Spelling suggestions: "subject:"muscarinic""
1 |
Modulation cholinergique de l'activité épileptiforme dans le cortex de rat et conséquences à long terme de crise précoces expérimentales dans l'hippocampe et le cortex de ratPotier, Soizic January 2004 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
|
2 |
Neuromodulation in the Olfactory Bulb / Neuromodulation dans le bulbe olfactifSmith, Richard 08 July 2015 (has links)
La neuromodulation de circuits olfactifs par l'acétylcholine (ACh) joue un rôle important dans la discrimination et l'apprentissage d’odeur. Le traitement précoce des signaux chimiosensoriels se produit dans deux régions fonctionnellement et anatomiquement distinctes, les principaux et accessoires bulbes olfactifs (MOB et AOB), qui reçoivent entrée cholinergique significative du cerveau antérieur basal. Ici, nous explorons la régulation des circuits de l’AOB et la MOB par ACh, et comment cette modulation influence le comportement à médiation olfactifs. De manière surprenante, malgré la présence d'un circuit conservé, l'activation des récepteurs muscariniques de l'ACh révèle des différences marquées dans la modulation cholinergique des neurones de sortie: l’excitation de l’AOB et l'inhibition de la MOB. Les cellules granulaires (GCs), le neurone intrinsèque le plus abondant dans l'OB, présentaient également une réponse muscarinique complexe. Alors que les GCs de l’AOB ont été excitées, les GCs de la MOB présentaient une action muscarinique double, une hyperpolarisation et une augmentation de l'excitabilité non couvert par la dépolarisation cellulaire. Par ailleurs, l’ACh a eu un effet différent sur la relation d'entrée / sortie des MCs dans l’AOB et la MOB, montrant un effet net sur le gain en les MCs de la MOB, mais pas dans l'AOB. Fait intéressant, malgré les différences frappantes dans les actions neuromodulateurs sur les neurones de sortie, l'inhibition de la libération d'ACh chemogenetic produit des perturbations similaires dans les comportements olfactifs médiés par ces deux régions. La diminution de l’ACh dans l'OB a perturbé la discrimination naturelle des odeurs liées moléculairement et l'enquête naturelle des odeurs associées à des comportements sociaux. Ainsi, la neuromodulation distincte par l’ACh dans ces circuits pourrait déclencher des solutions différentes générales pour le traitement des odeurs et les médiateurs chimiques, ainsi que les comportements olfactifs diverses qu'ils déclenchent. / Neuromodulation of olfactory circuits by acetylcholine (ACh) plays an important role in odor discrimination and learning. Early processing of chemosensory signals occurs in two functionally and anatomically distinct regions, the main and accessory olfactory bulbs (MOB and AOB), which receive significant cholinergic input from the basal forebrain. Here we explore the regulation of AOB and MOB circuits by ACh, and how this modulation influences olfactory mediated behaviors. Surprisingly, despite the presence of a conserved circuit, activation of muscarinic ACh receptors revealed marked differences in cholinergic modulation of output neurons: excitation in the AOB and inhibition in the MOB. Granule cells (GCs), the most abundant intrinsic neuron in the OB, also exhibited a complex muscarinic response. While GCs in the AOB were excited, MOB GCs exhibited a dual muscarinic action, a hyperpolarization and an increase in excitability uncovered by cell depolarization. Furthermore, ACh had a different effect on the input/output relationship of MCs in the AOB and MOB, showing a net effect on gain in MCs of the MOB, but not in the AOB. Interestingly, despite the striking differences in neuromodulatory actions on output neurons, chemogenetic inhibition of ACh release produced similar perturbations in olfactory behaviors mediated by these two regions. Decreasing ACh in the OB disrupted the natural discrimination of molecularly related odors and the natural investigation of odors associated with social behaviors. Thus, the distinct neuromodulation by ACh in these circuits could underlie different solutions to the processing of general odors and semiochemicals, and the diverse olfactory behaviors they trigger.
|
3 |
Modulation de la transmission sensorielle par la région locomotrice mésencéphaliqueBoutin, Tanguy January 2004 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
|
4 |
Modulation des neurones GABAergiques du mésencéphale ventralMichel, François January 2003 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
|
5 |
Effet de la transmission cholinergique sur la cartographie fonctionnelle du cortex visuel du rongeurGroleau, Marianne 08 1900 (has links)
La transmission cholinergique, et notamment muscarinique, joue un rôle déterminant dans le système nerveux central au niveau de la modulation de la plasticité neuronale. La libération d'ACh dans le cortex visuel est concomitante à la présentation de stimuli visuels. Par son action sur la transmission neuronale corticale, l'ACh module à long terme les réponses à de nouveaux stimuli sensoriels. Dans la présente étude, l'implication du système cholinergique au niveau du développement cortical et de la plasticité inductible chez l'adulte a été étudiée par les techniques d'imagerie optique des signaux intrinsèques et d'immunohistochimie chez le rongeur. Ces deux techniques de cartographie de l'activité corticale nous ont permis d'évaluer, d'une part, l'impact modulatoire de l'acétylcholine (ACh) et de ses récepteurs muscariniques (mAChRs, M1 à M5) sur l'organisation fonctionnelle du cortex visuel chez des souris déficitaires pour les mAChRs et, d'autre part, l'impact de la libération d'ACh lors d'un entraînement visuel, sur le nombre, la nature neurochimique et la localisation au niveau des couches corticales des neurones corticaux activés.
L'implication du système cholinergique sur la cartographie du cortex visuel primaire a été étudiée sur les souris génétiquement modifiées délétères (knock out : KO) pour différentes combinaisons de sous-types de mAChRs. L'imagerie des signaux intrinsèques, basée sur les changements de réflectance corticale de la lumière survenant lors de la consommation d'oxygène par les neurones activés, a permis de déterminer, lors de stimulations visuelles, les différentes composantes des propriétés des neurones du cortex visuel. La taille des champs récepteurs des neurones est diminuée lors de l'absence du récepteur M1 ou de la combinaison M1/M3. Le champ visuel apparent est augmenté chez les souris M2/M4-KO mais diminué chez les M1-KO. La finesse des connectivités neuronales (évaluée par la mesure du scatter du signal) est réduite lors de l'absence des récepteurs M2/M4. Finalement, chez les animaux M1/M3-KO, une diminution de l'acuité visuelle est observée.
L'effet à long-terme d'un entraînement visuel couplé à une stimulation des neurones cholinergiques sur la distribution et la nature des neurones immunoréactifs au c-Fos, c'est-à-dire les neurones activés, a été évalué. Puisque cette stimulation combinée est en mesure de produire des modifications comportementales, notamment au niveau de l'acuité visuelle, il devenait intéressant de s'attarder aux modifications neuroanatomiques et de déterminer quels éléments de l'équilibre excitateur/inhibiteur sont compromis chez ces animaux. Les résultats obtenus démontrent que les animaux ayant reçu une combinaison de l'entraînement cholinergique et visuel présentent une augmentation du marquage c-Fos comparativement aux animaux n'ayant reçu que la stimulation cholinergique. D'autre part, chez ces animaux, il est possible d'observer des modifications de l'équilibre excitateur/inhibiteur qui correspond au potentiel plastique de la région.
En conclusion, ces études démontrent un rôle important du système cholinergique dans le développement, la maturation et la plasticité du système visuel cérébral. / The cholinergic transmission, including the muscarinic receptors, plays a role in the central nervous system modulating neuronal plasticity. ACh is released in the visual cortex during the presentation of visual stimuli. By its action on cortical neuronal transmission, ACh modulates long-term responses to new sensory stimuli. In the present study, the involvement of the cholinergic system in cortical development and inductible plasticity in adults was investigated by optical imaging of intrinsic signals and immunohistochemistry in rodents. These two mapping techniques of cortical activity allowed us to evaluate 1) the modulatory effect of acetylcholine (ACh) and its muscarinic receptors (mAChRs, M1 to M5) on the functional organization of the visual cortex in mice deficient of mAChRs and 2) the impact of ACh release during a visual training on the number, neurochemical nature and location of activated neurons in the cortical layers.
The involvement of the cholinergic system on the mapping of the primary visual cortex was studied in mice knockout (KO) for different combinations of mAChRs subtypes. Intrinsic signals imaging, based on fluctuations in cortical light reflectance during oxygen consumption by activated neurons, was used to assess the various properties of neurons in the visual cortex during visual stimulation. The size of the neuronal receptive fields is reduced in the absence of M1 receptor or the combination M1/M3. The apparent visual field is increased in M2/M4-KO mice but decreased in M1-KO. The sharpness of neuronal connectivity (assessed by the measure of the scatter) is reduced in the absence of M2/M4 receptors. Finally, in M1/M3-KO animals, a decrease in visual acuity was observed.
The effect of long-term visual training coupled with the stimulation of cholinergic neurons on the distribution and nature of immunoreactive neurons in c-Fos, the activated neurons, was evaluated. Since this combined stimulation is able to produce behavioral changes, especially in terms of visual acuity, it was interesting to focus on neuroanatomical modifications and determine which elements of the excitatory / inhibitory balance were compromised in these animals. The results showed that animals which received a combination of visual and cholinergic training presented an increase in c-Fos labeling compared to animals that received only the cholinergic stimulation. Moreover, in these animals, it is possible to observe changes in the excitatory / inhibitory balance which corresponds to the potential of plasticity in the region.
In conclusion, these studies demonstrate an important role of the cholinergic system in the development, maturation and plasticity of the cerebral visual system.
|
6 |
Expression des récepteurs muscariniques M2, malaises vagaux et mort subite du nourisson / Expression of muscarinic M2 receptors, vagal syncope and sudden infant death syndromeBeutelstetter, Maxime 08 March 2019 (has links)
La mort subite du nourrisson (MSN) est un phénomène imprévisible et mal compris. Elle est définie par « le décès d’un nourrisson âgé de moins d’un an dont les causes restent inexpliquées malgré des investigations approfondies, incluant une autopsie et un examen de la scène du décès ». Si l’incidence est en décroissance depuis 1994 et le début des campagnes de prévention, la MSN reste la première cause de décès post-néonatale. La MSN est un phénomène multifactoriel qui survient préférentiellement chez des enfants vulnérables exposés à des facteurs de risques environnementaux. Ainsi, le fait d’identifier ces enfants à risque est un enjeu majeur dans la prévention de cette pathologie. La réponse vagale exacerbée, exprimée biologiquement par une surexpression des récepteurs muscariniques de sous-types M2 (RM2), pourrait être un facteur de risque de MSN. Nous avons déjà constaté cette anomalie biologique dans notre modèle animal d’hyperréactivité vagale et dans des cœurs de nourrissons décédés de MSN. Le but de ces travaux est d’analyser l’expression sanguine des RM2 en tant que paramètre biologique reflétant une hyperactivité vagale chez l’Homme, dans des cas de malaises vagaux et de malaises sévères inexpliqués du nourrisson. L’implication de la génétique a également été étudiée dans une famille présentant plusieurs cas de MSN. Une surexpression des RM2 a été observée chez des patients présentant des malaises vagaux. Pour la première fois, des anomalies biologiques ont été identifiées dans cette pathologie. Si l’on parvenait à valider ce paramètre biologique en tant que marqueur de risque, cela pourrait permettre d’aider au diagnostic différentiel et à la prise en charge thérapeutique de ces syncopes vagales. Les mêmes anomalies ont été observées chez des enfants de moins d’un an présentant des malaises sévères idiopathiques. Après une première analyse des données du séquençage haut débit d’exomes issus d’une famille présentant plusieurs cas de MSN, nous avons pu identifier 3 gènes pouvant être impliqués dans la MSN. Néanmoins, le scénario et le mode de transmission sont difficiles à définir. Les premières hypothèses s’orientent vers un digénisme ou même un trigénisme. La surexpression des RM2 chez les 2 parents et chez certains enfants est un premier élément suggérant la transmission du caractère « hyperactivité vagale » chez l’Homme.Nos travaux ont permis de mettre en évidence une anomalie biologique commune entre les malaises vagaux, les malaises inexpliqués du jeune enfant et la MSN, à savoir la surexpression des RM2. Ce paramètre, facilement dosable dans le sang, pourrait être un élément complémentaire dans le diagnostic différentiel et la prise en charge de ces pathologies, notamment chez les jeunes enfants pour lesquels ces malaises peuvent être très délétères. L’avancée dans le séquençage du génome permettra peut-être l’identification de facteurs de risque génétiques impliqués dans les malaises inexpliqués ou les MSN. / Sudden Infant Death Syndrome (SIDS) is an unpredictable and poorly understood phenomenon. It is defined as the "sudden unexpected death of a child younger than one year during sleep that cannot be explained after a postmortem evaluation including autopsy, a thorough history, and scene evaluation". Although the incidence has been decreasing since 1994 and the start of prevention campaigns, SIDS remains the leading cause of post-neonatal death. SIDS is a multifactorial phenomenon that occurs preferentially in vulnerable infants exposed to environmental risk factors. Thus, identifying these children at risk is a major challenge in the prevention of this pathology. The exacerbated vagal response, biologically expressed by overexpression of muscarinic M2 receptors (M2R), may be a risk factor for SIDS. We have already observed this biological abnormality in our animal model of vagal hyperreactivity and in hearts of SIDS. The aim of this work is to analyze the blood expression of M2R as a biological parameter reflecting vagal hyperreactivity in humans, in cases of reflex syncope and idiopathic apparent life-threatening events (iALTE) of infants. The involvement of genetics has also been studied in a family with several cases of SIDS (SIDS family). Overexpression of M2R has been observed in patients with reflex syncope. For the first time, biological abnormalities have been identified in this pathology. If this biological parameter could be validated as a risk marker, it could help for differentially diagnosis and treatment of these vagal syncopes. The same abnormalities were observed in children under one year old with iALTE. After a first analysis of the data of the “next generation sequencing” of the exomes of our “SIDS family”, we were able to identify 3 genes that could be involved in SIDS. However, the scenario and the mode of transmission are difficult to define. The first hypotheses are oriented towards a digenism or even a trigenism. The overexpression of M2R in both parents is a first element suggesting the genetic transmission of the character "vagal hyperactivity" in humans. Our work highlights a biological abnormality which is common to reflex syncope, iALTE and SIDS, namely the overexpression of M2R. These results confirm the hypothesis of the involvement of the vagal system overactivity in these pathologies. This parameter, easily measurable in the blood, could be a complementary assessment useful in the differential diagnosis and the management of these pathologies, in particular in infants for whom syncope can be very harmful. The development of the sequencing of human genome will probably allow the identification of genetic risk factors involved in iALTE or SIDS.
|
7 |
ETUDE DU MODE D'ACTION NEUROTOXIQUE D'UN REPULSIF, LE DEET UTILISE SEUL ET EN ASSOCIATION AVEC UN INSECTICIDE SUR L'ACETYLCHOLINESTERASE DES DUM NEURONES D'UN INSECTE LA BLATTE PERIPLANETA AMERICANAMohamed, Aly Ahmed Abd-Ella 31 March 2011 (has links) (PDF)
Le DEET (N, N-diéthyl-m-toluamide), est connu comme le répulsif le plus utilisé au monde. Bien qu'il soit efficace contre un large groupe d'arthropodes, son mode d'action exact et sa cible moléculaire ne sont pas encore connus précisément. Grâce à l'utilisation des techniques d'électrophysiologie (patch-clamp et oil-gap), d'imagerie calcique et biochimique, nous avons étudié le mode d'action du DEET sur des cellules neurosécrétrices identifiées, les DUM neurones de la blatte Periplaneta americana. Le DEET, à forte concentration, inhibe l'activité de l'acétylcholinestérase (AChE) au niveau du DUM neurone. A faible concentration, il induit une augmentation de la concentration en calcium intracellulaire via l'activation des récepteurs cholinergiques de type muscariniques (mAChRs). Dans un deuxième temps, les interactions synergiques entre le DEET et le propoxur, un carbamate connu pour inhiber l'AChE, ont été étudiées. Les résultats ont révélé que les mAChRs, correspondent bien à une nouvelle cible potentielle pour le DEET et qu'ils sont impliqués dans l'effet synergique. Le DEET, à faible et à forte concentration, agit sur des sites allostériques positifs et négatifs des mAChRs respectivement. L'action du DEET sur le site allostérique positif des mAChRs est responsable de l'effet synergique via une augmentation de la concentration en calcium intracellulaire qui potentialise l'effet anti-AChE du propoxur. L'utilisation d'outils pharmacologiques sélectifs a permis l'identification de la voie de signalisation intracellulaire (PLC, PI-PLC, CaMKinase II, récepteurs IP3) impliquée dans l'effet synergique du propoxur. Les résultats présentés dans ce mémoire vont contribuer au développement de nouvelles stratégies basées sur l'utilisation de combinaisons d'insecticides de familles chimiques différentes afin de réduire les doses des traitements tout en augmentant l'efficacité.
|
8 |
Implication des interneurones cholinergiques striataux dans la physiopathologie de la maladie de Parkinson : étude optogénétique, pharmacologique et comportementale / Involvement of striatal cholinergic interneurons in the pathophysiology of Parkinson's disease : optogenetics, pharmacological and behavioral approachesZtaou, Samira 18 November 2016 (has links)
La maladie de Parkinson (MP) est caractérisée par une perte dopaminergique dans le striatum, structure sous-corticale impliquée dans le contrôle moteur, la mémoire et les comportements émotionnels. Les interneurones cholinergiques (ChIs) striataux jouent un rôle clef dans cette réorganisation pathologique du striatum en modulant l’activité des neurones de projection striataux (MSNs). Ce travail vise à étudier l’implication des ChIs et des récepteurs muscariniques (mAChRs) dans les mécanismes qui sous-tendent l’expression des déficits moteurs, cognitifs et émotionnels dans différents modèles de la MP chez la souris. L’inhibition optogénétique des ChIs réduit les déficits moteurs (akinésie, asymétrie posturale, déficit sensori-moteur). Les enregistrements électrophysiologiques montrent que l’inhibition des ChIs réduit l’excitabilité des MSNs et rétablit l’équilibre d’activité des deux voies de sortie striatale. Ces effets antiparkinsoniens sont reproduits par le blocage pharmacologique striatal des mAChRs M1 et M4. Ils sont dus à une action préférentielle de l’ACh sur les mAChRs au niveau des MSNs à l’origine de la voie striatonigrale puisqu’ils disparaissent chez des souris invalidées pour les récepteurs M4 exprimés dans ces neurones. La photoinhibition des ChIs réduit les déficits mnésiques et l’anxiété. L’antagoniste des mAChRs M1 réduit l’anxiété mais est inefficace sur les déficits mnésiques, suggérant que d’autres récepteurs cholinergiques striataux puissent être engagés dans les fonctions mnésiques. L’ensemble de nos résultats apporte un éclairage nouveau sur l’implication des ChIs striataux dans le fonctionnement physiologique et pathologique du striatum. / Parkinson’s disease (PD) is characterized by a dopamiergic loss into the striatum, a subcortical structure involved in motor control, memory and emotional behaviors. Striatal cholinergic interneurons (ChIs) play a key role in this pathological reorganization of the striatal circuitry by modulating striatal projection neurons (MSNs). This study aims to investigate the involvement of ChIs and muscarinic receptors (mAChRs) in the mechanisms underlying the expression of motor, cognitive and emotional deficits observed in different models of PD in mice. ChIs optogenetic inhibition reduced motor deficits (akinesia, postural asymmetry, sensorimotor deficit). Electrophysiological recordings show that ChIs photoinhibition reduces MSNs excitability and restores the balance between the two striatal output pathways. These antiparkinsonian effects are reproduced by pharmacological intrastriatal blockade of M1 and M4 mAChRs. They are due to a preferential action of ACh on mAChRs expressed on striatonigral MSNs since the deficits disappear in mutant mice that lack M4 mAChRs only in these neurons. ChIs photoinhibition also reduces memory deficits and anxiety. M1 mAChRs antagonist reduces anxiety but is inefficient on memory deficits, suggesting that other cholinergic receptors might be involved in striatal memory functions. Overall, these results give new insights on the role of cholinergic interneurons in the normal and pathological functioning of the striatum.
|
9 |
L’altération des interactions neurone-glie à la jonction neuromusculaire de souris âgéesKrief, Noam 12 1900 (has links)
Durant le vieillissement, l’ensemble des fonctions de l’organisme se détériore, que ce soit aussi bien au niveau moteur que cognitif. Le vieillissement s’accompagne d’une diminution de la force, ainsi que de la masse musculaire. Des études récentes tendent à montrer que cette perte de masse musculaire que l’on appelle sarcopénie aurait pour origine un dérèglement de la jonction neuromusculaire. Les changements au niveau du présynaptique et du post synaptiques lors du vieillissement normal font l’objet de plusieurs études, mais les changements relatifs aux cellules de Schwann périsynaptique sont très peu connus. Le but de cette étude est donc d’analyser les modifications des interactions neurone-glie à la jonction neuromusculaire.
Dans cette étude, nous montrons que certaines fonctions des cellules gliales de la synapse âgée sont déréglées, en particulier, le type de récepteurs activés par une stimulation nerveuse à haute fréquence. D’autre part, nos résultats montrent que les mécanismes responsables de l’augmentation de la transmission synaptique suite à cette stimulation nerveuse à haute fréquence sont altérés à la synapse âgée. Enfin, outre les modifications de la terminaison axonale et de la fibre musculaire, les cellules gliales montrent des signes de réorganisation structurelle propre à une synapse en réparation.
Ces résultats montrent que le fonctionnement de la jonction neuromusculaire et a fortiori les interactions neurones-glie sont altérées lors du vieillissement normal. / Aging comes with an alteration and organism functions including cognitive and motor functions. Major weakening of the neuromuscular system occurs which includes muscle weight loss, difficulties in initiating voluntary movement and reduced muscle strength. The possible role of the alteration of the neuromuscular junction has been examined but always only considering the pre- and postsynaptic elements. However, perisynaptic Schwann cells (PSCs), glial cells at the neuromuscular junction (NMJ), play fundamental roles in the regulation of the synaptic efficacy of the NMJ as well as in its maintenance and stability. Hence, we analysed NMJ properties and their glial cells in aging.
This study shows that PSCs function at the old NMJ are dysregulated. Indeed, PSCs ability to detect synaptic transmission, determined using imaging of intracellular Ca2+, was maintained in PSCs at NMJs from old mice, but the contribution of the muscarinic component was greatly reduced. On the other hand, our results using synaptic recordings are showing that a number of synaptic plasticity events known to be regulated by PSCs are reduced at NMJs of old mice. Finally, morphological NMJ reorganisation and sprouting of PSCs were also observed.
These data suggest that PSC properties are consistent with the repair of the NMJ that may also result in their reduced ability in regulating synaptic efficacy.
|
10 |
Identification des récepteurs cholinergiques impliqués dans le fonctionnement du cortex visuel du rongeurGroleau, Marianne 07 1900 (has links)
Le système cholinergique est impliqué dans les phénomènes d’attention, de mémoire et d’apprentissage et les récepteurs cholinergiques régulent de multiples fonctions du système nerveux central. Néanmoins, leur rôle au niveau de la modulation des propriétés du cortex visuel reste à être établi. L’un des objectifs de cette thèse était d’étudier le rôle des récepteurs muscariniques impliqués dans le fonctionnement normal du cortex visuel. Nous avons pu déterminer que les récepteurs muscariniques sont impliqués dans l’établissement de nombreuses propriétés visuelles telles la taille des champs récepteurs, la sensibilité au contraste, la sélectivité à la fréquence spatiale et la finesse de la connectivité corticale. L’autre objectif était d’identifier les récepteurs cholinergiques impliqués dans la potentiation des capacités visuelles. Nous avons amélioré le traitement cognitif de l’information visuelle par stimulation électrique du télencéphale basal (noyau où sont localisés les corps cellulaires cholinergiques) et par la stimulation cholinergique par le donépézil, un inhibiteur de l’acétylcholinestérase. La combinaison répétée d’une stimulation visuelle et cholinergique (qu’elle soit électrique ou pharmacologique) améliore similairement l’activité corticale visuelle. Toutefois, les récepteurs impliqués ne sont pas les mêmes. Suite à la stimulation pharmacologique, ce sont principalement les récepteurs muscariniques qui influencent l’acuité visuelle de manière tardive et cette modulation est plus précoce lors de la stimulation électrique. Ces résultats démontrent que le couplage répétitif d’une stimulation cholinergique et d’une stimulation visuelle est en mesure d’améliorer l’activité corticale visuelle. Le fait de connaître les récepteurs cholinergiques impliqués permettra dans un futur proche de les cibler directement pour améliorer la fonction corticale. / The cholinergic system is involved in attention, learning and memory and cholinergic receptors regulate multiple functions of the central nervous system. Nevertheless, their role in modulating the properties of the visual cortex remains to be established. One of the objectives of this thesis was to study the role of muscarinic receptors involved in the normal function of the visual cortex. We have been able to determine that the muscarinic receptors are involved in the establishment of many visual properties such as the size of the receptor fields, contrast sensitivity, spatial frequency selectivity and accuracy of the cortical connectivity. The other objective was to identify the cholinergic receptors involved in the potentiation of visual abilities. We improved the cognitive processing of visual information by electrical stimulation of the basal forebrain (the nucleus where the cholinergic cell bodies are located) and by cholinergic stimulation using donepezil, an acetylcholinesterase inhibitor. The repeated combination of visual and cholinergic stimulations (whether electrical or pharmacological) similarly enhances visual cortical activity. However, the receptors involved are not the same. Following the pharmacological stimulation, it is mainly the muscarinic receptors that influence visual acuity with a delay in the receptors expression and this modulation is earlier for the electrical stimulation. These results demonstrate that repetitive coupling of cholinergic stimulation and visual stimulation can enhance visual cortical activity. Knowing the cholinergic receptors involved will allow in a near future to target them directly to improve cortical function.
|
Page generated in 0.0515 seconds