281 |
Caractérisation et Modélisation du comportement micromécanique des matériaux composites SMC sous chargement thermomécanique de type quasi-statique et fatigue. / Characterization and modeling of micro-mechanical behavior of SMC composites under thermomechanical loading,quasi-static and fatigue type.Laribi, Mohamed Amine 13 December 2018 (has links)
L’utilisation des matières composites est fortement conditionnée par la capacité du constructeur ou du sous-traitant à dimensionner les structures automobiles sous divers types de chargements complexes tel que la fatigue. Le présent travail de thèse a pour objectif de développer un outil de modélisation par transition d’échelles couplée à une approche phénoménologique afin d’apporter une réponse à un besoin de maîtrise du dimensionnement de pièce de structure en composite SMC (polyester chargé en fibres de verre) soumis à des sollicitations de type fatigue sous différents niveaux de température 23°C, 80°C et -30°C. Pour ce faire, le travail a été mené selon deux axes principaux. En premier lieu, une investigation expérimentale sous chargement monotone et fatigue. Les résultats de l’analyse expérimentale de l’endommagement du matériau a permis d’accéder aux données nécessaires à la construction d’un modèle micromécanique constituant la base des approches prédictives de la durée de vie des SMC sous chargements cycliques constituant la seconde phase de travail. Ainsi, deux approches de modélisations hybrides phénoménologiques/micromécaniques ont été proposées. Elles sont toutes les deux basées sur une modélisation micromécanique qui permet de traduire le comportement mécanique du matériau d’étude sous chargement monotone avec prise en compte de la microstructure et de l’endommagement. Ces deux approches prédictives ne nécessitent qu’un nombre limité d’essais et d’investigations expérimentales mais restent bien fiables et pertinentes dans leurs capacités de prédire la durée de vie d’un matériau composite SMC sous chargement en fatigue. L’approche est validée dans le cas de chargements thermomécaniques séquentiels à température ou amplitude variable. / The composite materials are strongly conditioned by the ability of the company to design the automotive structures under various complexes loadings such as fatigue. The aim of this thesis is to develop a multi-scale modeling coupled to a phenomenological approach in order to provide a response to the dimensioning need of structural parts subjected to cyclic loading at different temperatures of 23°C, 80°C and -30°C. By this way, the work was conducted along two main lines; firstly, an experimental investigation under monotonic and fatigue loadings. The results of this experimental study provide the necessary data for the construction of a micromechanical model which constitute the basis of the second part of this work; the predictive approaches of the fatigue lifetime for SMC composite. Thus, two hybrid, phenomenological/micromechanical, modeling approaches have been proposed. Both are based on a micromechanical modeling that allows describing the mechanical behavior of our material under monotonic loading, taking into account the microstructure and the damage phenomenon. These two predictive models require only a limited number of experimental tests and investigations but remain very reliable in their capacity to predict the lifetime of an SMC composite material under fatigue loading. The approach is validated in the case of thermomechanical sequential loadings at variable temperatures or amplitudes.
|
282 |
Análise do sinal de variabilidade da frequência cardíaca através de estatística não extensiva: taxa de q-entropia multiescala / Heart rate variability analysis through nonextensive statistics: multiscale q-entropy rateSilva, Luiz Eduardo Virgilio da 28 February 2013 (has links)
O corpo humano é um sistema complexo composto por vários subsistemas interdependentes, que interagem entre si em várias escalas. Sabe-se que essa complexidade fisiológica tende a diminuir com a presença de doenças e com o avanço da idade, reduzindo a capacidade de adaptação dos indivíduos. No sistema cardiovascular, uma das maneira de se avaliar sua dinâmica regulatória é através da análise da variabilidade da frequência cardíaca (VFC). Os métodos clássicos de análise da VFC são baseados em modelos lineares, como é o caso da análise espectral. Contudo, como os mecanismos fisiológicos de regulação cardíaca apresentam características não lineares, as análises utilizando tais modelos podem ser limitadas. Nos últimos tempos, várias propostas de métodos não lineares têm surgido. Porém, não se sabe de uma medida consistente com o conceito de complexidade fisiológica, onde tanto os regimes periódicos como aleatórios são caracterizados como perda de complexidade. Baseado no conceito de complexidade fisiológica, esta tese propõe novos métodos de análise não lineares para séries de VFC. Os métodos consistem da generalização de medidas de entropia já existentes, utilizando a mecânica estatística não aditiva de Tsallis e a técnica de geração de dados substitutos. Foi definido um método, chamado de qSDiff, que calcula a diferença entre a entropia de um sinal e a entropia média de suas séries substitutas. O método de entropia utilizado consiste de uma generalização da entropia amostral (SampEn), utilizando o paradigma não aditivo. Das séries qSDiff foram extraídos três atributos, que foram avaliados como possíveis índices de complexidade fisiológica. A entropia multiescala (MSE) também foi generalizada seguindo o paradigma não aditivo, e os mesmos atributos foram calculados em várias escalas. Os métodos foram aplicados em séries reais de VFC de humanos e de ratos, bem como em um conjunto de sinais simulados, formado por ruídos e mapas, este último em regimes caótico e periódico. O atributo qSDiffmax demonstrou ser consistente para baixas escalas ao passo que os atributos qmax e qzero para escalas maiores, separando e classificando os grupos quanto à complexidade fisiológica. Observou-se ainda uma possível relação entre estes q-atributos com a presença de caos, que precisa ser melhor estudada. Os resultados ainda apontam a possibilidade de que, na insuficiência cardíaca, ocorre maior degradação nos mecanismos de baixa escala, de curto período, ao passo que na fibrilação atrial o prejuízo se estenderia para escalas maiores. As medidas baseadas em entropia propostas são capazes de extrair informações importantes das séries de VFC, sendo mais consistentes com o conceito de complexidade fisiológica do que a SampEn (clássica). Reforçou-se a hipótese de que a complexidade se revela em múltiplas escalas de um sinal. Acreditamos que os métodos propostos podem contribuir bastante na análise da VFC e também de outros sinais biomédicos. / Human body is a complex system composed of several interdependent subsystems, interacting at various scales. It is known that physiological complexity tends to decrease with disease and aging, reducing the adaptative capabilities of the individual. In the cardiovascular system, one way to evaluate its regulatory dynamics is through the analysis of heart rate variability (HRV). Classical methods of HRV analysis are based on linear models, such as spectral analysis. However, as the physiological mechanisms regulating heart rate exhibit nonlinear characteristics, analyzes using such models may be limited. In the last years, several proposals nonlinear methods have emerged. Nevertheless, no one is known to be consistent with the physiological complexity theory, where both periodic and random regimes are characterized as complexity loss. Based on physiological complexity theory, this thesis proposes new methods for nonlinear HRV series analysis. The methods are generalization of existing entropy measures, through Tsallis nonadditive statistical mechanics and surrogate data. We defined a method, called qSDiff, which calculates the difference between the entropy of a signal and its surrogate data average entropy. The entropy method used is a generalization of sample entropy (SampEn), through nonadditive paradigm. From qSDiff we extracted three attributes, which were evaluated as potential physiological complexity indexes. Multiscale entropy (MSE) was also generalized following nonadditive paradigm, and the same attributes were calculated at various scales. The methods were applied to real human and rats HRV series, as well as to a set of simulated signals, consisting of noises and maps, the latter in chaotic and periodic regimes. qSDiffmax attribute proved to be consistent for low scales while qmax and qzero attributes to larger scales, separating and ranking groups in terms of physiological complexity. There was also found a possible relationship between these q-attributes with the presence of chaos, which must be further investigated. The results also suggested the possibility that, in congestive heart failure, degradation occurs rather at small scales or short time mechanisms, while in atrial fibrillation, damage would extend to larger scales. The proposed entropy based measures are able to extract important information of HRV series, being more consistent with physiological complexity theory than SampEn (classical). Results strengthened the hypothesis that complexity is revealed at multiple scales. We believe that the proposed methods can contribute to HRV as well as to other biomedical signals analysis.
|
283 |
Emprego do método de homogeneização assintótica no cálculo das propriedades efetivas de estruturas ósseas / Using the asymptotic homogenization method to evaluate the effective properties of bone structuresSilva, Uziel Paulo da 28 May 2014 (has links)
Ossos são sólidos não homogêneos com estruturas altamente complexas que requerem uma modelagem multiescala para entender seu comportamento eletromecânico e seus mecanismos de remodelamento. O objetivo deste trabalho é encontrar expressões analíticas para as propriedades elástica, piezoelétrica e dielétrica efetivas de osso cortical modelando-o em duas escalas: microscópica e macroscópica. Utiliza-se o Método de Homogeneização Assintótica (MHA) para calcular as constantes eletromecânicas efetivas deste material. O MHA produz um procedimento em duas escalas que permite obter as propriedades efetivas de um material compósito contendo uma distribuição periódica de furos cilíndricos circulares unidirecionais em uma matriz piezoelétrica linear e transversalmente isotrópica. O material da matriz pertence à classe de simetria cristalina 622. Os furos estão centrados em células de uma matriz periódica de secções transversais quadradas e a periodicidade é a mesma em duas direções perpendiculares. O compósito piezoelétrico está sob cisalhamento antiplano acoplado a um campo elétrico plano. Os problemas locais que surgem da análise em duas escalas usando o MHA são resolvidos por meio de um método da teoria de variáveis complexas, o qual permite expandir as soluções correspondentes em séries de potências de funções elípticas de Weierstrass. Os coeficientes das séries são determinados das soluções de sistemas lineares infinitos de equações algébricas. Truncando estes sistemas infinitos até uma ordem finita de aproximação, obtêm-se fórmulas analíticas para as constantes efetivas elástica, piezoelétrica e dielétrica, que dependem da fração de volume dos furos e de um fator de acoplamento eletromecânico da matriz. Os resultados numéricos obtidos a partir destas fórmulas são comparados com resultados obtidos pelas fórmulas calculadas via método de Mori-Tanaka e apresentam boa concordância. A boa concordância entre todas as curvas obtidas via MHA sugere que a expressão correspondente da primeira aproximação fornece uma fórmula muito simples para calcular o fator de acoplamento efetivo do compósito. Os resultados são úteis na mecânica de osso. / Bones are inhomogeneous solids with highly complex structures that require multiscale modeling to understand its electromechanical behavior and its remodeling mechanisms. The objective of this work is to find analytical expressions for the effective elastic, piezoelectric, and dielectric properties of cortical bone by modeling it on two scales: microscopic and macroscopic. We use Asymptotic Homogenization Method (AHM) to calculate the effective electromechanical constants of this material. The AHM yields a two-scale procedure to obtain the effective properties of a composite material containing a periodic distribution of unidirectional circular cylindrical holes in a linear transversely isotropic piezoelectric matrix. The matrix material belongs to the symmetry crystal class 622. The holes are centered in a periodic array of cells of square cross sections and the periodicity is the same in two perpendicular directions. The piezoelectric composite is under antiplane shear deformation together with in-plane electric field. Local problems that arise from the two-scale analysis using the AHM are solved by means of a complex variable method, which allows us to expand the corresponding solutions in power series of Weierstrass elliptic functions. The coefficients of these series are determined from the solutions of infinite systems of linear algebraic equations. Truncating the infinite systems up to a finite, but otherwise arbitrary, order of approximation, we obtain analytical formulas for effective elastic, piezoelectric, and dielectric properties, which depend on both the volume fraction of the holes and an electromechanical coupling factor of the matrix. Numerical results obtained from these formulas are compared with results obtained by the Mori-Tanaka approach and show good agreement. The good agreement between all curves obtained via AHM suggests that the corresponding expression of first approximation provides a very simple formula to calculate the effective coupling factor of the composite. The results are useful in bone mechanics.
|
284 |
Multiscale investigation of caking phenomenon of lactose powders : from physico-chemical aspects to industrial applications / Étude multi-échelles du phénomène de mottage des poudres du lactose : de la physico-chimie des matériaux aux applications industriellesAfrassiabian, Zahra 13 March 2019 (has links)
Cette thèse porte sur le problème fondamental du mottage des poudres suite aux mécanismes de transition de phase. Le projet vise à étudier l'impact des facteurs intrinsèques (structure moléculaire des matériaux, propriétés physiques et/ou physicochimiques, etc.) ou des facteurs environnementaux (conditions de stockage ou paramètres de procédé) sur la stabilité de la structure des poudres. Plus précisément, notre étude a mis en évidence le rôle prépondérant du phénomène de cristallisation et des transitions entre les différents polymorphes du lactose. L'accent a été mis sur le rôle des phénomènes de cristallisation et de la transition de phase dans l'apparition du mottage des poudres de lactose. Deux cas ont particulièrement retenu notre attention: (1) des poudres de lactose monohydrate contenant une fraction de particules amorphes et (2) des échantillons de poudre anhydre composés des anomères α et β du lactose. Dans les deux cas, le mottage a été induite par l'exposition des échantillons à l'air humide, soit dans un dispositif de sorption dynamique de vapeur (SPS), soit par des tests accélérés utilisant deux appareils conçus et réalisés dans notre laboratoire (CLAIR & OLAF). Nos résultats ont montré que, dans les deux cas, la principale cause de prise en masse était la formation de lactose monohydrate, qui est la forme la plus stable parmi tous les polymorphes de lactose. Cependant, les mécanismes élémentaires, les étapes limites et la cinétique du processus de transformation étaient différents dans chaque cas. Les paramètres les plus déterminants étaient l’humidité relative et la température alors que la pression n’a pas eu d’effet significatif. La résistance mécanique des échantillons mottés était étroitement liée au taux et à la cinétique de cristallisation. Enfin, des simulations numériques basées sur la méthode des éléments discrets (DEM) de la résistance mécanique des échantillons mottés ont été réalisées. Le modèle permet de décrire le comportement des échantillons mottés soumis à des contraintes mécaniques de compression ou de traction. / This PhD study focuses on the fundamental problem of powder caking due to phase transition mechanisms. The project aims to study the impact of intrinsic factors (molecular structure of materials, physical and/or physicochemical properties, etc.) or environmental factors (storage conditions or process parameters) on the stability of the structure of powders. More precisely, our study has highlighted the preponderant role of the crystallization phenomenon and the transitions taking place between the different polymorphs of lactose. Emphasis was placed on the role of crystallization phenomena and phase transition on the advent of lactose powder caking. Two cases attracted particular attention: (1) lactose monohydrate powders containing a fraction of amorphous particles and (2) anhydrous powder samples composed of ð and anomers of lactose. In both cases, the caking was induced by exposure of the samples to moist air, either in a Dynamic Vapor Sorption device (SPS) or in accelerated caking tests using two home-made equipment (CLAIR & OLAF). Our results showed that in both cases, the main cause of caking was the formation of lactose monohydrate, which is the most stable form among all lactose polymorphs. However, the elementary mechanisms, the limiting steps and the kinetics of the transformation process were different in each case. The more influencing parameters were the relative humidity and the temperature whereas the pressure has no significant effect. The yield stress of caked samples was closely linked with crystallization extent and kinetics. Finally, numerical simulations based on Discrete Element Method (DEM) of mechanical resistance of caked samples were performed using the "beam model". The model allows describing the behavior of the caked samples subjected to compressive or tractive mechanical stresses.
|
285 |
Dynamics of Gas Jet Impinging on Falling Liquid Films / Dynamique de Jets de Gaz Impactant des Films Liquides TombantsMendez, Miguel Alfonso 07 May 2018 (has links) (PDF)
This thesis describes the unstable dynamics of a gas jet impinging on a falling liquid film. This flow configuration is encountered in the jet wiping process, used in continuous coating applications such as the hot-dip galvanizing to control the thickness of a liquid coat on a moving substrate. The interaction between these flows generates a non-uniform coating layer, of great concern for the quality of industrial products, and results from a complex coupling between the interface instabilities of the liquid film and the confinement-driven instabilities of the impinging jet.Combining experimental and numerical methods, this thesis studied the dynamics of these flows on three simplified flow configurations, designed to isolate the key features of their respective instabilities and to provide complementary information on their mutual interaction. These configurations include the gas jet impingement on a falling liquid film perturbed with controlled flow rate pulsation, the gas jet impingement on a solid interface reproducing stable and unstable liquid film interfaces and a laboratory scaled model of the jet wiping process. Each of these configurations was reproduced on dedicated experimental set-up, instrumented for non-intrusive measurement techniques such as High-Speed Flow Visualization (HSFV) and Time-resolved Particle Image Velocimetry (TR-PIV) for the gas jet flow analysis, Laser Induced Fluorescence (LIF) tracking of the liquid interface, and 3D Light Absorption (LAbs) measurement of the liquid film thickness. To optimize the performances of these measurement techniques, several advanced data processing routines were developed, including a novel image pre-processing method for background removal in PIV and a dynamic feature tracking for the automatic detection of the jet flow and the liquid film interface from HSFV, LIF, and PIV videos.To identify the flow structures driving the unstable response of the jet flow, a novel data-driven modal decomposition was developed. This decomposition, referred to as Multiscale Proper Orthogonal Decomposition (mPOD), was validated on synthetic, numerical and experimental test cases and allowed for better feature extraction than classical alternatives such as Proper Orthogonal Decomposition (POD) or Dynamic Mode Decomposition (DMD).The experimental work on these laboratory models was complemented with the analysis of several numerical simulations, including a classical 2D Unsteady Reynolds Averaged Navier Stokes (URANS) modeling of the gas jet impingement on a fixed interface, a 2D Variational Multiscale Simulation (VMS) with anisotropic mesh refinement of the gas jet impingement on a pulsing interface, and a 3D simulation of the jet wiping process combining Large Eddy Simulation (LES) on the gas side with Volume of Fluid (VOF) treatment of the liquid film flow. The experimental modal analysis on the dynamic response of the gas jet and the characterization of the pressure-velocity coupling in the numerical investigation allowed for a complete picture of the mechanism driving the jet oscillation and its possible impact on the liquid film.In parallel, several flow control strategies to prevent the jet oscillation were developed, tested numerically and experimentally in simplified conditions, and later implemented on the design of a new nozzle for the jet wiping process. This new nozzle was finally tested on a laboratory scale of the wiping process and its performances compared to single jet and multiple jet wiping configurations. In these three cases, the experimental work presents the modal analysis of the gas field using TR-PIV and mPOD, the liquid interface tracking via LIF, and the final coating thickness characterization via LAbs.The large spatiotemporally resolved experimental database allowed to give a detailed description of the jet wiping instability and to provide new insights on this fascinating fundamental and applied problem of fluid dynamics. / Doctorat en Sciences de l'ingénieur et technologie / info:eu-repo/semantics/nonPublished
|
286 |
Modelagem multiescala de reservatórios não convencionais de gás contendo redes de fraturas naturais e hidráulicasRocha, Aline Cristina da 20 March 2017 (has links)
Submitted by Maria Cristina (library@lncc.br) on 2017-08-10T14:46:54Z
No. of bitstreams: 1
tese_AlineRocha_2017.pdf: 17879231 bytes, checksum: 4f4051ece6ff4381064ab5338f79624d (MD5) / Approved for entry into archive by Maria Cristina (library@lncc.br) on 2017-08-10T14:47:10Z (GMT) No. of bitstreams: 1
tese_AlineRocha_2017.pdf: 17879231 bytes, checksum: 4f4051ece6ff4381064ab5338f79624d (MD5) / Made available in DSpace on 2017-08-10T14:47:21Z (GMT). No. of bitstreams: 1
tese_AlineRocha_2017.pdf: 17879231 bytes, checksum: 4f4051ece6ff4381064ab5338f79624d (MD5)
Previous issue date: 2017-03-20 / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) / In this work we construct a new multiscale computational model to describe the flow of gases in unconventional reservoirs (shale gas) containing distinct levels of fractures (natural and hydraulic). Such reservoirs exhibit peculiar characteristics that make an accurate description of the physical phenomenon involved a hard task. Among the characteristics we can highlight the low permeability (order of nanodarcys) and the multiple levels of porosity related to the multiple scales involved. In the present work the multiscale modeling of the gas flow is built with the formal homogenization procedure. The geological formation is characterized by four distinct length scales. The finest one, the nanoscopic, is related to the nanopores in the organic matter (kerogen) where gas is adsorbed. In order to accurately describe the gas adsorption in kerogen we pursue in the context of the Thermodynamics of Inhomogeneous Fluids. More precisely, the isotherms that describe the gas adsorption in nanopores are built based on the Density Functional Theory (DFT). The upscaling to the microscale is reached through the homogenization procedure. The window of observation related to this scale is composed of kerogen aggregates and inorganic matter (clay, quartz, calcite). Such phases are separated by the network of interparticle pores exibting characteristic length between 10^{-4} and 10^{-9} meters. The micropores are partially-saturated, filled with a free gas phase in thermodynamic equilibrium with the dissolved gas in the aqueous phase. The model considers immobile water phase with the equation of fickian diffusion of the dissolved gas coupled to the Darcyan flow of the free gas. At the mesoscale the shale matrix (where interparticle pores, kerogen aggregates and inorganic matter are envisioned as an homogenized media) is intertwined by the network of natural fractures exhibiting preferred paths for the flow of gas. The upscaling of this coupled system of partial differential equations gives rise to a macroscopic model of double porosity in the sense of Arbogast and coworkers (ARBOGAST; DOUGLAS JR.; HORNUNG, 1990). Within this context the shale matrix behaves as a microstructural distributed mass source term in the mass balance equation that describes the gas movement in the homogenized network of natural fractures. Finally we establish the coupling between the hydrodynamics in the networks of natural and hydraulic fractures, where single phase gas flow takes place. Such coupling is accomplished by reduced dimension techniques where induced fractures are treated as (n-1), n = 2,3 lower dimensional geological objects. The resulting model is composed of three partial differential nonlinear equations governing the gas hydrodynamics in the shale matrix and networks of natural and hydraulic fractures. In order to decouple the system we proceed within the context proposed by Arbogast (ARBOGAST,1997) which adopts a variable decomposition leading to the numerical solution of independent subsystems. This strategy allows the solution of the system mentioned above to be made in a sequential form avoiding additional iterations between the subsystems. The resultant governing equations are discretized by the finite element method with the introduction of submeshes to threat the gas transport in shale matrix and compute the source term in the pressure equation of the natural fractures network. The discretized model is used to simulate gas production as well as transient well tests. Promising numerical results are obtained which can be used to improve the description of the involved phenomena giving rise to new diagnostic curves to the characterization of unconventional reservoirs. / Neste trabalho propomos um novo modelo computacional multiescala para descrever o transporte de gases em reservatórios não convencionais (shale gas) com distintos níveis de fraturas (naturais e hidráulicas). Tais reservatórios apresentam características bastante peculiares que tornam a descrição acurada dos fenômenos físicos envolvidos uma tarefa árdua. Dentre estas características podemos ressaltar a baixíssima permeabilidade (da ordem de nanodarcys) e os múltiplos níveis de porosidade associados às múltiplas escalas envolvidas. No presente trabalho a modelagem multiescala do transporte do gás metano é construída fazendo uso do processo formal de homogeneização. O modelo considera o reservatório descrito por quatro escalas espaciais distintas. A escala mais fina, nanoscópica, é associada aos nanoporos na matéria orgânica (querogênio) onde o gás encontra-se adsorvido. Para descrever precisamente a adsorção do gás no querogênio fazemos uso da Termodinâmica de Gases Confinados. Mais precisamente, as isotermas de adsorção do gás nos nanoporos são construídas fazendo uso da Density Functional Theory (DFT). Através do processo de homogeneização é realizado o upscaling para a escala intermediária (microscópica). A janela observacional associada a esta escala consiste dos agregados de querogênio juntamente com a matéria inorgânica (considerada impermeável) e rede de microporos que podem exibir tamanhos entre 10^{-4} a 10^{-9} metros. Consideramos estes, por sua vez, parcialmente saturados preenchidos por uma fase gás livre em equilíbrio termodinâmico local com o gás dissolvido na fase aquosa. O modelo considera a água estagnada com a equação de difusão fickiana do gás dissolvido acoplada ao escoamento do gás livre. Na mesoescala a matriz do folhelho (na qual microporos, agregados de querogênio e matéria inorgânica são tratados como um meio contínuo homogeneizado) é permeada por uma rede de fraturas naturais que exibem caminhos preferenciais para o movimento do gás. O processo do upscaling deste sistema acoplado de equações diferenciais parciais dá origem a um modelo macroscópico de porosidade dupla no sentido de Arbogast e colaboradores (ARBOGAST; DOUGLAS JR.; HORNUNG, 1990). Neste contexto, a matriz atua como uma fonte de massa distribuída microestruturalmente no balanço de massa que descreve o movimento do gás na rede de fraturas naturais. Finalmente estabelecemos o acoplamento entre as hidrodinâmicas nas redes de fraturas naturais e hidráulicas, onde ocorre o escoamento monofásico do gás livre. Tal acoplamento é realizado via técnica de redução de dimensão onde as fraturas hidráulicas são tratadas como objetos geológicos de dimensão reduzida (n-1), n=2,3. O modelo resultante é composto por três equações diferenciais parciais não lineares acopladas que governam a hidrodinâmica do gás na matriz e redes de fraturas naturais e hidráulicas. Com o intuito de desacoplar o sistema procedemos no contexto proposto por Arbogast (ARBOGAST,1997) que consiste em utilizar uma decomposição das variáveis resultando em subsistemas independentes a serem resolvidos numericamente. Esta escolha permite que o sistema supracitado seja resolvido de forma sequencial evitando a necessidade de iterações adicionais entre os subsistemas. Na discretização espacial adotamos o método de elementos finitos com a introdução de submalhas para tratar o transporte do gás na matriz e assim efetuar de forma precisa o cálculo do termo de fonte na equação da pressão do gás na rede de fraturas naturais. O modelo discreto é utilizado para o cômputo da produção de gás bem como para simular testes transientes de pressão em poços. Resultados numéricos promissores são obtidos os quais podem ser empregados para aprimorar a descrição dos fenômenos envolvidos e dar origem a novas curvas de diagnóstico para caracterização de propriedades de reservatórios não convencionais.
|
287 |
Two-phase flow properties upscaling in heterogeneous porous media / Mise à l'échelle des propriétés polyphasiques d'écoulement en milieux poreux hétérogènesFranc, Jacques 18 January 2018 (has links)
L’étude des écoulements souterrains et l’ingénierie réservoir partagent le même intérêt pour la simulation d’écoulement multiphasique dans des sols aux propriétés intrinsèquement hétérogènes. Elles rencontrent également les mêmes défis pour construire un modèle à l’échelle réservoir en partant de données micrométriques tout en contrôlant la perte d’informations. Ce procédé d’upscaling est utile pour rendre les simulations faisables et répétables dans un cadre stochastique. Deux processus de mise à l’échelle sont définis: l’un depuis l’échelle micrométrique jusqu’à l’échelle de Darcy, et, un autre depuis l’échelle de Darcy vers l’échelle du réservoir. Dans cette thèse, un nouvel algorithme traitant du second upscaling Finite Volume Mixed Hybrid Multiscale Method (FV-MHMM) est étudié. L’extension au diphasique est faite au moyen d’un couplage séquentiel faible entre saturation et pression grâce à une méthode de type IMPES. / The groundwater specialists and the reservoir engineers share the same interest in simulating multiphase flow in soil with heterogeneous intrinsic properties. They also both face the challenge of going from a well-modeled micrometer scale to the reservoir scale with a controlled loss of information. This upscaling process is indeed worthy to make simulation over an entire reservoir manageable and stochastically repeatable. Two upscaling steps can be defined: one from the micrometer scale to the Darcy scale, and another from the Darcy scale to the reservoir scale. In this thesis, a new second upscaling multiscale algorithm Finite Volume Mixed Hybrid Multiscale Methods (Fv-MHMM) is investigated. Extension to a two-phase flow system is done by weakly and sequentially coupling saturation and pressure via IMPES-like method.
|
288 |
Effect of membrane content on the acoustical properties of three-dimensional monodisperse foams : experimental, numerical and semi-analytical approaches / Effet de la teneur en membrane sur les propriétés acoustiques des mousses monodispersées tridimensionnelles : approches expérimentales, numériques et semi-analytiquesTrinh, Van Hai 11 July 2018 (has links)
Ce travail concerne principalement la détermination des propriétés acoustiques de mousses. Il s’agit d’un projet mené dans le cadre d’une collaboration entre une équipe de physico-chimie des mousses chargée de l’élaboration de matériaux modèles (laboratoire Navier UMR 8205 CNRS) et une équipe d’acousticiens chargée de l’étude de leurs propriétés acoustiques (laboratoire MSME UMR 8208 CNRS). Cette thèse s’articule essentiellement autour de trois parties principales, dont le contenu est résumé ci-dessous. 1) La première partie porte sur la génération de surfaces de réponse par des approximations polynomiales, dans le but de disposer d'un modèle intermédiaire entre le modèle éléments finis micro-macro et la réponse macroscopique. Au lieu d'appeler le modèle éléments finis systématiquement dans un travail d'optimisation, on a recourt à la surface de réponse qui contient l'information associée aux points de calcul éléments finis ainsi que les interpolations correspondantes. Ce manuscrit a été publié dans le journal AAA sous forme de communication rapide. 2) La deuxième partie porte sur la mise au point d'un modèle semi-analytique définit à partir d'une formule disponible pour prédire la perméabilité d'une plaque infinie percée par un trou de surface connue. Ce modèle, utilisé de manière appropriée, permet de calculer la perméabilité de mousses dont la taille de bulles est constante et le taux de fermeture de membranes variable. Des validations numériques par éléments finis et expérimentales sont proposées. L'article a été accepté pour publication dans la revue Physical Review E. 3) La troisième partie, porte sur un calcul éléments finis dans lequel un grand nombre de réalisations sont menées de manière à prendre en compte l'ensemble des combinaisons possibles lorsque on dispose de caractérisation expérimentales fines à l'échelle de la microstructure et que l'on souhaite connaitre la réponse de la mousse avec précision. Le manuscrit est en préparation et la revue visée pour ce dernier manuscrit est le journal Materials and Design. Une introduction et une conclusion générale complètent ces trois parties, et permettent de mettre en perspectives ces contributions par rapport à la littérature existante sur le sujet / This work mainly concerns the determination of the acoustic properties of foams. This is a project carried out as part of a collaboration between a team of physico-chemistry of foams in charge of the development of model materials (Navier laboratory UMR 8205 CNRS) and a team of acousticians responsible for the study of their acoustic properties (MSME laboratory UMR 8208 CNRS). This thesis is structured around three main parts, the content of which is summarized below. 1) The first part deals with the generation of response surfaces by polynomial approximations, in order to have an intermediate model between the micro-macro finite element model and the macroscopic response. Instead of calling the finite element model systematically in an optimization work, we use the response surface that contains the information associated with finite element calculation points and the corresponding interpolations. This manuscript was published in the AAA journal as a fast track publication. 2) The second part focuses on the development of a semi-analytical model defined from an available formula to predict the permeability of a circular orifice in a thin plate. This model, used in an appropriate way, makes it possible to calculate the permeability of foams with a constant bubble size but a tuned membrane content. Numerical validations by finite element computations are proposed. The article has been accepted for publication in the journal Physical Review E. 3) The third part deals with a finite element calculation in which a large number of realizations are carried out in order to take into account all the possible combinations when one has fine experimental characterization at the microstructure scale and that one seek to determine the properties of the foam with precision. The manuscript is in preparation and a possible journal for the publication of this manuscript is the journal Materials and Design. An introduction and a general conclusion complete these three parts, and make it possible to discuss these contributions
|
289 |
Investigation of Noncovalent Interactions in Complex Systems Using Effective Fragment Potential MethodPradeep Gurunathan (5929724) 16 January 2019 (has links)
<div>Computational Chemistry has proven to be an effective means of solving chemical problems. The two main tools of Computational Chemistry - quantum mechanics and molecular mechanics, have provided viable avenues to probe such chemical problems at an electronic or molecular level, with varying levels of accuracy and speed. In this work, attempts have been made to combine the speed of molecular mechanics and the accuracy of quantum mechanics to work across multiples scales of time and length, effectively resulting in simulations of large chemical systems without compromising the accuracy.</div><div><br></div><div>The primary tool utilized for methods development and application in this work is the Effective Fragment Potential (EFP) method. The EFP method is a computational technique for studying non-covalent interactions in complex systems. EFP is an accurate \textit{ab initio} force field, with accuracy comparable to many Density Functional Theory (DFT) methods, at significantly lower computational cost. EFP decomposes intermolecular interactions into contributions from four terms: electrostatics, polarization, exchange-repulsion and dispersion.</div><div><br></div><div>In the first chapter, the possibility of applying EFP method to study large radical-water clusters is probed. An approximate theoretical model in which the transition dipole moments of excitations are computed using the information from the ground state orbitals is implemented.</div><div><br></div><div>A major challenge to broaden the scope of EFP is to overcome its limitation in describing only small and rigid molecules such as water, acetone, etc. In the second chapter, the extension of EFP method to large covalently bound biomolecules and polymers such as proteins, lipids etc., is described. Using this new method, referred to as BioEFP/mEFP, it is shown that the effect of polarization is non-negligible and must be accounted for when modeling photochemical and electron-transfer processes in photoactive proteins.</div><div><br></div><div>Another area of interest is the development of novel drug-target binding models, in which a chemically active part of the ligand is modified via functional group modification, while the rest of the system remains intact. In the third chapter, the development and application of a drug-target binding model is explained.<br></div><div><br></div><div><div>Lastly, in the fourth and final chapter, we show the derivation for working equations corresponding to the coupling gradient term describing the dispersion interactions between quantum mechanical and effective fragment potential regions.</div><div><br></div><div>The primary focus of this work is to explore and expand the boundaries of multiscale QM/MM simulations applied to chemical and biomolecular systems. We believe that the work described here leads to exciting pathways in the future in terms of modeling novel systems and processes such as heterogeneous catalysis, QSAR, crystal structure prediction, etc.</div></div>
|
290 |
Asservissement visuel direct utilisant les décompositions en shearlets et en ondelettes de l'image / Direct visual servoingusing shearlet and wavelet transforms of the imageDuflot, Lesley-Ann 13 July 2018 (has links)
L'asservissement visuel est un procédé consistant à utiliser l'information visuelle obtenue par un capteur afin de commander un système robotique. Ces informations, appelées primitives visuelles peuvent être d'ordre 2D ou 3D. Le travail présenté ici porte sur une nouvelle approche 2D utilisant des primitives directes : les décompositions de l'image en ondelettes ou en shearlets. Ces représentations présentent en effet l'avantage de décrire l'image sous différentes formes, mettant l'accent soit sur les basses fréquences de l'image, soit sur les hautes fréquences selon plusieurs directions. Les zones de l'image contenant beaucoup d'information, comme les contours ou les points singuliers, possèdent alors de forts coefficients dans la transformée en ondelettes ou en shearlets de l'image, tandis que les zones uniformes possèdent des coefficients proches de zéro. Les travaux de cette thèse montrent la précision et la robustesse de l'approche utilisant la décomposition en shearlets dans le cadre de l'imagerie échographique. Néanmoins, sa contribution majeure est l'élaboration d'une commande permettant d'utiliser au choix les ondelettes ou les shearlets ainsi que la validation de cette méthode sur caméra monoculaire et sur capteur de type tomographie par cohérence optique dans différentes conditions d'utilisation. Cette méthode présente des performances significatives en termes de précision et de robustesse et ouvre la porte vers une utilisation couplée de l'asservissement visuel et de l'acquisition comprimée. / A visual servoing scheme consists of a closed-loop control approach which uses visual information feedback to control the movement of a robotic system. This data, called visual features, can be 2D or 3D. This thesis deals with the development of a new generation of 2D direct visual servoing methods in which the signal control inputs are the coefficients of a multiscale image representation. Specially, we consider the use of multiscale image representations that are based on discrete wavelet and shearlet transformations. This kind of representations allows us to obtain several descriptions of the image based on either low or high frequencies levels. Indeed, high coefficients in the wavelet or in the shearlet transformation of the image correspond to image singularities. This thesis has begun with the development of a shearlet-based visual servoing for ultrasound imaging that has performed well in precision and robustness for this medical application. Nevertheless, the main contribution is a framework allowing us to use several multi-scale representations of the image. It was then tested with conventional white light camera and with an optical coherence tomography imaging system with nominal and unfavorable conditions. Then, the wavelet and the shearlet based methods showed their accuracy and their robustness in several conditions and led to the use of both visual servoing and compressed sensing as the main perspective of this work.
|
Page generated in 0.0862 seconds