet aussi de choisir les topologies de réseaux d'adaptation accordables pertinentes.Ces études ont conduit à la réalisation de deux démonstrateurs intégrés en technologies SOI CMOS 130 nm. Le premier prototype est un amplificateur multimode et multibande reconfigurable à deux étages capable de fonctionner en mode saturé et en mode linéaire pour des bandes de fréquence situées entre 700MHz et 900MHz. L'architecture proposée est composée d'un étage de puissance reconfigurable constitué de deux cellules de puissance de type LDMOS pouvant être activées ou non en fonction du mode adressé. Différents réseaux d'adaptation accordables à base de capacités commutées utilisant des transistors NMOS à body flottant permettent une optimisation des performances du MMPA en fonction du mode et de la bande de fréquence. Avec ce prototype, des puissances de sortie de 35dBm en mode saturé et 30dBm en mode linéaire ont été mesurées avec des rendements correspondants supérieurs respectivement à 58% et 47%. Par rapport aux simulations initiales, des différences ont été observées puis analysées afin d'en identifier l'origine. Notamment, la surestimation du facteur de qualité des capacités MOM dans les réseaux de capacités commutées et des interconnections sous optimales sont la cause des écarts observés.Le deuxième prototype est un amplificateur de puissance à modulation de charge passive intégrée. Cet amplificateur repose sur une cellule de puissance de type LDMOS associée à un réseau d'adaptation accordable à base de capacités commutées capables de supporter une puissance supérieure à 33dBm. Ce réseau permet de présenter à l'étage de puissance une trajectoire de charge optimale en fonction de la puissance de sortie. Avec ce prototype, une amélioration du rendement supérieure à 55% par rapport à la configuration utilisant une charge constante a été mesurée pour un recul en puissance compris entre 7dB et 11dB. / This work focuses on the study and integration of a reconfigurable multi-mode multi-band power amplifier (MMPA) supporting 2G/3G/4G at several frequency bands in SOI CMOS 130nm technology. Current hybrid MMPA modules take advantage of multiple technologies, in particular GaAs for power devices. This adds to the cost and complexity of radiofrequency front-end modules. The original solution presented in this thesis is a significant step toward the integration of MMPA compared to the state of the art and initial results illustrates the relevance of the proposed architecture. A study on PA efficiency under 3G / 4G modulated signals is also presented by comparing load and supply modulation PA architectures.First, the context and state of the art are presented. A design methodology based on the study of different operating classes is then presented, which allows pre-sizing of power cells and optimal load impedance determination for high efficiency reconfigurable PA design.The proposed PA design methodology led to the implementation of PA demonstrators integrated in SOI CMOS 130nm technology. The first demonstrator is a two stage reconfigurable MMPA operating from 700MHz to 900MHz and supporting saturated and linear modes. The power stage comprises two SOI LDMOS power cells that are activated according to the desired mode. Tunable matching networks based on switched capacitor arrays allow optimization of the MMPA performance according to the mode and band. The measured prototype delivers up to 35dBm of output power in saturated mode with more than 58% efficiency. In linear mode, the measured output power exceeds 30dBm with efficiency higher than 47%. Compared to initial simulations, some differences were observed. In particular, underestimation of losses associated with MOM capacitors and sub-optimal interconnections are the root cause of the observed discrepancies.The second demonstrator is a passive load modulation PA architecture. It includes a SOI LDMOS power cell and a tunable matching network made of high power binary weighted switched capacitor arrays. The tunable matching network allows presenting an optimal load trajectory to the PA in order to maximize its back-off efficiency. Measured efficiency enhancement is higher than 55% compared to a fixed load configuration for 7dB to 11dB power back-offs.
52

Étude de relais multi-mode sous contrainte d'énergie dans un contexte de radio logicielle / Study of multi-mode relay under energetic constraints in the context of software radio

Lévy-Bencheton, Cédric 28 June 2011 (has links)
La réduction d’énergie apparaît comme un besoin crucial dans les télécommunications modernes, tant au niveau des terminaux que des réseaux. Dans les réseaux modernes, un terminal peut se connecter à Internet via d’autres terminaux ou infrastructures à proximité, appelés relais. Bien que les relais offrent une solution intéressante pour limiter la puissance de transmission des terminaux, il n’est pas simple de garantir une réduction de la consommation d’énergie globale. Il devient alors nécessaire de développer des outils pour évaluer et quantifier la consommation d’énergie. Un terminal moderne dispose de plusieurs interfaces de communications, ce qui lui permet d’utiliser plusieurs standards. Sachant qu’un standard dispose de différents modes de communications, un terminal est multi-mode lorsqu’il possède cette capacité à communiquer sur les différents standards et modes disponibles. Nous nous sommes alors intéressés à l’utilisation du multi-mode dans le cadre des relais. Nous nous positionnons dans un contexte de radio logicielle, où la couche physique d’un terminal est représentée par des blocs programmables, ce qui facilite l’implémentation du multi-mode. Afin d’estimer la consommation d’énergie d’une radio logicielle, nous avons calculé la complexité algorithmique pour les couches physiques du 802.11g (ou Wi-Fi), de l’UMTS et du 802.15.4 (ou Zigbee). Dans cette thèse, nous avons développé des outils nous permettant d’évaluer l’intérêt d’un relais multi-mode dans la réduction d’énergie. Nous avons proposé un modèle d’énergie réaliste pour le multi-mode, qui prend en compte la couche d’accès au medium des protocoles considérés. Dans un but de réalisme accru, nous avons implémenté le multi-mode au sein de WSNet, un simulateur réseau précis, grâce auquel nous avons déterminé les paramètres ayant un impact sur la consommation d’énergie. Puis, nous avons proposé et validé des stratégies permettant de minimiser l’influence de ces paramètres. / Energy reduction appears as a crucial need in modern telecommunications, be it for the terminals or the network. In modern networks, a terminal can connect to the Internet through other terminals or infrastructures in their proximity, called relays. Even though these relays appear as an interesting solution by limiting the terminals transmission power output, the reduction of energy consumption is not a simple task to ensure. Hence, it becomes necessary to develop adapted tools in order to evaluate and quantify the energy consumption. A modern terminal features several communication interfaces, which allows it to use different standards. With each standard featuring different communication modes, a multi-mode terminal has the capacity to communicate on these different modes and standard available. Hence, we have been studying how this multi-mode property can lead to energy reduction in combination with relaying. Our study is realized in the context of software defined radio, in which the physical layer is represented by programmable software blocks. Thus, software defined radio allows an eased implementation of multi-mode. In order to estimate the energy consumption of a software defined radio, we have evaluated the algorithmic complexity for the physical layers of the following standards : 802.11g (or Wi-Fi), UMTS and 802.15.4 (or Zigbee). In this thesis, we have developed the tools to evaluate the energy consumption of a multimode relay. Firstly, we have proposed a realistic energy model for multi-mode, which takes into account the media access control layer of the protocols studied. In order to increase realism, we have implemented multi-mode in WSNet, a precise network simulator, which we have used to determine the parameters impacting the energy consumption. Then, we have proposed and validated different strategies allowing us to minimize the influence of these parameters.
53

Cryogenic Irradiation and Low Temperature Annealing of Semiconductor and Optical Materials

Reinke, Benjamin T. 09 June 2016 (has links)
No description available.
54

Minimizing Makespan of a Multi-mode, Multi-item Packaging Machine Subject to Resource and Inventory Constraints

Shevade, Shrinidhee 12 September 2016 (has links)
No description available.
55

Characterization and Assessment of Transportation Diversity: Impacts on Mobility and Resilience Planning in Urban Communities

Rahimi Golkhandan, Armin 25 June 2020 (has links)
A transportation system is a critical infrastructure that is key for mobility in any community. Natural hazards can cause failure in transportation infrastructure and impede its routine performance. Ecological systems are resilient systems that are very similar to transportation systems. Diversity is a fundamental factor in ecological resilience, and it is recognized as an important property of transportation resilience. However, quantifying transportation diversity remains challenging, which makes it difficult to understand the influence of diversity on transportation performance and resilience. Consequently, three studies are undertaken to remedy this circumstance. The first study develops a novel approach – inspired by biodiversity in ecological stability theory – to characterize and measure transportation diversity by its richness (availability) and evenness (distribution). This transportation diversity approach is then applied to New York City (NYC) at the zip code level using the GIS data of transportation modes. The results demonstrate the variation of transportation diversity across the city. The characterized inherent and augmented complementarities start to uncover the dynamics of modal compensation and to demonstrate how transportation diversity contributes to this phenomenon. Moreover, the NYC zip codes with low transportation diversity are mainly in hurricane evacuation zones that are more vulnerable. Consequently, low transportation diversity in these areas could affect their post-disaster mobility. In the second study, the influence of transportation diversity on post-disaster mobility is examined by investigating the patterns of mobility in New York City one month before and after Hurricane Sandy using Twitter data. To characterize pre- and post-Sandy mobility patterns, the locations that individuals visited frequently were identified and travel distance, the radius of gyration, and mobility entropy were measured. Individuals were grouped according to the transportation diversity of their frequently visited locations. The findings reveal that individuals that lived in or visited zip codes with higher transportation diversity mostly experienced less disturbance in their mobility patterns after Sandy and the recovery of their mobility patterns was faster. The results confirm that transportation diversity affects the resilience of individual post-disaster mobility. The approach used in this study is one of the first to examine the root causes of changes in mobility patterns after extreme events by linking transportation infrastructure diversity to post-disaster mobility. Finally, the third study employs the transportation diversity approach to investigate modal accessibility and social exclusion. Transportation infrastructure is a sociotechnical system and transport equity is crucial for access to opportunities and services such as jobs and infrastructure. The social exclusion caused by transport inequity could be intensified after natural disasters that can cause failure in a transportation system. One approach to determine transport equity is access to transportation modes. Common catchment area approaches to assess the equity of access to transportation modes cannot differentiate between the equity of access to modes in sub-regions of an area. The transportation diversity approach overcomes this shortcoming, and it is applied to all transportation modes in NYC zip codes to measure the equity of access. Zip codes were grouped in quartiles based on their transportation diversity. Using the American Community Survey data, a set of important socioeconomic and transport usage factors were compared in the quartile groups. The results indicated the relationship between transportation diversity and income, vehicle ownership, commute time, and commute mode. This relationship highlighted that social exclusion is linked with transport inequity. The results also revealed that the inequity of the transport system in zip codes with low transportation diversity affects poor individuals more than non-poor and the zip codes with a majority of black and Hispanic populations are impacted more. Further consideration of the impacts of Hurricanes Irene and Sandy in NYC shows that people in areas with a lower transportation diversity were affected more and the transport inequity in these areas made it difficult to cope with these disasters and caused post-disaster social exclusion. Therefore, enhancing transportation diversity should support transport equity and reduce social exclusion under normal situations and during extreme events. Together, these three studies illustrate the influence of transportation diversity on the resilience of this infrastructure. They highlight the importance of the provision and distribution of all transportation modes, their influence on mobility during normal situations and extreme events and their contribution toward mitigating social exclusion. Finally, these studies suggest that transportation diversity can contribute to more targeted and equitable transportation and community resilience planning, which should help decision-makers allocate scarce resources more effectively. / Doctor of Philosophy / Transportation systems are very important in every city. Natural disasters like hurricanes and floods can destroy roads and inundate metro tunnels that can cause problems for mobility. Ecological systems like forests are very resilient because they have experienced disturbances like natural disasters for millions of years. Ecological systems and transportation systems are very similar; for example, both have different components (different species in an ecological system and different modes in a transportation system). Because of such similarities, we can learn from ecological resilience to improve transportation resilience. Having a variety of species in an ecological system makes it diverse. Diversity is the most important factor in ecological resilience, and it is also recognized as an important factor in transportation resilience. Current methods cannot effectively quantify transportation diversity – the variety of modes in a system – so determining its impact on transportation resilience remains a challenge. In this dissertation, principles of ecological diversity are adapted to characterize transportation infrastructure to develop a new approach to measure transportation diversity; metrics include the availability of transportation modes and their distribution in a community. The developed approach was applied in New York City (NYC) at the zip code level. Locations with low transportation diversity (fewer modes and/or unequal distribution) were identified, and most of these zip codes are located in hurricane evacuation zones. Consequently, these zip codes with the least diverse transportation systems are the most vulnerable, which can cause serious issues during emergency evacuations and the ability of people to access work or essential services. Therefore, in a city hit by a natural disaster, understanding the relationship between people's mobility and a transportation system's diversity is important. Twitter data was used to find the places that people in NYC visited regularly for one month before and one month after Hurricane Sandy. Subsequently, using different methods, the pre- and post-disaster mobility patterns of these individuals were characterized. The results show that after the disaster, individuals had a higher chance of maintaining their pre-disaster mobility patterns if they were living in and/or visiting areas with high transportation diversity. Based on these findings, we confirmed the influence of transportation diversity on post-disaster mobility. In addition, the transportation infrastructure should provide equitable service to all individuals, during normal operations and extreme events. One of the ways to determine this equality is equity of access to transportation modes. Hence, transportation diversity was used as an indicator for equity of access to transportation modes to overcome the limitations of current methods like catchment area approaches. NYC zip codes were grouped based on their transportation diversity and a set of important socioeconomic and transport related factors were compared among these groups. The comparison of socioeconomic and transport related factors in zip codes showed that the zip codes with lower transportation diversity are also more socioeconomically deprived. This highlights the likely influence of transportation diversity on social exclusion. Further consideration of the impacts of Hurricanes Irene and Sandy in NYC shows that people in areas with a lower transportation diversity were affected more and the transport inequity in these areas made it difficult to cope with these disasters and caused post-disaster social exclusion. Therefore, enhancing transportation diversity should support transport equity and reduce social exclusion under normal situations and during extreme events. The investigations conducted highlight the importance of the provision and distribution of all transportation modes, their influence on mobility during normal situations and extreme events and their contribution toward mitigating social exclusion. Finally, the collective results suggest that transportation diversity can contribute to more targeted and equitable transportation and community resilience planning, which should help decision-makers allocate scarce resources more effectively.
56

REDUCED FIDELITY ANALYSIS OF COMBUSTION INSTABILITIES USING FLAME TRANSFER FUNCTIONS IN A NONLINEAR EULER SOLVER

Gowtham Manikanta Reddy Tamanampudi (6852506) 02 August 2019 (has links)
<p>Combustion instability, a complex phenomenon observed in combustion chambers is due to the coupling between heat release and other unsteady flow processes. Combustion instability has long been a topic of interest to rocket scientists and has been extensively investigated experimentally and computationally. However, to date, there is no computational tool that can accurately predict the combustion instabilities in full-size combustors because of the amount of computational power required to perform a high-fidelity simulation of a multi-element chamber. Hence, the focus is shifted to reduced fidelity computational tools which may accurately predict the instability by using the information available from the high-fidelity simulations or experiments of single or few-element combustors. One way of developing reduced fidelity computational tools involves using a reduced fidelity solver together with the flame transfer functions that carry important information about the flame behavior from a high-fidelity simulation or experiment to a reduced fidelity simulation.</p> <p> </p> <p>To date, research has been focused mainly on premixed flames and using acoustic solvers together with the global flame transfer functions that were obtained by integrating over a region. However, in the case of rockets, the flame is non-premixed and distributed in space and time. Further, the mixing of propellants is impacted by the level of flow fluctuations and can lead to non-uniform mean properties and hence, there is a need for reduced fidelity solver that can capture the gas dynamics, nonlinearities and steep-fronted waves accurately. Nonlinear Euler equations have all the required capabilities and are at the bottom of the list in terms of the computational cost among the solvers that can solve for mean flow and allow multi-dimensional modeling of combustion instabilities. Hence, in the current work, nonlinear Euler solver together with the spatially distributed local flame transfer functions that capture the coupling between flame, acoustics, and hydrodynamics is explored.</p> <p> </p> <p>In this thesis, the approach to extract flame transfer functions from high-fidelity simulations and their integration with nonlinear Euler solver is presented. The dynamic mode decomposition (DMD) was used to extract spatially distributed flame transfer function (FTF) from high fidelity simulation of a single element non-premixed flame. Once extracted, the FTF was integrated with nonlinear Euler equations as a fluctuating source term of the energy equation. The time-averaged species destruction rates from the high-fidelity simulation were used as the mean source terms of the species equations. Following a variable gain approach, the local species destruction rates were modified to account for local cell constituents and maintain correct mean conditions at every time step of the nonlinear Euler simulation. The proposed reduced fidelity model was verified using a Rijke tube test case and to further assess the capabilities of the proposed model it was applied to a single element model rocket combustor, the Continuously Variable Resonance Combustor (CVRC), that exhibited self-excited combustion instabilities that are on the order of 10% of the mean pressure. The results showed that the proposed model could reproduce the unsteady behavior of the CVRC predicted by the high-fidelity simulation reasonably well. The effects of control parameters such as the number of modes included in the FTF, the number of sampling points used in the Fourier transform of the unsteady heat release, and mesh size are also studied. The reduced fidelity model could reproduce the limit cycle amplitude within a few percent of the mean pressure. The successful constraints on the model include good spatial resolution and FTF with all modes up to at least one dominant frequency higher than the frequencies of interest. Furthermore, the reduced fidelity model reproduced consistent mode shapes and linear growth rates that reasonably matched the experimental observations, although the apparent ability to match growth rates needs to be better understood. However, the presence of significant heat release near a pressure node of a higher harmonic mode was found to be an issue. This issue was rectified by expanding the pressure node of the higher frequency mode. Analysis of two-dimensional effects and coupling between the local pressure and heat release fluctuations showed that it may be necessary to use two dimensional spatially distributed local FTFs for accurate prediction of combustion instabilities in high energy devices such as rocket combustors. Hybrid RANS/LES-FTF simulation of the CVRC revealed that it might be necessary to use Flame Describing Function (FDF) to capture the growth of pressure fluctuations to limit cycle when Navier-Stokes solver is used.</p> <p> </p> <p>The main objectives of this thesis are:</p> <p>1. Extraction of spatially distributed local flame transfer function from the high fidelity simulation using dynamic mode decomposition and its integration with nonlinear Euler solver</p> <p>2. Verification of the proposed approach and its application to the Continuously Variable Resonance Combustor (CVRC).</p> <p>3. Sensitivity analysis of the reduced fidelity model to control parameters such as the number of modes included in the FTF, the number of sampling points used in the Fourier transform of the unsteady heat release, and mesh size.</p> <p> </p> <p>The goal of this thesis is to contribute towards a reduced fidelity computational tool which can accurately predict the combustion instabilities in practical systems using flame transfer functions, by providing a path way for reduced fidelity multi-element simulation, and by defining the limitations associated with using flame transfer functions and nonlinear Euler equations for non-premixed flames.</p> <p> </p><br>
57

Highly efficient linear CMOS power amplifiers for wireless communications

Jeon, Ham Hee 20 February 2012 (has links)
The rapidly expanding wireless market requires low cost, high integration and high performance of wireless communication systems. CMOS technology provides benefits of cost effectiveness and higher levels of integration. However, the design of highly efficient linear CMOS power amplifier that meets the requirement of advanced communication standards is a challenging task because of the inherent difficulties in CMOS technology. The objective of this research is to realize PAs for wireless communication systems that overcoming the drawbacks of CMOS process, and to develop design approaches that satisfying the demands of the industry. In this dissertation, a cascode bias technique is proposed for improving linearity and reliability of the multi-stage cascode CMOS PA. In addition, to achieve load variation immunity characteristic and to enhance matching and stability, a fully-integrated balanced PA is implemented in a 0.18-m CMOS process. A triple-mode balanced PA using switched quadrature coupler is also proposed, and this work saved a large amount of quiescent current and further improved the efficiency in the back-off power. For the low losses and a high quality factor of passive output combining, a transformer-based quadrature coupler was implemented using integrated passive device (IPD) process. Various practical approaches for linear CMOS PA are suggested with the verified results, and they demonstrate the potential PA design approach for WCDMA applications using a standard CMOS technology.
58

Contribution au développement d'une stratégie de diagnostic global en fonction des diagnostiqueurs locaux : application à une mission spatiale

Issury, Irwin 26 July 2011 (has links)
Les travaux présentés dans ce mémoire traitent de la synthèse d'algorithmes de diagnostic de défauts simples et multiples. L'objectif vise à proposer une stratégie de diagnostic à minimum de redondance analytique en exploitant au mieux les informations de redondance matérielle éventuellement disponibles sur le système. Les développements proposés s'inscrivent dans une démarche de coopération et d'agrégation des méthodes de diagnostic et la construction optimale d'un diagnostic global en fonction des diagnostiqueurs locaux. Les travaux réalisés se veulent génériques dans le sens où ils mêlent à la fois les concepts et outils de deux communautés : ceux de la communauté FDI (Fault Detection and Isolation) et ceux de la communauté DX (Diagnosis) dont les bases méthodologiques sont issues des domaines informatiques et intelligence artificielle. Ainsi, le problème de détection (ainsi que le problème de localisation lorsque les contraintes structurelles le permettent) est résolu à l'aide des outils de la communauté FDI tandis que le problème de localisation est résolu à l'aide des concepts de la communauté DX, offrant ainsi une démarche méthodologique agrégée. La démarche méthodologique se décline en deux étapes principales. La première phase consiste en la construction d'une matrice de signatures mutuellement exclusive. Ainsi, le problème du nombre minimal de relations de redondance analytique (RRA), nécessaires pour établir un diagnostic sans ambiguïté, est abordé. Ce problème est formalisé comme un problème d'optimisation sous contraintes qui est efficacement résolu à l'aide d'un algorithme génétique. La deuxième étape concerne la génération des diagnostics. Ainsi, pour une situation observée, identifier les conflits revient à définir les RRAs non satisfaites par l'observation. Les diagnostics sont obtenus à l'aide d'un algorithme basé sur le concept de formules sous forme MNF (Maximal Normal Form). L'intérêt majeur dans cette approche est sa capacité à traiter le diagnostic des défauts simples et multiples ainsi que le diagnostic des plusieurs modes de fautes (i.e., le diagnostic des différents types de défauts) associés à chaque composant du système surveillé. De plus, il existe des preuves d'optimalité tant au niveau local (preuve de robustesse/sensibilité) qu'au niveau global (preuve de diagnostics minimaux). La méthodologie proposée est appliquée à la mission spatiale Mars Sample Return (MSR). Cette mission, entreprise conjointement entre l'administration nationale de l'aéronautique et de l'espace (NASA) et l'agence spatiale européenne (ESA), vise à ramener des échantillons martiens sur Terre pour des analyses. La phase critique de cette mission est la phase rendez-vous entre le conteneur d'échantillons et l'orbiteur. Les travaux de recherche traitent le problème de diagnostic des défauts capteurs présents sur la chaîne de mesure de l'orbiteur pendant la phase de rendez-vous de la mission. Les résultats, obtenus à l'aide du simulateur haute fidélité de Thalès Alenia Space, montrent la faisabilité et l'efficacité de la méthode. / The work presented in this thesis deals with the synthesis of algorithms for the diagnosis of simple and multiple faults. The main objective which is pursued is to design a fault diagnosis scheme by merging a minimum number of analytic redundancy with the available hardware redundancy. The main contribution of the proposed technique concerns the general architecture of the proposed diagnosis method. The originality of the research work is the combination of ideas and tools originated from two research communities : the FDI (Fault Detection and Isolation) community and the DX (Diagnosis) community whose foundations are derived from Computer Science and Artificial Intelligence fields. Hence, the fault detection problem (as well as the isolation task when structural constraints allow it) is solved by means of FDI techniques while the fault isolation problem is solved through the DX approaches, thus resulting in an aggregated methodology. The proposed method is divided in two steps. The first step deals with the construction of a mutually exclusive signature matrix. Hence, the problem of the minimal number of analytic redundancy relations (ARR), necessary for generating a diagnosis without any ambiguity, is treated. This problem is formalised as an optimized problem under constraints which is efficiently solved by means of a genetic algorithm. The second step concerns the generation of diagnoses. Thus, for an observed situation, the identification of conflicts results in the determination of the non satisfied ARRs for the given observation. The diagnoses are obtained by means an algorithm based on the concept of MNF (Maximal Normal Form) formulas. The main interest of this approach is its capacity to deal with the diagnosis of simple and multiple faults as well as the diagnosis of multi-modes faults (i.e., multiple types of faults) associated to each component of the system. Furthermore, it exists proofs on optimality both at a local level (proof of robustness/sensitivity) and at a global level (proof of minimal diagnoses). The proposed method is applied to the Mars Sample Return (MSR) mission. This spacecraft mission, undertaken jointly by the National Aeronautics and Space Administration (NASA) and the European Space Agency (ESA), aims at returning tangible samples from Mars atmosphere and ground to Earth for analysis. The critical phase of the mission is the rendezvous phase between the sample container vehicle and the orbiter spacecraft. The research work aims at realising sensor fault diagnosis on the orbiter during the rendezvous phase of the mission. Simulation results from the MSR high fidelity simulator, provided by Thalès Alenia Space, demonstrate the feasibility and the efficiency of the proposed approach.
59

Design and Construction of a Multi-Port Beamsplitter Based on Few-Mode-Fibers

Spegel-Lexne, Daniel January 2022 (has links)
A MBS (Multi-port beamsplitter) for higher dimensional quantum communication has been designed and constructed and the theory and method for this is presented in this thesis. It uses optical fibers in a heterogeneous structure with a single-mode fiber spliced to a multi-mode fiber and then spliced to a few-mode fiber. Three MBS:s were constructed and tested to see if superpositions between spatial modes could be generated. One with 5.65cm multi-mode fiber, one with 9cm of multi-mode fiber and one with just the single-mode fiber spliced to the few-mode fiber. The optical modes that where focused on for the superposition were the linear polarized LP01, LP11a and LP11b modes. Simulations of superpositions between these modes were performed and experiments were done to see if these simulations could be realised. The shapes of these superpositions could be seen with a camera and the stability of the different modal powers and the stability of the phases between the modes where also tested. The last experiment tested the tunability of the modes by finding their maximum and minimum output power for each individual mode. The results of these experiments show that the stability of power and relative phases are high and testing of the tunability shows that the 9cm MBS is the most tunable, the 5.65cm MBS the second best and the SMF-FMF MBS the worst. Even though the shapes of the superpositions, the stability and tunability shows very positive results, the conclusion is that more experiments are required in order to identify the superpositions and for this to be used in a quantum communication system. / En Multi-port stråldelare (MSD) för kvantkommunikation med hjälp av rumsliga optiska moder har blivit designad och konstruerad. Teorin, metoden och resultatet av detta arbete presenteras i denna uppsats. Denna konstruktion använder sig av optiska fiber i heterogena strukturer med en single-mode fiber svetsad till en multi-mode fiber som i sin tur är svetsad till en few-mode fiber. Tre stycken MSD blev konstruerade och testade för att se om superpositioner mellan rumsliga moder kunde bli genererade, en med 5.65cm multi-mode fiber, en med 9cm multi-mode fiber och en med bara en single-mode fiber svetsad till en few-mode fiber. De moder som fokuserades på för superpositionerna var de linjärpolariserade moderna LP01, LP11a och LP11b. Superpositionerna simulerades och sen genomfördes experiment för att se ifall de kunde bli genererade. Formerna av dessa superpositioner kunde hittas och synliggöras med en kamera. Stabiliteten av modernas energi och stabiliteten av faserna mellan moderna testades också. Det sista experimentet som gjordes testade justerbarheten av moderna genom att hitta den minimala samt maximala intensiteten för varje mod. Experimenten visar att intensiteterna och de relativa faserna har hög stabilitet för alla konstruerade MSD, men i justerbarhets experimentet visar det sig att 9cm MSD:en presterar bäst, 5.65cm MSD:en presterar näst bäst och SMF-FMF strukturen presterar sämst. Trots att formerna av superpositionerna kunde hittas för alla tre konstruktioner, och att testen i stabiliteten visar goda resultat så krävs mer experiment för att identifiera superpositionerna mellan moderna och ifall denna konstruktion går att implementera i ett kvantkommunikationssystem.
60

REAL-TIME UPDATING AND NEAR-OPTIMAL ENERGY MANAGEMENT SYSTEM FOR MULTI-MODE ELECTRIFIED POWERTRAIN WITH REINFORCEMENT LEARNING CONTROL

Biswas, Atriya January 2021 (has links)
Energy management systems (EMSs), implemented in the electronic control unit (ECU) of an actual vehicle with electri ed powertrain, is a much simpler version of the theoretically developed EMS. Such simpli cation is done to accommodate the EMS within the given memory constraint and computational capacity of the ECU. The simpli cation should ensure reasonable performance compared to theoretical EMS under real-life driving scenarios. The process of simpli cation must be effective to create a versatile and utilitarian EMS. The reinforcement learning-based controllers feature pro table characteristics in optimizing the performance of controllable physical systems as they do not mandatorily require a mathematical model of system dynamics (i.e. they are model-free). Quite naturally, it can aspired to testify such prowess of reinforcement learning-based controllers in achieving near-global optimal performance for energy management system (supervisory) of electri ed powertrains. Before deployment of any supervisory controller as a mainstream controller, they should be essentially scrutinized through various levels of virtual simulation platforms with an ascending order of physical system emulating-capability. The controller evolves from a mathematical concept to an utilitarian embedded system through a series of these levels where it undergoes gradual transformation to finally become apposite for a real physical system. Implementation of the control strategy in a Simulink-based forward simulation model could be the first stage of the aforementioned evolution process. This brief will delineate all the steps required for implementing an reinforcement learning-based supervisory controller in a forward simulation model of a hybrid electric vehicle. A novel framework of loss-minimization based instantaneous optimal strategy is introduced for the energy management system of a multi-mode hybrid electric powertrain in this brief. The loss-minimization strategy is flexible enough to be implemented in any architecture of electrified powertrains. It is mathematically proven that the overall system loss minimization is equivalent to the minimization of fuel consumption. An online simulation framework is developed in this article to evaluate the performance of a multi-mode electrified powertrain equipped with more than one power source. An electrically variable transmission with two planetary gear-set has been chosen as the centerpiece of the powertrain considering the versatility and future prospects of such transmissions. It is noteworthy to mention that a novel architecture topology selected for this dissertation is engendered through a series of rigorous screening process whose workflow is presented here with brevity. One of the legitimate concern of multi-mode transmission is it's proclivity to contribute discontinuity of power-flow in the downstream of the powertrain. Mode-shift events can be predominantly held responsible for engendering such discontinuity. Advent of dynamic coordinated control as a technique for ameliorating such discontinuity has been substantiated by many scholars in literature. Hence, a system-level coordinated control is employed within the energy management system which governs the mode schedule of the multi-mode powertrain in real-time simulation. / Thesis / Doctor of Philosophy (PhD)

Page generated in 0.5542 seconds