Spelling suggestions: "subject:"multitask"" "subject:"multitasks""
61 |
Exploration de données pour l'optimisation de trajectoires aériennes / Data analysis for aircraft trajectory optimizationRommel, Cédric 26 October 2018 (has links)
Cette thèse porte sur l'utilisation de données de vols pour l'optimisation de trajectoires de montée vis-à-vis de la consommation de carburant.Dans un premier temps nous nous sommes intéressé au problème d'identification de modèles de la dynamique de l'avion dans le but de les utiliser pour poser le problème d'optimisation de trajectoire à résoudre. Nous commençont par proposer une formulation statique du problème d'identification de la dynamique. Nous l'interpretons comme un problème de régression multi-tâche à structure latente, pour lequel nous proposons un modèle paramétrique. L'estimation des paramètres est faite par l'application de quelques variations de la méthode du maximum de vraisemblance.Nous suggérons également dans ce contexte d'employer des méthodes de sélection de variable pour construire une structure de modèle de régression polynomiale dépendant des données. L'approche proposée est une extension à un contexte multi-tâche structuré du bootstrap Lasso. Elle nous permet en effet de sélectionner les variables du modèle dans un contexte à fortes corrélations, tout en conservant la structure du problème inhérente à nos connaissances métier.Dans un deuxième temps, nous traitons la caractérisation des solutions du problème d'optimisation de trajectoire relativement au domaine de validité des modèles identifiés. Dans cette optique, nous proposons un critère probabiliste pour quantifier la proximité entre une courbe arbitraire et un ensemble de trajectoires échantillonnées à partir d'un même processus stochastique. Nous proposons une classe d'estimateurs de cette quantitée et nous étudions de façon plus pratique une implémentation nonparamétrique basé sur des estimateurs à noyau, et une implémentation paramétrique faisant intervenir des mélanges Gaussiens. Ce dernier est introduit comme pénalité dans le critère d'optimisation de trajectoire dans l'objectif l'intention d'obtenir directement des trajectoires consommant peu sans trop s'éloigner des régions de validité. / This thesis deals with the use of flight data for the optimization of climb trajectories with relation to fuel consumption.We first focus on methods for identifying the aircraft dynamics, in order to plug it in the trajectory optimization problem. We suggest a static formulation of the identification problem, which we interpret as a structured multi-task regression problem. In this framework, we propose parametric models and use different maximum likelihood approaches to learn the unknown parameters.Furthermore, polynomial models are considered and an extension to the structured multi-task setting of the bootstrap Lasso is used to make a consistent selection of the monomials despite the high correlations among them.Next, we consider the problem of assessing the optimized trajectories relatively to the validity region of the identified models. For this, we propose a probabilistic criterion for quantifying the closeness between an arbitrary curve and a set of trajectories sampled from the same stochastic process. We propose a class of estimators of this quantity and prove their consistency in some sense. A nonparemetric implementation based on kernel density estimators, as well as a parametric implementation based on Gaussian mixtures are presented. We introduce the later as a penalty term in the trajectory optimization problem, which allows us to control the trade-off between trajectory acceptability and consumption reduction.
|
62 |
Cross-Lingual and Genre-Supervised Parsing and Tagging for Low-Resource Spoken DataFosteri, Iliana January 2023 (has links)
Dealing with low-resource languages is a challenging task, because of the absence of sufficient data to train machine-learning models to make predictions on these languages. One way to deal with this problem is to use data from higher-resource languages, which enables the transfer of learning from these languages to the low-resource target ones. The present study focuses on dependency parsing and part-of-speech tagging of low-resource languages belonging to the spoken genre, i.e., languages whose treebank data is transcribed speech. These are the following: Beja, Chukchi, Komi-Zyrian, Frisian-Dutch, and Cantonese. Our approach involves investigating different types of transfer languages, employing MACHAMP, a state-of-the-art parser and tagger that uses contextualized word embeddings, mBERT, and XLM-R in particular. The main idea is to explore how the genre, the language similarity, none of the two, or the combination of those affect the model performance in the aforementioned downstream tasks for our selected target treebanks. Our findings suggest that in order to capture speech-specific dependency relations, we need to incorporate at least a few genre-matching source data, while language similarity-matching source data are a better candidate when the task at hand is part-of-speech tagging. We also explore the impact of multi-task learning in one of our proposed methods, but we observe minor differences in the model performance.
|
63 |
Survivability Prediction and Analysis using Interpretable Machine Learning : A Study on Protecting Ships in Naval Electronic WarfareRydström, Sidney January 2022 (has links)
Computer simulation is a commonly applied technique for studying electronic warfare duels. This thesis aims to apply machine learning techniques to convert simulation output data into knowledge and insights regarding defensive actions for a ship facing multiple hostile missiles. The analysis may support tactical decision-making, hence the interpretability aspect of predictions is necessary to allow for human evaluation and understanding of impacts from the explanatory variables. The final distance for the threats to the target and the probability of the threats hitting the target was modeled using a multi-layer perceptron model with a multi-task approach, including custom loss functions. The results generated in this study show that the selected methodology is more successful than a baseline using regression models. Modeling the outcome with artificial neural networks results in a black box for decision making. Therefore the concept of interpretable machine learning was applied using a post-hoc approach. Given the learned model, the features considered, and the multiple threats, the feature contributions to the model were interpreted using Kernel SHapley Additive exPlanations (SHAP). The method consists of local linear surrogate models for approximating Shapley values. The analysis primarily showed that an increased seeker activation distance was important, and the increased time for defensive actions improved the outcomes. Further, predicting the final distance to the ship at the beginning of a simulation is important and, in general, a guidance of the actual outcome. The action of firing chaff grenades in the tracking gate also had importance. More chaff grenades influenced the missiles' tracking and provided a preferable outcome from the defended ship's point of view.
|
64 |
Neural networks regularization through representation learning / Régularisation des réseaux de neurones via l'apprentissage des représentationsBelharbi, Soufiane 06 July 2018 (has links)
Les modèles de réseaux de neurones et en particulier les modèles profonds sont aujourd'hui l'un des modèles à l'état de l'art en apprentissage automatique et ses applications. Les réseaux de neurones profonds récents possèdent de nombreuses couches cachées ce qui augmente significativement le nombre total de paramètres. L'apprentissage de ce genre de modèles nécessite donc un grand nombre d'exemples étiquetés, qui ne sont pas toujours disponibles en pratique. Le sur-apprentissage est un des problèmes fondamentaux des réseaux de neurones, qui se produit lorsque le modèle apprend par coeur les données d'apprentissage, menant à des difficultés à généraliser sur de nouvelles données. Le problème du sur-apprentissage des réseaux de neurones est le thème principal abordé dans cette thèse. Dans la littérature, plusieurs solutions ont été proposées pour remédier à ce problème, tels que l'augmentation de données, l'arrêt prématuré de l'apprentissage ("early stopping"), ou encore des techniques plus spécifiques aux réseaux de neurones comme le "dropout" ou la "batch normalization". Dans cette thèse, nous abordons le sur-apprentissage des réseaux de neurones profonds sous l'angle de l'apprentissage de représentations, en considérant l'apprentissage avec peu de données. Pour aboutir à cet objectif, nous avons proposé trois différentes contributions. La première contribution, présentée dans le chapitre 2, concerne les problèmes à sorties structurées dans lesquels les variables de sortie sont à grande dimension et sont généralement liées par des relations structurelles. Notre proposition vise à exploiter ces relations structurelles en les apprenant de manière non-supervisée avec des autoencodeurs. Nous avons validé notre approche sur un problème de régression multiple appliquée à la détection de points d'intérêt dans des images de visages. Notre approche a montré une accélération de l'apprentissage des réseaux et une amélioration de leur généralisation. La deuxième contribution, présentée dans le chapitre 3, exploite la connaissance a priori sur les représentations à l'intérieur des couches cachées dans le cadre d'une tâche de classification. Cet à priori est basé sur la simple idée que les exemples d'une même classe doivent avoir la même représentation interne. Nous avons formalisé cet à priori sous la forme d'une pénalité que nous avons rajoutée à la fonction de perte. Des expérimentations empiriques sur la base MNIST et ses variantes ont montré des améliorations dans la généralisation des réseaux de neurones, particulièrement dans le cas où peu de données d'apprentissage sont utilisées. Notre troisième et dernière contribution, présentée dans le chapitre 4, montre l'intérêt du transfert d'apprentissage ("transfer learning") dans des applications dans lesquelles peu de données d'apprentissage sont disponibles. L'idée principale consiste à pré-apprendre les filtres d'un réseau à convolution sur une tâche source avec une grande base de données (ImageNet par exemple), pour les insérer par la suite dans un nouveau réseau sur la tâche cible. Dans le cadre d'une collaboration avec le centre de lutte contre le cancer "Henri Becquerel de Rouen", nous avons construit un système automatique basé sur ce type de transfert d'apprentissage pour une application médicale où l'on dispose d’un faible jeu de données étiquetées. Dans cette application, la tâche consiste à localiser la troisième vertèbre lombaire dans un examen de type scanner. L’utilisation du transfert d’apprentissage ainsi que de prétraitements et de post traitements adaptés a permis d’obtenir des bons résultats, autorisant la mise en oeuvre du modèle en routine clinique. / Neural network models and deep models are one of the leading and state of the art models in machine learning. They have been applied in many different domains. Most successful deep neural models are the ones with many layers which highly increases their number of parameters. Training such models requires a large number of training samples which is not always available. One of the fundamental issues in neural networks is overfitting which is the issue tackled in this thesis. Such problem often occurs when the training of large models is performed using few training samples. Many approaches have been proposed to prevent the network from overfitting and improve its generalization performance such as data augmentation, early stopping, parameters sharing, unsupervised learning, dropout, batch normalization, etc. In this thesis, we tackle the neural network overfitting issue from a representation learning perspective by considering the situation where few training samples are available which is the case of many real world applications. We propose three contributions. The first one presented in chapter 2 is dedicated to dealing with structured output problems to perform multivariate regression when the output variable y contains structural dependencies between its components. Our proposal aims mainly at exploiting these dependencies by learning them in an unsupervised way. Validated on a facial landmark detection problem, learning the structure of the output data has shown to improve the network generalization and speedup its training. The second contribution described in chapter 3 deals with the classification task where we propose to exploit prior knowledge about the internal representation of the hidden layers in neural networks. This prior is based on the idea that samples within the same class should have the same internal representation. We formulate this prior as a penalty that we add to the training cost to be minimized. Empirical experiments over MNIST and its variants showed an improvement of the network generalization when using only few training samples. Our last contribution presented in chapter 4 showed the interest of transfer learning in applications where only few samples are available. The idea consists in re-using the filters of pre-trained convolutional networks that have been trained on large datasets such as ImageNet. Such pre-trained filters are plugged into a new convolutional network with new dense layers. Then, the whole network is trained over a new task. In this contribution, we provide an automatic system based on such learning scheme with an application to medical domain. In this application, the task consists in localizing the third lumbar vertebra in a 3D CT scan. A pre-processing of the 3D CT scan to obtain a 2D representation and a post-processing to refine the decision are included in the proposed system. This work has been done in collaboration with the clinic "Rouen Henri Becquerel Center" who provided us with data
|
65 |
On iterated learning for task-oriented dialogueSinghal, Soumye 01 1900 (has links)
Dans le traitement de langue et des système de dialogue, il est courant de pré-entraîner des modèles de langue sur corpus humain avant de les affiner par le biais d'un simulateur et de résolution de tâches. Malheuresement, ce type d'entrainement tend aussi à induire un phénomène connu sous le nom de dérive du langage. Concrétement, les propriétés syntaxiques et sémantiques de la langue intiallement apprise se détériorent: les agents se concentrent uniquement sur la résolution de la tâche, et non plus sur la préservation de la langue. En s'inspirant des travaux en sciences cognitives, et notamment l'apprentigssage itératif Kirby and Griffiths (2014), nous proposons ici une approche générique pour contrer cette dérive du langage. Nous avons appelé cette méthode Seeded iterated learning (SIL), ou apprentissage itératif capitalisé. Ce travail a été publié sous le titre (Lu et al., 2020b) et est présenté au chapitre 2. Afin d'émuler la transmission de la langue entre chaque génération d'agents, un agent étudiant est d'abord pré-entrainé avant d'être affiné de manière itérative, et ceci, en imitant des données échantillonnées à partir d'un agent enseignant nouvellement formé. À chaque génération, l'enseignant est créé en copiant l'agent étudiant, avant d'être de nouveau affiné en maximisant le taux de réussite de la tâche sous-jacente. Dans un second temps, nous présentons Supervised Seeded iterated learning (SSIL) dans le chapitre 3, où apprentissage itératif capitalisé avec supervision, qui a été publié sous le titre (Lu et al., 2020b). SSIL s'appuie sur SIL en le combinant avec une autre méthode populaire appelée Supervised SelfPlay (S2P) (Gupta et al., 2019), où apprentissage supervisé par auto-jeu. SSIL est capable d'atténuer les problèmes de S2P et de SIL, i.e. la dérive du langage dans les dernier stades de l'entrainement tout en préservant une plus grande diversité linguistique.
Tout d'abord, nous évaluons nos méthodes dans sous la forme d'une preuve de concept à traver le Jeu de Lewis avec du langage synthetique. Dans un second temps, nous l'étendons à un jeu de traduction se utilisant du langage naturel. Dans les deux cas, nous soulignons l'efficacité de nos méthodes par rapport aux autres méthodes de la litterature.
Dans le chapitre 1, nous discutons des concepts de base nécessaires à la compréhension des articles présentés dans les chapitres 2 et 3. Nous décrivons le problème spécifique du dialogue orienté tâche, y compris les approches actuelles et les défis auxquels ils sont confrontés : en particulier, la dérive linguistique. Nous donnons également un aperçu du cadre d'apprentissage itéré. Certaines sections du chapitre 1 sont empruntées aux articles pour des raisons de cohérence et de facilité de compréhension. Le chapitre 2 comprend les travaux publiés sous le nom de (Lu et al., 2020b) et le chapitre 3 comprend les travaux publiés sous le nom de (Lu et al., 2020a), avant de conclure au chapitre 4. / In task-oriented dialogue, pretraining on human corpus followed by finetuning in a
simulator using selfplay suffers from a phenomenon called language drift. The syntactic
and semantic properties of the learned language deteriorates as the agents only focuses
on solving the task. Inspired by the iterative learning framework in cognitive science
Kirby and Griffiths (2014), we propose a generic approach to counter language drift called
Seeded iterated learning (SIL). This work was published as (Lu et al., 2020b) and is
presented in Chapter 2. In an attempt to emulate transmission of language between generations,
a pretrained student agent is iteratively refined by imitating data sampled from
a newly trained teacher agent. At each generation, the teacher is created by copying the
student agent, before being finetuned to maximize task completion.We further introduce
Supervised Seeded iterated learning (SSIL) in Chapter 3, work which was published as
(Lu et al., 2020a). SSIL builds upon SIL by combining it with the other popular method
called Supervised SelfPlay (S2P) (Gupta et al., 2019). SSIL is able to mitigate the
problems of both S2P and SIL namely late-stage training collapse and low language diversity.
We evaluate our methods in a toy setting of Lewis Game, and then scale it up to
the translation game with natural language. In both settings, we highlight the efficacy of
our methods compared to the baselines.
In Chapter 1, we talk about the core concepts required for understanding the papers presented
in Chapters 2 and 3. We describe the specific problem of task-oriented dialogue
including current approaches and the challenges they face: particularly, the challenge
of language drift. We also give an overview of the iterated learning framework. Some
sections in Chapter 1 are borrowed from the papers for coherence and ease of understanding.
Chapter 2 comprises of the work published as (Lu et al., 2020b) and Chapter 3
comprises of the work published as (Lu et al., 2020a). Chapter 4 gives a conclusion on
the work.
|
66 |
Leveraging noisy side information for disentangling of factors of variation in a supervised settingCarrier, Pierre Luc 08 1900 (has links)
No description available.
|
67 |
Multi-fidelity Machine Learning for Perovskite Band Gap PredictionsPanayotis Thalis Manganaris (16384500) 16 June 2023 (has links)
<p>A wide range of optoelectronic applications demand semiconductors optimized for purpose.</p>
<p>My research focused on data-driven identification of ABX3 Halide perovskite compositions for optimum photovoltaic absorption in solar cells.</p>
<p>I trained machine learning models on previously reported datasets of halide perovskite band gaps based on first principles computations performed at different fidelities.</p>
<p>Using these, I identified mixtures of candidate constituents at the A, B or X sites of the perovskite supercell which leveraged how mixed perovskite band gaps deviate from the linear interpolations predicted by Vegard's law of mixing to obtain a selection of stable perovskites with band gaps in the ideal range of 1 to 2 eV for visible light spectrum absorption.</p>
<p>These models predict the perovskite band gap using the composition and inherent elemental properties as descriptors.</p>
<p>This enables accurate, high fidelity prediction and screening of the much larger chemical space from which the data samples were drawn.</p>
<p><br></p>
<p>I utilized a recently published density functional theory (DFT) dataset of more than 1300 perovskite band gaps from four different levels of theory, added to an experimental perovskite band gap dataset of \textasciitilde{}100 points, to train random forest regression (RFR), Gaussian process regression (GPR), and Sure Independence Screening and Sparsifying Operator (SISSO) regression models, with data fidelity added as one-hot encoded features.</p>
<p>I found that RFR yields the best model with a band gap root mean square error of 0.12 eV on the total dataset and 0.15 eV on the experimental points.</p>
<p>SISSO provided compound features and functions for direct prediction of band gap, but errors were larger than from RFR and GPR.</p>
<p>Additional insights gained from Pearson correlation and Shapley additive explanation (SHAP) analysis of learned descriptors suggest the RFR models performed best because of (a) their focus on identifying and capturing relevant feature interactions and (b) their flexibility to represent nonlinear relationships between such interactions and the band gap.</p>
<p>The best model was deployed for predicting experimental band gap of 37785 hypothetical compounds.</p>
<p>Based on this, we identified 1251 stable compounds with band gap predicted to be between 1 and 2 eV at experimental accuracy, successfully narrowing the candidates to about 3% of the screened compositions.</p>
|
68 |
A COMPREHENSIVE UNDERWATER DOCKING APPROACH THROUGH EFFICIENT DETECTION AND STATION KEEPING WITH LEARNING-BASED TECHNIQUESJalil Francisco Chavez Galaviz (17435388) 11 December 2023 (has links)
<p dir="ltr">The growing movement toward sustainable use of ocean resources is driven by the pressing need to alleviate environmental and human stressors on the planet and its oceans. From monitoring the food web to supporting sustainable fisheries and observing environmental shifts to protect against the effects of climate change, ocean observations significantly impact the Blue Economy. Acknowledging the critical role of Autonomous Underwater Vehicles (AUVs) in achieving persistent ocean exploration, this research addresses challenges focusing on the limited energy and storage capacity of AUVs, introducing a comprehensive underwater docking solution with a specific emphasis on enhancing the terminal homing phase through innovative vision algorithms leveraging neural networks.</p><p dir="ltr">The primary goal of this work is to establish a docking procedure that is failure-tolerant, scalable, and systematically validated across diverse environmental conditions. To fulfill this objective, a robust dock detection mechanism has been developed that ensures the resilience of the docking procedure through \comment{an} improved detection in different challenging environmental conditions. Additionally, the study addresses the prevalent issue of data sparsity in the marine domain by artificially generating data using CycleGAN and Artistic Style Transfer. These approaches effectively provide sufficient data for the docking detection algorithm, improving the localization of the docking station.</p><p dir="ltr">Furthermore, this work introduces methods to compress the learned docking detection model without compromising performance, enhancing the efficiency of the overall system. Alongside these advancements, a station-keeping algorithm is presented, enabling the mobile docking station to maintain position and heading while awaiting the arrival of the AUV. To leverage the sensors onboard and to take advantage of the computational resources to their fullest extent, this research has demonstrated the feasibility of simultaneously learning docking detection and marine wildlife classification through multi-task and transfer learning. This multifaceted approach not only tackles the limitations of AUVs' energy and storage capacity but also contributes to the robustness, scalability, and systematic validation of underwater docking procedures, aligning with the broader goals of sustainable ocean exploration and the blue economy.</p>
|
69 |
Sparse Processing Methodologies Based on Compressive Sensing for Directions of Arrival EstimationHannan, Mohammad Abdul 29 October 2020 (has links)
In this dissertation, sparse processing of signals for directions-of-arrival (DoAs) estimation is addressed in the framework of Compressive Sensing (CS). In particular, DoAs estimation problem for different types of sources, systems, and applications are formulated in the CS paradigm. In addition, the fundamental conditions related to the ``Sparsity'' and ``Linearity'' are carefully exploited in order to apply confidently the CS-based methodologies. Moreover, innovative strategies for various systems and applications are developed, validated numerically, and analyzed extensively for different scenarios including signal to noise ratio (SNR), mutual coupling, and polarization loss. The more realistic data from electromagnetic (EM) simulators are often considered for various analysis to validate the potentialities of the proposed approaches. The performances of the proposed estimators are analyzed in terms of standard root-mean-square error (RMSE) with respect to different degrees-of-freedom (DoFs) of DoAs estimation problem including number of elements, number of signals, and signal properties. The outcomes reported in this thesis suggest that the proposed estimators are computationally efficient (i.e., appropriate for real time estimations), robust (i.e., appropriate for different heterogeneous scenarios), and versatile (i.e., easily adaptable for different systems).
|
70 |
Modulating Depth Map Features to Estimate 3D Human Pose via Multi-Task Variational Autoencoders / Modulerande djupkartfunktioner för att uppskatta människans ställning i 3D med multi-task-variationsautoenkoderMoerman, Kobe January 2023 (has links)
Human pose estimation (HPE) constitutes a fundamental problem within the domain of computer vision, finding applications in diverse fields like motion analysis and human-computer interaction. This paper introduces innovative methodologies aimed at enhancing the accuracy and robustness of 3D joint estimation. Through the integration of Variational Autoencoders (VAEs), pertinent information is extracted from depth maps, even in the presence of inevitable image-capturing inconsistencies. This concept is enhanced through the introduction of noise to the body or specific regions surrounding key joints. The deliberate introduction of noise to these areas enables the VAE to acquire a robust representation that captures authentic pose-related patterns. Moreover, the introduction of a localised mask as a constraint in the loss function ensures the model predominantly relies on pose-related cues while disregarding potential confounding factors that may hinder the compact representation of accurate human pose information. Delving into the latent space modulation further, a novel model architecture is devised, joining a VAE and fully connected network into a multi-task joint training objective. In this framework, the VAE and regressor harmoniously influence the latent representations for accurate joint detection and localisation. By combining the multi-task model with the loss function constraint, this study attains results that compete with state-of-the-art techniques. These findings underscore the significance of leveraging latent space modulation and customised loss functions to address challenging human poses. Additionally, these novel methodologies pave the way for future explorations and provide prospects for advancing HPE. Subsequent research endeavours may optimising these techniques, evaluating their performance across diverse datasets, and exploring potential extensions to unravel further insights and advancements in the field. / Human pose estimation (HPE) är ett grundläggande problem inom datorseende och används inom områden som rörelseanalys och människa-datorinteraktion. I detta arbete introduceras innovativa metoder som syftar till att förbättra noggrannheten och robustheten i 3D-leduppskattning. Genom att integrera variationsautokodare (eng. variational autoencoder, VAE) extraheras relevant information från djupkartor, trots närvaro av inkonsekventa avvikelser i bilden. Dessa avvikelser förstärks genom att applicera brus på kroppen eller på specifika regioner som omger viktiga leder. Det avsiktliga införandet av brus i dessa områden gör det möjligt för VAE att lära sig en robust representation som fångar autentiska poseringsrelaterade mönster. Dessutom införs en lokaliserad mask som en begränsning i förlustfunktionen, vilket säkerställer att modellen främst förlitar sig på poseringsrelaterade signaler samtidigt som potentiella störande faktorer som hindrar den kompakta representationen av korrekt mänsklig poseringsinformation bortses ifrån. Genom att fördjupa sig ytterligare i den latenta rumsmoduleringen har en ny modellarkitektur tagits fram som förenar en VAE och ett fullständigt anslutet nätverk i en fleruppgiftsmodell. I detta ramverk påverkar VAE och det fullständigt ansluta nätverket de latenta representationerna på ett harmoniskt sätt för att uppnå korrekt leddetektering och lokalisering. Genom att kombinera fleruppgiftsmodellen med förlustfunktionsbegränsningen uppnår denna studie resultat som konkurrerar med toppmoderna tekniker. Dessa resultat understryker betydelsen av att utnyttja latent rymdmodulering och anpassade förlustfunktioner för att hantera utmanande mänskliga poser. Dessutom banar dessa nya metoder väg för framtida utveckling inom uppskattning av HPE. Efterföljande forskningsinsatser kan optimera dessa tekniker, utvärdera deras prestanda över olika datamängder och utforska potentiella tillägg för att avslöja ytterligare insikter och framsteg inom området.
|
Page generated in 0.1268 seconds