• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 18
  • 10
  • 9
  • 4
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 88
  • 24
  • 18
  • 18
  • 17
  • 16
  • 15
  • 14
  • 13
  • 11
  • 11
  • 10
  • 10
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Investigation of new multiferroic materials with coexistence of several ferroic and structural instabilities / Etude de nouveaux matériaux multiferroiques avec coexistence multiple d’instabilités ferroiques et structurales

Liu, Hongbo 04 November 2011 (has links)
L’étude des matériaux multiferroiques est sans doute un des domaines de recherche actuelle les plus actifs et prolifiques de la matière condensée. Dans ces matériaux, coexistent polarisation, aimantation et élasticité. On comprend bien que cette coexistence permet une multifonctionnalité très attrayante pour un grand nombre d’applications mais aussi fournit un vivier extraordinaire pour étudier les interactions entre ces grandeurs ainsi que les mécanismes microscopiques sous-jacents. Cet attrait s’en trouve d’autant plus renforcé du fait des phénomènes de couplage entre ces grandeurs physiques autorisant des fonctionnalités nouvelles comme par exemple le renversement d’une aimantation avec un champ électrique au lieu d’un champ magnétique classiquement. Cependant, ces matériaux multiferroiques sont d’une part en petit nombre et d’autre part, exploitent pour beaucoup d’entre eux, la polarisation d’un ferroélectrique et l’aimantation d’un antiferromagnétique. Ceci étant, il existe d’autres types d’arrangements polaires et magnétiques encore non-exploités, c’est dans ce cadre que s’inscrit ce travail de thèse. L’objectif de la thèse était de synthétiser de nouveaux multiferroiques présentant des arrangements polaires et magnétiques originaux et d’en caractériser les propriétés. Nous nous sommes tout particulièrement intéressés aux oxydes PbFe2/3W1/3O3 (PFW) et PbZrO3 (PZO). PFW présente des ordres polaires et magnétiques à longue et à courte portée : ferroélectrique-relaxeur et antiferromagnétique-verre de spin (ou ferromagnétisme faible). PZO est quant à lui antiferroélectrique avec antiferrodistorsivité (rotation des octaèdres d’oxygène) et présence d’instabilité ferroélectrique. Nous avons d’une part combiné ces deux matériaux pour former une solution solide et d’autre part réalisé un dopage de PZO avec des ions magnétiques. Après avoir synthétisé ces matériaux, nous les avons caractérisés électriquement (constante diélectrique, phénomène de relaxation, polarisation, température de Curie), magnétiquement (susceptibilité magnétique, aimantation) et structuralement (transition de phase). Ainsi, nous avons montré qu’il était possible d’obtenir un matériau multiferroique (50%PFW-50%PZO) présentant l’ensemble des instabilités ferroiques et structurales. Ces nouveaux matériaux ouvrent ainsi de nouvelles perspectives d’étude dans ce riche domaine en particulier en utilisant des antiferroélectriques. / Multiferroics are currently intensely investigated because the coexistence and coupling of ferroic arrangements brings about new physical effects and, for the few room-temperature examples, interesting prospects for applications in various fields. This interest is illustrated by the recent publication of several articles on multiferroics in high impact reviews over the last five years. The main goal of the thesis was to look for new multiferroics by exploiting overlooked and original polar and magnetic arrangements. We more precisely investigated compounds based on lead iron tungsten PbFe2/3W1/3O3 (PFW) and lead zirconate PbZrO3 (PZO) oxides. PFW displays long- and short-range both polar and magnetic orders (ferroelectric-relaxor and antiferromagnetic-spin-glass) while PZO is antiferroelectric with antiferrodistorsivity (oxygen tilts) and existence of ferroelectric instabilities. Combining various techniques from synthesis to electric, magnetic and structural characterizations, we demonstrated that it is possible to get a multiferroic compound (50%PFW-50%PZO) with coexistence of multiple ferroic and structural arrangements with room temperature properties of practical interest. This work opens new prospects in this rich field of multiferroics in peculiar by using antiferroelectrics.
32

Estudo teórico de sistemas de elétrons fortemente correlacionados = aplicação aos multiferróicos / Theoretical study of strongly correlated electron systems : application to multiferroics

Calderon Filho, Cesar José, 1987- 03 April 2011 (has links)
Orientadores: Gaston Eduardo Barberis, Pascoal José Giglio Pagliuso / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin / Made available in DSpace on 2018-08-17T22:20:28Z (GMT). No. of bitstreams: 1 CalderonFilho_CesarJose_M.pdf: 21461723 bytes, checksum: 3089cf622e6e81e41b460dc218211be3 (MD5) Previous issue date: 2011 / Resumo: Na física da materia condensada, o estudo de sistemas de eletrons fortemente correlacionados é, com certeza, um dos problemas mais interessantes tanto do ponto de vista experimental como teórico, e são estes materiais que tem sido utilizados recentemente em aplicações tecnológicas. Destes compostos, os multiferroicos apresentam um conjunto de propriedades físicas muito rico. Estes materiais apresentam pelo menos duas das seguintes correlações de longo alcance: (anti)ferromagnetismo, ferroelasticidade e ferroeletricidade. Porém, as transições não precisam ser necessariamente correlacionadas, mas quando são, estas ocorrem simultaneamente, e o efeito magnetoelétrico pode ser induzido por campo. Neste trabalho, foram desenvolvidos cálculos numéricos que simulam o acoplamento magnetoelétrico presente nos multiferróicos minimizando a energia através da técnica de Monte Carlo. Foram desenvolvidos dois modelos muito simples. O primeiro modelo acopla uma rede de Ising 2D com spin 1/2 com uma rede de dipolos elétricos tambem 2D; este acoplamento e tal que a mudança de direção de um dado spin reorienta uma dada componente perpendicular do dipolo elétrico vizinho a este mesmo spin. Assim, para este primeiro modelo, as transições de fase das redes elétrica e magnetica ocorrem na mesma temperatura, sendo o hamiltoniano dependente de três parâmetros. Para o segundo modelo, foram utilizadas novamente duas redes, uma rede de Ising 2D com spin 1/2, e uma rede elétrica que se comporta da mesma maneira que uma rede de Ising 2D. Neste caso, o acoplamento entre o spin e o dipolo eletrico ocorre através de um sistema de dois níveis, gerando a possibilidade de temperaturas de transição independentes para as duas redes. Este segundo modelo tambem depende de três parâmetros / Abstract: In condensed matter physics, the study of strongly correlated electron systems is certainly one of the most interesting problems both from the experimental and the theoretical points of view, also these materials recently being used in technological applications. Among these compounds, the multiferroics show a very rich set of physical properties. These materials have at least two of the following long-range correlations: (anti)ferromagnetism, ferroelasticity and ferroelectricity. However, the transitions need not necessarily to be correlated, but when it happens, they occur simultaneously, and the magnetoelectric effect can be induced by field. In this work, numerical calculations have been developed to simulate the magnetoelectric coupling present in the multiferroics minimizing the energy through Monte Carlo technique. Two simple models have been developed. The first model couples a spin 1/2 2D Ising magnetic lattice with to a 2D lattice of classic electric dipoles; this coupling is such that the change in the spin direction reorients a perpendicular component of the electric dipole neighbor of this same spin. Therefore, for this first model, the phase transitions of the magnetic and electric lattices occur at the same temperature, and the Hamiltonian is dependent of three parameters. For the second model, two lattices have been used again, a 2D Ising lattice for the magnetic system and an electric lattice that also behaves as a 2D Ising lattice. In this case, the coupling between the spin and the electric dipole occurs through a two-level system, generating the possibility of the independent transition temperatures for the two systems. This second model also contains three independent parameters / Mestrado / Física da Matéria Condensada / Mestre em Física
33

Estudo teórico de sistemas de elétrons fortemente correlacionados / Theoretical study of highly correlated electron systems

Calderon Filho, Cesar José, 1987- 25 August 2018 (has links)
Orientadores: Gaston Eduardo Barberis, Eduardo Granado Monteiro da Silva / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin / Made available in DSpace on 2018-08-25T18:32:09Z (GMT). No. of bitstreams: 1 CalderonFilho_CesarJose_D.pdf: 5035446 bytes, checksum: fcbe04000b9cbb2451812618227a75ac (MD5) Previous issue date: 2014 / Resumo: Este trabalho é dedicado ao estudo dos multiferróicos, um tipo especial de sistema de elétrons fortemente correlacionados. Foram analisadas teoricamente estas substâncias e estudada a família LiMPO4 (M: Mn, Fe, Co, Ni) em particular. Este trabalho focou particularmente no composto de Mn, LiMnPO4, onde foram utilizados os dados existentes e os recém obtidos de espalhamento inelástico de nêutrons (INS), magnetização, espalhamento Raman e ressonância paramagnética eletrônica (ESR) para modelar as interações magnéticas presentes no material. Os resultados obtidos em monocristais deste composto permitem refinar o conhecimento das interações magnéticas do mesmo. O modelo desenvolvido realiza um ajuste simultâneo dos novos dados de espalhamento Raman e os já publicados de INS, mostrando uma clara interpretação do papel dos parâmetros de troca no material escolhido. É esperado que este cálculo seja estendido para toda a família e para outros compostos. Esta tese tenta ser auto-contida, por isso incluiu-se boa parte do material necessário para o leitor e futuros continuadores deste trabalho / Abstract: This work is devoted to the study of an special type of strongly correlated electrons\' compounds, namely the multiferroics. We analyze theoretically those substances, and we study a particular family of them, the LiMPO4 (M: Mn, Fe, Co, Ni) family. We focus particularly in the Mn compound, LiMnPO4, where we use existing and newly obtained data from Inelastic Neutron Scattering, Magnetization, Raman Scattering and Electron Spin Resonance to model the magnetic interactions in the material. The results in single crystals of this compound allow us to refine the knowledge of the magnetic interactions in LiMnPO4. Our model develops a calculation that fits together the new Raman experiments and the already published INS, arriving to a clear interpretation of the role of the exchange parameters in the chosen material. We expect that our calculation will be extended in the future to the whole family and to other compounds. This thesis tried to be self-contained, so we included some material that can be useful for the readers and future continuators of this work / Doutorado / Física / Doutor em Ciências
34

Photoelectric and magnetic properties of multiferroic domain walls in BiFeO3 / Etude des propriétés photoélectriques et magnétiques des parois de domaines multiferroïques dans BiFeO3

Blouzon, Camille 06 January 2016 (has links)
De tous les matériaux multiferroïques, BiFeO3 est celui qui est le plus étudié. C’est un ferroélectrique, antiferromagnétique dont les températures de transition sont bien au-dessus de la température ambiante. De plus, le couplage magnétoélectrique entre ces deux paramètres d’ordre a été observé aussi bien dans les cristaux que dans les couches minces. BiFeO3 possède également la plus grande polarisation ferroélectrique jamais mesurée, 100µC/cm². De gros efforts sont fournis pour comprendre et exploiter les propriétés physiques de ce matériau. Dans ce but, il est important de pouvoir contrôler sa structure en domaines afin d’étudier les phénomènes émergeant aux parois de ces domaines. C’est l’objectif de cette thèse : étudier quelques une des propriétés de BiFeO3, comme la photoélectricité et le magnétisme, tout en prêtant en parallèle une attention particulière à la caractérisation de ces propriétés, dans un domaine et dans une paroi, avec des techniques originales telles que la microscopie de photocourants à balayage (MPB) et le rayonnement synchrotron ou les champs magnétiques intenses. Les images obtenues par MPB, révèlent qu’un champ dépolarisant proche d’une paroi de domaine à 180° peut améliorer de manière significative le rendement des effets photoélectriques : les parois de domaines peuvent être générées et positionnées dans le but de contrôler localement le rendement de l’effet photoélectrique. De plus, l’imagerie de la figure de diffraction de surface d’un réseau de parois de domaines dans des couches minces, par diffusion magnétique résonante de rayons X, permet de montrer que les parois de domaines entraînent la formation de structures magnétiques particulières qui pourraient donner lieu à une aimantation. / Among all multiferroics, BiFeO3 is a material of choice because its two ordering temperatures are well above 300K. It is a ferroelectric antiferromagnet, and magnetoelectric coupling has been demonstrated in bulk and in thin films. Remarkably, BiFeO3 has the largest polarization of all known ferroelectrics (100µC/cm²). A huge research effort is carried out worldwide to understand and exploit the physical properties of this material which requires to design and tailor BiFeO3 on many scales. In this sense, developing methods and tools to control the domain structure is essential to explore new emergent phenomena arising at domain walls. This is the aim of the present PhD work. Some of the original properties of BiFeO3 have been investigated including its photoelectric and magnetic properties. A particular attention is given to characterize in a parallel fashion bulk properties and domain walls properties, using original techniques of characterization such as Scanning Photocurrent Microscopy (SPCM), scattering synchrotron facilities or high field pulses. SPCM mapping reveals that depolarizing fields in the vicinity of a 180° domain wall can significantly improve the photovoltaic efficiency. Thus domain walls can be generated and precisely positioned in order to tailor the local photovoltaic efficiency. Moreover, X-ray resonant magnetic scattering on thin films with periodic domain structure shows that domain walls generate specific magnetic structures with possible uncompensated magnetization.
35

Influence of the Pressure on the Multiferroicity of RMn2O5 / Influence de la pression sur la multiferroïcité de RMn2O5

Peng, Wei 18 September 2018 (has links)
La série de RMn2O5 multiferroïques a été largement étudiée en raison de son fort couplagemagnéto-électrique. L’origine de la ferroélectricité a été clarifiée en tant que mécanisme de strictiond’échange. Comme les variations des distances interatomiques modifiées par la pression externe peuventgrandement affecter les propriétés multiferroïques, il est essentiel de comprendre l’origine microscopiquede cet effet.Nous avons déterminé la structure magnétique de la phase magnétique commensurable induite parla pression (PCM) et dessiné le diagramme de phase p − T. Sur la base d’un équilibre énergétique subtilentre l’interaction d’échange J1, l’interaction d’échange R-Mn J6 et l’anisotropie de la terre rare, nousavons proposé un mécanisme de stabilisation des différentes phases magnétiques en fonction de la pressionpour les différents composés avec R=Dy, Gd et Sm. L’augmentation de J1 sous pression à températureambiante obtenue grâce à l’étude par diffraction X confirme ce mécanisme. Une explication supplémentairea été proposée pour le cas particulier de PrMn2O5. Ces résultats ouvrent certainement la voie à unecompréhension complète de l’origine de l’influence de la pression dans la famille RMn2O5. / The series of multiferroic RMn2O5 has been extensively studied due to its strong magnetoelectriccoupling. The ferroelectricity origin has been clarified as the exchange striction mechanism. As thevariations of the interatomic distances modified by the external pressure can greatly affect the multiferroicproperties, it is essential to understand the microscopic origin of this effect.In this thesis, we have systematically studied the multiferroic properties of the RMn2O5 compounds byusing powder X-rays diffraction and powder neutron diffraction (PND) under pressure. We have determinedthe magnetic structure of the pressure induced commensurate magnetic (PCM) phase and drawn the p − Tphase diagram. Based on a subtle energy balance among the exchange interaction J1, the R-Mn exchangeinteraction J6 and the anisotropy of the rare earth, we have proposed a mechanism for stabilizing thedifferent magnetic phases as a function of the pressure for the different compounds with R = Dy, Gd andSm. The enhanced J1 under pressure at room temperature from the X-ray diffraction study further confirmsthis mechanism. An additional explanation has been proposed for the special case of the PrMn2O5. Theseresults certainly pave the way to fully understand the origin of the pressure influence in the RMn2O5 family
36

Enhanced Magnetoelectric Coupling in BaTiO3-BiFeO3 Multilayers—An Interface Effect

Hohenberger, Stefan, Jochum, Johanna K., Van Bael, Margriet J., Temst, Kristiaan, Patzig, Christian, Höche, Thomas, Grundmann, Marius, Lorenz, Michael 20 April 2023 (has links)
Combining various (multi-)ferroic materials into heterostructures is a promising route to enhance their inherent properties, such as the magnetoelectric coupling in BiFeO3 thin films. We have previously reported on the up-to-tenfold increase of the magnetoelectric voltage coefficient αME in BaTiO3-BiFeO3 multilayers relative to BiFeO3 single layers. Unraveling the origin and mechanism of this enhanced effect is a prerequisite to designing new materials for the application of magnetoelectric devices. By careful variations in the multilayer design we now present an evaluation of the influences of the BaTiO3-BiFeO3 thickness ratio, oxygen pressure during deposition, and double layer thickness. Our findings suggest an interface driven effect at the core of the magnetoelectric coupling effect in our multilayers superimposed on the inherent magnetoelectric coupling of BiFeO3 thin films, which leads to a giant αME coefficient of 480 Vcm−1 Oe−1 for a 16×(BaTiO3-BiFeO3) superlattice with a 4.8 nm double layer periodicity.
37

Structure-Property Relationships of Multifeorric Materials: A Nano Perspective

Bai, Feiming 25 August 2006 (has links)
The integration of sensors, actuators, and control systems is an ongoing process in a wide range of applications covering automotive, medical, military, and consumer electronic markets. Four major families of ceramic and metallic actuators are under development: piezoelectrics, electrostrictors, magnetostrictors, and shape-memory alloys. All of these materials undergo at least two phase transformations with coupled thermodynamic order parameters. These transformations lead to complex domain wall behaviors, which are driven by electric fields (ferroelectrics), magnetic fields (ferromagnetics), or mechanical stress (ferroelastics) as they transform from nonferroic to ferroic states, contributing to the sensing and actuating capabilities. This research focuses on two multiferroic crystals, Pb(Mg1/3Nb2/3)O3-PbTiO3 and Fe-Ga, which are characterized by the co-existence and coupling of ferroelectric polarization and ferroelastic strain, or ferro-magnetization and ferroelastic strain. These materials break the conventional boundary between piezoelectric and electrostrictors, or magnetostrictors and shape-memory alloys. Upon applying field or in a poled condition, they yield not only a large strain but also a large strain over field ratio, which is desired and much benefits for advanced actuator and sensor applications. In this thesis, particular attention has been given to understand the structure-property relationships of these two types of materials from atomic to the nano/macro scale. X-ray and neutron diffraction were used to obtain the lattice structure and phase transformation characteristics. Piezoresponse and magnetic force microscopy were performed to establish the dependence of domain configurations on composition, thermal history and applied fields. It has been found that polar nano regions (PNRs) make significant contributions to the enhanced electromechanical properties of PMN-x%PT crystals via assisting intermediate phase transformation. With increasing PT concentration, an evolution of PNRï  PND (polar nano domains)-> micron-domains-> macro-domains was found. In addition, a domain hierarchy was observed for the compositions near a morphotropic phase boundary (MPB) on various length scales ranging from nanometer to millimeter. The existence of a domain hierarchy down to the nm scale fulfills the requirement of low domain wall energy, which is necessary for polarization rotation. Thus, upon applying an E-field along <001> direction(s) in a composition near the MPB, low symmetry phase transitions (monoclinic or orthorhombic) can easily be induced. For PMN-30%PT, a complete E-T (electric field vs temperature) diagram has been established. As for Fe-x at.% Ga alloys, short-range Ga-pairs serve as both magnetic and magnetoelastic defects, coupling magnetic domains with bulk elastic strain, and contributing to enhanced magnetostriction. Such short-range ordering was evidenced by a clear 2theta peak broadening on neutron scattering profiles near A2-DO3 phase boundary. In addition, a strong degree of preferred [100] orientation was found in the magnetic domains of Fe-12 at.%Ga and Fe-20 at.%Ga alloys with the A2 or A2+DO3 structures, which clearly indicates a deviation from cubic symmetry; however, no domain alignment was found in Fe-25 at.%Ga with the DO3 structure. Furthermore, an increasing degree of domain fluctuations was found during magnetization rotation, which may be related to short-range Ga-pairs cluster with a large local anisotropy constant, due to a lower-symmetry structure. / Ph. D.
38

Magnetoelectric Thin Film Heterostructures and Electric Field Manipulation of Magnetization

Zhang, Yue 21 June 2015 (has links)
The coupling of magnetic and electric order parameters, i.e., the magnetoelectric effect, has been widely studied for its intriguing physical principles and potentially broad industrial applications. The important interactions between ferroic orderings -- ferromagnetism, ferroelectricity and ferroelasticity -- will enable the manipulation of one order through the other in miniaturized materials, and in so doing stimulate emerging technologies such as spintronics, magnetic sensors, quantum electromagnets and information storage. By growing ferromagnetic-ferroelectric heterostructures that are able to magneto-electrically couple via interface elastic strain, the various challenges associated with the lack of single-phase multiferroic materials can be overcome and the magnetoelectric (ME) coupling effect can be substantially enhanced. Compared with magnetic field-controlled electric phenomena (i.e., the direct magnetoelectric coupling effect), the converse magnetoelectric effect (CME), whereby an electric field manipulates magnetization, is more exciting due to easier implementation and handling of electric fields or voltages. CME also affords the possibility of fabricating highly-efficient electric-write/magnetic-read memories. This study involved two avenues of inquiry: (a) exploring the strain-mediated electric field manipulation of magnetization in ferroelectric-ferromagnetic heterostructures, and (b) investigating coupling and switching behaviors at the nanoscale. Accordingly, a series of magnetoelectric heterostructures were prepared and characterized, and their electric field tunability of magnetic properties was explored by various techniques and custom-designed experiments. Firstly, the relevant properties of the individual components in the heterostructures were systematically investigated, including the piezoelectricity and ferroelectric/ferroelastic phase transformations of the ferroelectric substrates, lead magnesium niobate-lead titanate, or Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT). This investigation revealed significant information on the structure-property relationships in crystals oriented at <110>, as well as shed light on the effect of ferroelectric phase transformation on magnetoelectric coupling. This investigation of electric field controlled strain, in contrast to many prior studies, enables a more rational and detailed understanding of the magnetoelectric effect in complex ferroelectric-ferromagnetic heterostructures. The magnetoelectric thin film heterostructures were fabricated by depositing ferromagnetic iron-gallium (Fe-Ga) or cobalt ferrite (CoFe2o4 or CFO) films on top of differently-oriented ferroelectric PMN-PT substrates. Through significant electric field-induced strain in the piezoelectric substrate, the magnetic remanence and coercive field, as well as the magnetization direction of the ferromagnetic overlayer, can be substantially tuned. These goals were achieved by the interfacial strain modification of the magnetic anisotropy energy profile. The observation and analysis of the electric field tunability of magnetization and the establishment of novel controlling schemes provide valuable directions for both theoretical development and future application endeavors. / Master of Science
39

Structure-Property Relations on Strain-Mediated Multiferroic Heterostructures

Gao, Min 20 November 2019 (has links)
Multiferroic thin-film heterostructures have attracted a great deal of attention due to the increasing demand for novel energy-efficient micro/nano-electronic devices. Both single phase multiferroic materials like BiFeO3 (BFO) thin films, and strain-mediated magnetoelectric (ME) nanocomposites, have the potential to fulfill a number of functional requirements in actual applications—principally, direct control of magnetization by the application of an electric field (E) and vice-versa. From the perspective of material science, however, it is essential to develop a fuller understanding of the complex fabrication-structure-property triangle relationship for these multiferroic thin films. Pulsed laser deposition (PLD) was used in this study to fabricate diverse epitaxial thin film heterostructures on top of single crystal substrates. The crystal structure, phase transition processes (amongst nanodomain distributions, dielectric phases, magnetic spin states, etc.), and various ME-related properties were characterized under different E or temperature environments. Resulting data enabled us to determine the structure-property relationships for a range of multiferroic systems. First, BFO-based heterostructures were studied. Epitaxial BFO thin films were deposited on top of (001)-oriented Pb(Mg1/3Nb2/3)O3-30PbTiO3 (PMN-30PT) single crystal substrates. The strain states of BFO and crystal structural phases were tunable by E applied on the PMN-30PT via both the in-plane and out-of-plane modes. The strain-mediated antiferromagnetic state changes of BFO were also studied using neutron diffraction spectroscopy under E. Then, CoFe2O4(CFO)/tetragonal BFO nanocomposites were successfully fabricated on top of (001)-oriented LaAlO3 single crystal substrates. The surface morphology, crystal structure, magnetic properties, and ME effects were evaluated and compared with CFO/rhombohedral BFO nanocomposites. To enhance the performance of ME heterostructures with PMN-PT substrates, PMN-30PT single crystals with nanograted electrodes were also studied, which evidenced an enhancement in piezoelectric properties and dielectric constant by 36.7% and 38.3%, respectively. X-ray diffraction reciprocal space mapping (RSM) was used to monitor E-induced changes in the apparent symmetry and domain distribution of near-surface regions for the nanograted PMN-30PT crystals. Finally, in order to add antiferroelectric thin films to the family of strain-mediated multiferroic nanocomposites, epitaxial antiferroelectric thin films were prepared. Epitaxial (Pb0.98La0.02)(Zr0.95Ti0.05)O3 (PLZT) thin films were deposited on differently oriented SrTiO3 single crystal substrates. A thickness dependent incommensurate/commensurate antiferroelectric-to-ferroelectric phase transition was identified. The crystal structure, phase transition characteristics and pathways, and energy storage behaviors from room temperature to 250 ℃ were studied, enabling a more systematic understanding of PLZT-based AFE epitaxial thin films. To summarize, a range of epitaxial thin films were prepared using PLD, whose crystal structures and multiferroic properties were related through the strain. Accordingly, properties such as dielectricity, antiferroelectricity, and antiferromagnetism could be adjusted by E. This study sheds further light on the potential for designing desirable strain-mediated multiferroic nano-/micro-devices in the future. / Doctor of Philosophy / As a general definition, the class of materials known as multiferroics possess more than one ferroic order parameter. Multiferroic thin-film heterostructures have attracted a great deal of attention due to the increasing demand for novel energy-efficient micro/nano-electronic devices. Both single phase multiferroic materials like BiFeO3 (BFO) thin films and strain-mediated magnetoelectric (ME) nanocomposites show significant potential for use in next-generation devices due to the fact that one can control magnetic properties via the application of an electric field (E) and vice-versa. From the perspective of material science, however, it is essential to develop a fuller understanding of the complex fabrication-structure-property triangle relationship for these multiferroic thin films. In this study, diverse epitaxial thin film heterostructures were fabricated on top of single crystal substrates. The crystal structure, phase transition processes (amongst nanodomain distributions, dielectric phases, magnetic spin states, etc.), and various ME-related properties were characterized under different E or temperature environments. Resulting data enabled us to determine the structure-property relationships for a range of multiferroic systems. First, BFO-based heterostructures were studied. Epitaxial BFO thin films were deposited on top of (001)-oriented Pb(Mg1/3Nb2/3)O3-30PbTiO3 (PMN-30PT) single crystal substrates. The strain states of BFO and crystal structural phases were tunable by E applied on the PMN-30PT via both the in-plane and out-of-plane modes. The strain-mediated antiferromagnetic state changes of BFO were studied using powerful neutron diffraction spectroscopy under E. Then, CoFe2O4(CFO)/tetragonal BFO nanocomposites were successfully fabricated on top of (001)-oriented LaAlO3 single crystal substrates. The surface morphology, crystal structure, magnetic properties, and ME effects were discussed and compared with CFO/rhombohedral BFO nanocomposites. To enhance the performance of ME heterostructures with PMN-PT substrates, PMN-PT single crystals with nanograted electrodes were also studied, which evidenced an enhancement in piezoelectric properties and dielectric constant by 36.7% and 38.3%, respectively. X-ray diffraction reciprocal space mapping (RSM) technique was used to monitor E-induced changes in the apparent symmetry and domain distribution of near-surface regions for nanograted PMN-PT crystals. Finally, in order to add antiferroelectric thin films to the family of strain-mediated multiferroic nanocomposites, epitaxial antiferroelectric thin films were prepared. Epitaxial (Pb0.98La0.02)(Zr0.95Ti0.05)O3 (PLZT) thin films were deposited on differently oriented SrTiO3 substrates. A thickness dependent incommensurate antiferroelectric-to-ferroelectric phase transition was identified. The crystal structure, phase transition characteristics and pathways, and energy storage behaviors from room temperature to 250 ℃ were studied, enabling a more systematic understanding of PLZT-based AFE epitaxial thin films. To summarize, a range of epitaxial perovskite thin films were prepared, whose crystal structures and multiferroic properties were related through the strain. Accordingly, the properties such as dielectricity, antiferroelectricity, and antiferromagnetism could be adjusted by E. This study sheds further light on the potential for designing desirable strain-mediated multiferroic nano-/micro-devices in the future.
40

Magnetoelectric Oxide Nanocomposite Heterostructures

Li, Yanxi 28 February 2017 (has links)
Multiferroics have attracted lots of research interest due to their potential in numerous multifunctional applications. The multiferroic materials could simultaneously exhibit two or more ferroic order parameters, and the coupling effects between ferroelectricity and ferromagnetism are named as magnetoelectric (ME) effect. Recently, with the development of thin film growth techniques, the multiferroics magnetoelectric composite heterostructures exhibit a very promising future prospects. This dissertation focused on the design, fabrication and characterization of new multiferroics magnetoelectric composite heterostructures. First, based on the specific phase architectures in BFO-CFO self-assembled thin films grown on variously oriented STO substrates and the epitaxial film growth knowledge, I designed two kinds of new film heterostructures: (i) I utilized self-assembled BFO nanopillars in a BFO-CFO two phase layer on (111) STO as a seed layer on which to deposit a secondary top BiFeO3 layer. The growth mechanism and multiferroic properties of these new heterostructures were investigated. (ii) I demonstrated the formation of a new quasi-(0-3) heterostructure by alternately growing (2-2) and (1-3) layers within the film. I proposed a new concept to overcome limitations of both the (2-2) and (1-3) phase connectivities and identified an indirect ME effect by the switching the characteristics of the piezoresponse for the new heterostructure. Second, for the option for candidates thin film materials with a high piezoelectric coefficient, which is a critical factor for ME composite films, I utilized the simple compositional BaSn0.11Ti0.89O3 bulk ceramic material as a target to grow films with the large piezoelectric properties. The grown high qualify lead-free epitaxial thin films had a chemical constituent similar to the reported giant piezoelectric ceramics near the MPB and with the QP. Both coherent and incoherent regions were observed in the interface and a larger piezoelectric coefficient d33 was achieved in this film. Finally, with respect to their characteristics and potential, I redirected from two-dimensional thin film materials to one-dimensional nanowire materials. By utilizing vertically aligned templates, I fabricated a new type of coaxial two-phase composite nanowires. Multiferroic properties of these new one-dimensional materials have been investigated. All these multiferroics magnetoelectric composite herterostructures would provide lots of potential in applications. / PHD

Page generated in 0.0378 seconds