• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 327
  • 111
  • 58
  • 41
  • 12
  • 12
  • 9
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 5
  • 4
  • Tagged with
  • 736
  • 155
  • 150
  • 105
  • 102
  • 77
  • 70
  • 68
  • 59
  • 57
  • 51
  • 43
  • 40
  • 39
  • 38
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
701

Characterization of a fatty acid elongase condensing enzyme by site-directed mutagenesis and biochemical analysis

Hernandez-Buquer, Selene January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Fatty acid elongation is the extension of de novo synthesized fatty acids through a series of four reactions analogous to those of fatty acid synthase. ELOs catalyze the first reaction in the elongation pathway through the condensation of an acyl group with a two carbon unit derived from malonyl-CoA. This study uses the condensing enzyme, EloA, from the cellular slime mold, Dictyostelium discoideum as a model for the family of ELOs. EloA has substrate specificity for monounsaturated and saturated C16 fatty acids and catalyzes the elongation of 16:1Δ9 to 18:1Δ11. Site-directed mutagenesis was used to change residues highly conserved among the ELO family to examine their potential role in the condensation reaction. Mutant EloAs were expressed in yeast and fatty acid methyl esters prepared from total cellular lipids were analyzed by gas chromatography/mass spectrometry. Sixteen out of twenty mutants had a decrease in 18:1Δ11 production when compared to the wild-type EloA with little to no activity observed in ten mutants, four mutants had within 20% of wild-type activity, and six mutants had 10-60% of wild-type activity. Immunoblot studies using anti-EloA serum were used to determine if the differences in elongation activity were related to changes in protein expression for each mutant. Analysis of immunoblots indicated that those mutants with little to no activity, with the exception of T130A and Q203A, had x comparable protein expression to the wild-type. Further research included the solubilization of the His6-ELoA fusion protein and preliminary work toward the isolation of the tagged protein and the use of a radiolabeled condensation assay to determine the activity of the eluted protein. Preliminary results indicated that the protein was solubilized but the eluted protein showed no activity when examined by a condensation assay. The work presented here contributes to a better understanding of the role of certain amino acid residues in the activity of EloA and serves as a stepping-stone for future EloA isolation work.
702

Validation-based insertional mutagenesis (VBIM) technology identifies adenomatous polypossis coli (APC) like protein (ALP) as a novel negative regulator of NF-κB

Mundade, Rasika S. 01 1900 (has links)
Colorectal cancer (CRC) is the third leading cause of cancer related deaths in the United States. The nuclear factor κB (NF-κB) is an important family of transcription factors whose aberrant activation has been found in many types of cancer, including CRC. Therefore, understanding the regulation of NF-κB is of ultimate importance for cancer therapy. Using a novel validation-based insertional mutagenesis (VBIM) strategy, our lab has identified the novel adenomatous polyposis coli (APC) like protein (ALP) gene as a negative regulator of NF-κB. Preliminary studies from our lab demonstrated that overexpression of ALP led to decreased NF-κB activity by κB reporter assay and electrophoresis mobility gel shift assay (EMSA). The current project aims to further evaluate the role of ALP in the regulation of NF-κB signaling in CRC cells. We found that overexpression of ALP in human CRC HT29 cells greatly reduced both the number and the size of colonies that were formed in a soft agar assay. ALP overexpression also decreased the cell growth rate and cell migration ability, while shRNA mediated knockdown of ALP showed opposite effects, confirming that ALP is a tumor suppressor in CRC HT29 cells. Overexpression of ALP led to decreased NF-κB activity by κB reporter assay and condition media assay in CRC HT29 cells. Furthermore, immunohistochemical analysis with human colon vii tissues revealed that there is a gradual loss of ALP protein with tumor progression. We also found that ALP predominantly localizes in the cytoplasm, and binds to the p65 subunit of NF-κB, and might be functioning downstream of IκB kinase (IKK). In summary, in this study, we provide evidence regarding the tumor suppressor role of ALP in CRC by functioning as novel negative regulator of NF-κB. This discovery could lead to the establishment of ALP as a potential biomarker and therapeutic target in CRC.
703

Aerobic Uptake of Cholesterol by Ergosterol Auxotrophic Strains in Candida glabrata & Random and Site-Directed Mutagenesis of ERG25 in Saccharomyces cerevisiae

Whybrew, Jennafer Marie 27 September 2012 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Candida albicans and Candida glabrata are opportunistic human pathogens that are the leading cause of fungal infections, which are increasingly becoming the leading cause of sepsis in immunosuppressed individuals. C. glabrata in particular has become a significant concern due to the increase in clinical isolates that demonstrate resistance to triazole antifungal drugs, the most prevalent treatment for such infections. Triazole drugs target the ERG11 gene product and prevent C-14 demethylation of the first sterol intermediate, lanosterol, preventing the production of the pathways end product ergosterol. Ergosterol is required by yeast for cell membrane fluidity and cell signaling. Furthermore, C. glabrata, and not C. albicans, has been reported to utilize cholesterol as a supplement for growth. Although drug resistance is known to be caused by an increase in expression of drug efflux pumps, we hypothesize a second mechanism: that the overuse of triazole drugs has lead to the increase of resistance by C. glabrata through a 2-step process: 1) the accumulation of ergosterol auxotrophic mutations and 2) mutants able to take up exogenous cholesterol anaerobically in the body acquire a second mutation allowing uptake of cholesterol aerobically. Two groups of sterol auxotrophic C. glabrata clinical isolates have been reported to take up sterol aerobically but do not produce a sterol precursor. Sterol auxotrophs have been created in C. glabrata by disrupting different essential genes (ERG1, ERG7, ERG11, ERG25, and ERG27) in the ergosterol pathway to assess which ergosterol mutants will take up sterols aerobically. Random and site-directed mutagenesis was also completed in ERG25 of Saccharmoyces cerevisiae. The ERG25 gene encodes a sterol C-4 methyloxidase essential for sterol biosynthesis in plants, animals, and yeast. This gene functions in turn with ERG26, a sterol C-3 dehydrogenase, and ERG27, a sterol C-3 keto reductase, to remove two methyl groups at the C-4 position on the sterol A ring. In S. cerevisiae, ERG25 has four putative histidine clusters, which bind non-heme iron and a C-terminal KKXX motif, which is a Golgi to ER retrieval motif. We have conducted site-directed and random mutagenesis in the S. cerevisiae wild-type strain SCY876. Site-Directed mutagenesis focused on the four histidine clusters, the KKXX C-terminal motif and other conserved amino acids among various plant, animal, and fungal species. Random mutagenesis was completed with a procedure known as gap repair and was used in an effort to find novel changes in enzyme function outside of the parameters utilized for site-directed mutagenesis. The four putative histidine clusters are expected to be essential for gene function by acting as non-heme iron binding ligands bringing in the oxygen required for the oxidation-reduction in the C-4 demethylation reaction.
704

Characterization of Genes and Functions Required by Multidrug-resistant Enterococci to Colonize the Intestine

Flor Duro, Alejandra 14 May 2021 (has links)
[ES] Las bacterias resistentes a múltiples antibióticos, como el Enterococo resistente a vancomicina (ERV), son un problema creciente en los pacientes hospitalizados, por lo que se necesita estrategias alternativas para combatir estos patógenos. Las infecciones causadas por ERV suelen comenzar con la colonización del tracto intestinal, un paso crucial que se afectado por la presencia de la microbiota. Sin embargo, los antibióticos alteran la microbiota y esto promueve la colonización de ERV. Una vez que el patógeno ha colonizado el intestino, alcanza niveles muy altos pudiendo diseminar a otros órganos y pacientes. A pesar de su importancia, se sabe muy poco sobre los genes que codifica para colonizar el intestino y sobre el mecanismo por el cual la microbiota suprime su colonización intestinal, siendo los dos objetivos principales. En primer lugar hemos utilizado una metodología previamente descrita (Zhang et al., 2017, BMC Genomics), basada en la generación de una librería de mutantes por transposición junto a secuenciación masiva, con el fin de identificar los genes codificados por ERV necesarios para la colonización del intestino en ratones. Además, hemos realizado análisis metatranscriptómicos para identificar aquellos genes más expresados. El análisis ha identificado genes cuya interrupción reduce significativamente la colonización intestinal en el intestino grueso. Los genes que más afectaron a la colonización codifican proteínas relacionadas con la absorción o el transporte de diversos nutrientes como los carbohidratos (subunidad EIIAB del transportador PTS de manosa, el regulador transcripcional de la familia LacI, ácido N-acetilmurámico 6-fosfato eterasa) o iones (proteína transportadora dependiente de ATP (ABC) y proteínas del grupo [Fe-S]). El papel de estos genes en la colonización se ha confirmado mediante experimentos de mutagénesis directa y de competición con la cepa salvaje. Además, estos genes afectan a la colonización intestinal con diferentes antibióticos (clindamicina y vancomicina). Para identificar el mecanismo molecular por el cual cada gen afecta a la colonización, hemos realizado experimentos in vitro y ex vivo además del análisis transcriptómico. Los experimentos in vitro confirman que las proteínas del grupo [Fe-S] están involucradas en el transporte iones de hierro, principalmente Fe3+. Por otra parte, los genes de la subunidad EIIAB del transportador de manosa y del ácido N-acetilmurámico 6-fosfato eterasa son necesarios para la utilización de la manosa y el ácido N-acetilmurámico, respectivamente, azúcares que suelen estar presentes en el intestino. También confirmamos que el regulador transcripcional de la familia LacI es un represor que afecta a proteínas transportadoras ABC, probablemente implicadas en la absorción de carbohidratos. Además, algunos de estos genes están codificados principalmente por cepas clínicas de E. faecium y en menor medida por cepas comensales. En segundo lugar, estudiamos los mecanismos de protección de un consorcio de cinco bacterias comensales, que anteriormente se había demostrado que disminuían la colonización intestinal por ERV en ratones. Mediante transcriptómica, metabolómica y los ensayos in vivo observamos que el consorcio bacteriano inhibe el crecimiento de ERV mediante la reducción de nutrientes, concretamente fructosa. Por último, el análisis ARN-Seq in vivo de cada aislado en combinación con los ensayos ex vivo e in vivo demostraron que una sola bacteria (Olsenella sp.) proporciona protección. En conjunto, los resultados obtenidos han identificado la función de genes específicos requeridos por ERV para colonizar el intestino. Además, hemos identificado un mecanismo mediante el cual la microbiota confiere protección. Estos resultados podrían conducir a nuevos enfoques terapéuticos para prevenir las infecciones causadas por este patógeno multiresistente a los antibióticos. / [CA] Els bacteris resistents a múltiples antibiòtics, com el Enterococo resistent a vancomicina (ERV), són un problema creixent en els pacients hospitalitzats, que són resistents a la majoria d'antibiòtics disponibles per la qual cosa es necessita estratègies alternatives per a combatre aquests patògens. Les infeccions causades per ERV solen començar amb la colonització del tracte intestinal, un pas crucial que es veu afectat per la presència de la microbiota. No obstant això, els antibiòtics alteren la microbiota i això promou la colonització de ERV. Una vegada que el patogen ha colonitzat l'intestí, aconsegueix nivells molt alts podent disseminar a altres òrgans i pacients. Malgrat la seua importància, se sap molt poc sobre els gens que codifica ERV per a colonitzar l'intestí i sobre el mecanisme pel qual la microbiota suprimeix la seua colonització intestinal. En primer lloc hem utilitzat una metodologia prèviament descrita (Zhang et al., 2017, BMC Genomics), basada en la generació d'una llibreria de mutants per transposició junt amb seqüenciació massiva, amb la finalitat d'identificar els gens codificats per ERV necessaris per a la colonització de l'intestí en ratolins. A més a més, hem realitzat anàlisi metatranscriptòmics per a identificar aquells gens més expressats. L'anàlisi ha identificat gens quina interrupció redueix significativament la colonització intestinal en l'intestí gros. Els gens que més van afectar la colonització codifiquen proteïnes relacionades amb l'absorció o el transport de diversos nutrients com els carbohidrats (subunitat EIIAB del transportador PTS de manosa, el regulador transcripcional de la família LacI, àcid N-acetilmuràmic 6-fosfat eterasa) o ions (proteïna transportadora dependent d'ATP (ABC) i proteïnes del grup [Fe-S]). El paper d'aquests gens en la colonització s'ha confirmat mitjançant experiments de mutagènesis directa i de competició amb el cep salvatge. A més, aquests gens afecten la colonització intestinal amb diferents antibiòtics (clindamicina i vancomicina). Per a identificar el mecanisme molecular pel qual cada gen afecta a la colonització, hem realitzat experiments in vitro i ex viu a més de l'anàlisi transcriptòmic. Els experiments in vitro confirmen que les proteïnes del grup [Fe-S] estan involucrades en el transport d'ions de ferro, principalment Fe3+. D'altra banda, els gens de la subunitat EIIAB del transportador PTS de manosa i de l'àcid N-acetilmuràmic 6-fosfat eterasa són necessaris per a la utilització de la manosa i l'àcid N-acetilmuràmic, respectivament, sucres que solen estar presents en l'intestí. També confirmem que el regulador transcripcional de la família LacI és un repressor que afecta proteïnes transportadores ABC, probablement implicades en l'absorció de carbohidrats. A més a més, alguns d'aquests gens estan codificats principalment per ceps clínics de E. faecium i en menor mesura per ceps comensals. En segon lloc, estudiem els mecanismes de protecció d'un consorci de cinc bacteris comensals, que adès s'havia demostrat que disminuïen la colonització intestinal per ERV en ratolins. Amb l'ús de transcriptòmica, metabolòmica i els assajos in vivo observem que el consorci bacterià inhibeix el creixement de ERV mitjançant la reducció de nutrients, concretament fructosa. Finalment, l'anàlisi ARN-Seq in vivo de cada aïllat en combinació amb els assajos ex viu i in vivo van demostrar que un sol bacteri (Olsenella sp.) proporciona protecció. En conjunt, els resultats obtinguts han identificat la funció de gens específics requerits per ERV per a colonitzar l'intestí. A més, hem identificat un mecanisme mitjançant el qual la microbiota confereix protecció. Aquests resultats podrien conduir a nous enfocaments terapèutics per a previndre les infeccions causades per aquest patogen multiresistent als antibiòtics. / [EN] Multidrug-resistant bacteria, such as vancomycin-resistant-Enterococcus (VRE), are an increasing problem in hospitalized patients. Some VRE strains can be resistant to most available antibiotics, thus, alternative strategies to antibiotics are urgently needed to combat these challenging pathogens. Infections caused by VRE frequently start by colonization of the intestinal tract, a crucial step that is impaired by the presence of the intestinal microbiota. Administration of antibiotics disrupts the microbiota, which promotes VRE intestinal colonization. Once VRE has colonized the gut, it reaches very high levels, which promotes its dissemination to other organs and its transfer to other patients. Despite the relevance of VRE gut colonization, very little is known about the genes encoded by this pathogen to colonize the gut and about the mechanisms by which the microbiota suppresses VRE gut colonization. In this thesis, we have utilized a previously described methodology (Zhang et al., 2017, BMC Genomics), based on the generation of a transposon mutant library coupled with high-throughput sequencing, in order to identify VRE encoded genes required for colonization of the mouse intestinal tract. In addition, we have performed metatranscriptomic analysis in mice to identify VRE genes specifically expressed in the gut. Our analysis has identified genes whose disruption significantly reduces VRE gut colonization in the large intestine. The genes that most affected VRE gut colonization encoded for proteins related to the uptake or transport of diverse nutrients such as carbohydrates (PTS mannose transporter subunit EIIAB, LacI family DNA-binding transcriptional regulator, N-acetylmuramic acid 6-phosphate etherase) or ions (phosphate ABC transporter ATP-binding protein and proteins from [Fe-S] cluster). The role of these genes in gut colonization has been confirmed through targeted mutagenesis and competition experiments against a wild type strain. Moreover, these genes affect gut colonization under different antibiotic treatments (clindamycin and vancomycin). To elucidate the mechanism by which each gene influences gut colonization, we have performed in vitro and ex vivo experiments besides transcriptomic analysis. In vitro experiments confirm that proteins from [Fe-S] cluster are involved in the transport of different forms of iron ions, mostly Fe3+. On the other hand, the PTS mannose transporter subunit EIIAB and N-acetylmuramic acid 6-phosphate etherase genes are required for the utilization of mannose and N-acetyl-muramic acid, respectively, sugars that are usually present in the intestinal environment. We have also confirmed that LacI family DNA-binding transcriptional regulator is a repressor that affects the expression of genes encoding for an ABC transporter probably involved in the uptake of carbohydrates. Furthermore, we have confirmed that some of these genes are encoded mainly by E. faecium clinical strains but not or to a lower extent by commensal strains. Secondly, we studied the mechanisms of protection of a consortium of five commensals bacteria, previously shown to restrict VRE gut colonization in mice. Functional transcriptomics in combination with targeted metabolomics and in vivo assays performed in this thesis indicated that the bacterial consortium inhibits VRE growth through nutrient depletion, specifically by reducing the levels of fructose. Finally, in vivo RNA-Seq analysis of each bacterial isolate of the consortium in combination with ex vivo and in vivo assays demonstrated that a single bacterium (Olsenella sp.) could recapitulate the protective effect. Altogether, the results obtained have identified the function of specific genes required by VRE to colonize the gut. In addition, we have identified a specific mechanism by which the microbiota confers protection against VRE colonization. These results could lead to novel therapeutic approaches to prevent infections caused by this pathogen. / Flor Duro, A. (2021). Characterization of Genes and Functions Required by Multidrug-resistant Enterococci to Colonize the Intestine [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/166494
705

Safety analysis of TCR gene-modified T cells

Reuß, Simone 10 April 2012 (has links)
T-Zellrezeptor (TZR)-Gentherapie zeigte erste Erfolge in klinischen Studien, jedoch wurden gleichzeitig Risikofaktoren deutlich. Ein Risikofaktor ist das falsche Paaren der transferierten TZR-Ketten mit den endogenen, was zu TZR-Molekülen von unbekannter Spezifität führt und die Oberflächenexpression und somit auch die Funktionalität des transgenen TZR reduziert. Dieser Aspekt wurde in generierten T-Zellklonen mit einer konstitutiven/endogenen TZR-Expression sowie einer zweiten induzierbaren/transgenen TZR-Expression untersucht. Es konnte gezeigt werden, dass nach Induktion der transgenen TZR-Expression der endogene TZR seine Funktionalität verlor, obwohl er noch auf der Oberfläche detektierbar war. Als Ursachen wurden neben einer reduzierten Oberflächenexpression des endogenen TZR auch falsch gepaarte TZR-Moleküle, die mit Hilfe der Fluoreszenz-Resonanz-Energie-Transfer-Methode detektiert wurden, gefunden. Die Modifikation des TZR durch den Einbau einer zweiten Cystein-Brücke, was das Paaren der korrespondierenden TZR-Ketten stabilisieren soll, führte in den T-Zellklonen zu keiner Reduktion der falsch-paarenden TZR-Moleküle. In primären Wildtyp-T-Zellen verbesserte sich das richtige Paaren des transgenen TZR leicht und konnte durch Codon-Optimierung der TZR-Gene weiter verbessert werden. Der zweite untersuchte Risikofaktor ist die Insertionsmutagenese durch den retroviralen Vektor. Die sichere Verwendbarkeit von differenzierten T-Zellen für die TZR-Gentherapie wurde in einem Tiermodel mit wiederholter T-Zellstimulierung, um weitere Mutationen während der Zellteilung zu provozieren, analysiert. Im Laufe der Zeit reicherten sich die transferierten T-Zellen in den Tieren dramatisch an, aber entwickelten sich nicht zu T-Zelllymphomen. Die Proliferationskapazität und die Funktionalität der transferierten T-Zellen wurden bestätigt. Die Polyklonalität der TZR-gen-modifizierten T-Zellen wurde mit Hilfe der linear-amplifizierten Polymerasekettenreaktion nachgewiesen. / T cell receptor (TCR) gene therapy is a new therapy for cancer which showed first clinical success but at the same time risk factors evolved. One risk factor is the mispairing of the TCR chains with the endogenous TCR chains which leads to TCRs with unknown specificities and to a reduced expression and functionality of the transferred TCR. This aspect was analyzed in dual TCR T cell clones which had one constitutive/endogenous TCR expression as well as a second inducible/transgenic TCR expression. It could be shown that the endogenous TCR lost its functionality after induction of the transgenic TCR expression although it was still detectable on the cell surface. The reason was found in the lower surface expression level of the endogenous TCR as well as in mispaired TCR dimers detected by fluorescence resonance energy transfer (FRET) technique. Modification of the TCR by insertion of a second cysteine bridge which should stabilize the pairing of the corresponding TCR chains did not reduce the TCR mispairing in the T cell clones. In primary wild-type cells, the pairing of the transgenic TCR improved slightly and could be further improved by codon-optimization of the TCR genes. The second analyzed possible side effect of TCR gene therapy is the insertional mutagenesis by the retroviral vector. The safety of differentiated T cells for TCR gene therapy was analyzed in an animal model with a repetitive T cell stimulation to provide the opportunity for mutations to occur during cell division. Over time, transferred T cells increased dramatically in the recipient mice, but did not lead to T cell lymphomas. The proliferative capacity and the functionality of transferred T cells were confirmed. The polyclonality of the TCR gene-modified T cells could be confirmed by linear amplification-mediated polymerase-chain reaction.
706

Identification of avian pathogenic E. coli (APEC) genes important for the colonization of the chicken lung and characterization of the novel ExPEC adhesin I

Antão, Esther-Maria 11 June 2010 (has links)
Aviäre pathogene E. coli (APEC) sind extraintestinale Pathogene, die beim Huhn systemische Infektionskrankheiten hervorrufen. Zur Identifizierung Gene, die an der Kolonisierung des Wirtes beteiligt sind, wurde ein Lungen-Infektionsmodell in 5 Wochen alten SPF Hühnern etabliert. In dem Modell wurden 1.800 mittels Signature-tagged-Mutagenese (STM) hergestellten Mutanten des APEC Stamms IMT5155 (O2:K1:H5; ST-Komplex 95) auf ihre Fähigkeit zur Kolonisierung getestet. Die Untersuchung führte zur Identifizierung Gene, einschließlich Adhäsin-, LPS- und Kapsel-bildenden Genen, sowie Genen mit putativer Funktion. Die STM-Analyse erlaubte zudem die Identifizierung eines zuvor nicht charakterisierten putativen Fimbrien-bildenden Adhäsins (Yqi). Das Genprodukt wurde vorläufig als ExPEC Adhäsin I (EA/I) bezeichnet. Eine Deletion des EA/I-Gens führte zu einer Reduzierung der Adhäsionsfähigkeit des Stammes IMT5155 in vitro und in vivo. Eine Komplementierung des EA/I-Gens in trans resultierte in einer Wiederherstellung des Adhäsions¬vermögens in vitro. Das EA/I-Protein (~39 kDa) wurde als Fusionsprotein in vitro exprimiert, und mittels SDS-PAGE und Western Blot nachgewiesen. Durch Überexpression des EA/I-Operons in dem Fimbrien-negativen E. coli-Stamm AAEC189 konnten mittels elektronenmikroskopischer Aufnahmen Fimbrien-bildende Strukturen auf der äußeren Membran dargestellt werden. Das Vorkommen des yqi in den untersuchten extraintestinal pathogenen E. coli (ExPEC), bei gleichzeitigem Fehlen in allen untersuchten intestinal pathogenen E. coli bestätigt die Bezeichnung ExPEC Adhäsin I. Die Prävalenz des EA/I-Gens war am stärksten assoziiert mit Stämmen der B2-Phylogenetische-Gruppe und des ST95-Komplexes des Multi-Lokus-Sequenz-Typisierungs (MLST)-Schemas. Sequenzanalysen ergaben zudem erste Hinweise auf eine positive Selektion des EA/I-Gens innerhalb dieses Komplexes. In der vorliegenden Arbeit gelang somit die Identifizierung und Charakterisierung des neuen ExPEC Adhäsin I. / The extraintestinal pathogen, avian pathogenic E. coli (APEC), known to cause systemic infections in chickens, is responsible for large economic losses in the poultry industry. To identify genes, involved adhesion and colonization, a lung colonization model of infection was established in 5-week old specific-pathogen free (SPF) chickens, and Signature-tagged mutagenesis (STM) was applied to this model by generating and screening a total of 1,800 mutants of an APEC strain IMT5155 (O2:K1:H5; ST complex 95). This led to the identification of new genes of interest, including adhesins, genes involved in capsule and LPS formation, and genes of putative function. Among the many genes identified was one coding for a novel APEC fimbrial adhesin (Yqi) not described for its role in APEC pathogenesis. Its gene product was temporarily designated ExPEC Adhesin I (EA/I). Deletion of the ExPEC adhesin I gene resulted in reduced colonization ability by APEC strain IMT5155 both in vitro and in vivo. Complementation of the adhesin gene restored its ability to colonize epithelial cells in vitro. The ExPEC adhesin I protein (~ 39 kDa) was expressed as a fusion protein in vitro as shown by SDS-PAGE and western blotting. Electron microscopy of an afimbriate strain E. coli AAEC189 over-expressed with the putative EA/I gene cluster revealed short fimbrial like appendages protruding out of the bacterial outer membrane. We observed that the adhesin coding gene yqi is prevalent among extraintestinal pathogenic E. coli (ExPEC) isolates and absent in all of the intestinal pathogenic E. coli strains tested, thereby validating the designation of the adhesin as ExPEC Adhesin I. In addition, prevalence of EA/I was most frequently associated with the E. coli phylogenetic group B2 and ST95 complex of the multi locus sequence typing (MLST) scheme, with evidence of a positive selection within this complex. This is the first report of the newly identified and functionally characterized ExPEC adhesin I.
707

FTIR-spektroskopische Untersuchungen zum Aktivierungsmechanismus von bovinem und humanem Rhodopsin

Kazmin, Roman 13 August 2015 (has links)
Das aus dem Apoprotein Opsin und dem kovalent gebundenen Liganden bestehende Rhodopsin dient als Modellsystem für den Aktivierungsmechanismus der größten Klasse von G-Protein-gekoppelten Rezeptoren (GPCR). Infolge einer photochemischen Reaktion vollführt Rhodopsin eine Bewegungsabfolge von Sekundärstrukturelementen, wodurch es aktiviert wird, das G-Protein bindet und den Stimulus auf zellinterne Signalwege überträgt. Mithilfe der ortsspezifischen Mutagenese wurden Mutanten des bovinen Rhodopsins erzeugt, in eine künstliche Lipidumgebung eingelagert und hauptsächlich mittels FTIR-Spektroskopie untersucht. Anhand der Y191F- und Y192F-Mutanten konnte die Translokation des transienten Gegenions der Schiffschen Base Glu181 während der Aktivierung bestimmt werden. Die Interaktionen des Tyr206 sind für die gekoppelte Bewegung von EL2 und TM5 mitbestimmend, was mittels Y206F-Mutante gezeigt wurde. Eine Anhäufung von Methioninen auf der cytoplasmatischen Seite des Rezeptors ist u.a. für das Ausklappen der TM6 zuständig. Diese Bewegung ist wichtige Determinante der Rezeptoraktivierung. Hierfür wurden insgesamt fünf Mutanten verwendet. Im zweiten, hauptsächlichen Teil der Arbeit wird das bislang kaum untersuchte humane Rhodopsin mit dem bovinen Rezeptor verglichen. Ausgehend von verschiedenen Dunkelzuständen, konnte gezeigt werden, dass die Aktivierungsmechanismen beider Rezeptoren voneinander divergieren, um letztlich bei der Bildung der aktiven Spezies wieder zu konvergieren. Über die Analyse der Aminosäuresequenzen der Mammalia-Rhodopsine wurden zwei Bereiche hoher Variabilität identifiziert, die u.a. die molekulare Ursache für diese Diskrepanzen liefern. Diese Feststellung wurde mit human-bovinen-Rhodopsinchimären bewiesen. Ergänzend zu dieser Studie wurde Schafsrhodopsin einem Vergleich sowohl mit bovinem als auch mit humanem Rezeptor unterzogen. Es zeigte, als eine weitere natürlich vorkommende Variante des Lichtrezeptors, einen eigenständigen Weg der Aktivierung. / Rhodopsin, which consists of the apoprotein opsin and its covalently bound ligand, is used as a model system to understand the activation mechanism of the large family of G protein coupled receptors (GPCRs). As a result of a photochemical reaction, rhodopsin undergoes activating structural changes, enabling it to bind the G protein and transmitting the stimulus to intracellular signaling pathways. In the first part of this work, site-directed mutants of bovine rhodopsin were produced, incorporated into an artificial lipid environment, and studied mainly by FTIR spectroscopy. The translocation of the transient Schiff base counterion (Glu181) during the activation process was determined using the Y191F- and Y192F-mutants. The interactions of Tyr206 contributed to the coupled movement of EL2 and TM5, which was shown by Y206F-mutant. A striking accumulation of methionines on the cytoplasmic side of the receptor was observed to be a key-player for the activating outward motion of TM6. In the second and primary part of this work, human rhodopsin, which has been rarely studied, was compared with the bovine receptor. Starting from various dark states, it was shown that the activation mechanisms of both receptors diverge from each other and yet ultimately converge in the formation of the active species. By analyzing the amino acid sequences of mammalian rhodopsins, two regions of high variability were identified, which provide the molecular basis for these discrepancies. This finding was verified by the investigation of human/bovine rhodopsin chimeras. In addition to this study, ovine rhodopsin was compared with both the bovine and human forms. It showed, as another naturally occurring variant of the light receptor, an independent pathway of activation.
708

Molecular Evolution and Functional Characterization of the Visual Pigment Proteins of the Great Bowerbird (Chlamydera nuchalis) and Other Vertebrates

van Hazel, Ilke 16 December 2013 (has links)
Visual pigments are light sensitive receptors in the eye that form the basis of sensory visual transduction. This thesis presents three studies that explore visual pigment proteins in vertebrates using a number of computational and experimental methods in an evolutionary framework. The objective is not only to identify, but also to experimentally investigate the functional consequences of genetic variation in vertebrate visual pigments. The focus is on great bowerbirds (Chlamydera nuchalis), which are a model system in visual ecology due to their spectacular behaviour of building and decorating courtship bowers. There are 4 chapters: Chapter 1 introduces background information on visual pigments and vision in birds. Among visual pigment types, the short-wavelength-sensitive (SWS1) pigments have garnered particular interest due to the broad spectral range among vertebrates and the importance of UV signals in communication. Chapter 2 investigates the evolutionary history of SWS1 in vertebrates with a view toward its utility as a phylogenetic marker. Chapter 3 investigates SWS1 evolution and short-wavelength vision in birds, with particular focus on C. nuchalis and its SWS1. The evolution of spectral tuning mechanisms mediating UV/violet vision in passerines and parrots is elucidated in this chapter using site-directed mutagenesis, protein expression, and phylogenetic recreation of ancestral opsins. While cone opsins mediate colour vision in bright light, the rhodopsin visual pigment contained in rod photoreceptors is critical for dim light vision. Detailed characterization of rhodopsin function has only been conducted on a few model systems. Chapter 4 examines C. nuchalis RH1 using a number of functional assays in addition to absorbance spectra, including hydroxylamine sensitivity and the rate of retinal release. This chapter includes an investigation into the role of amino acid mutations typical of dim-light adapted vertebrates, D83N and A292S, in regulating functional properties of bovine and avian RH1s using site-directed mutagenesis. Together these chapters describe naturally occurring mutations in visual pigments and explore the way they can influence visual perception. These represent one of the few investigations of visual pigments from a species that is not a model lab organism and form a significant contribution to the field of visual pigment biochemistry and evolution.
709

Structural and functional characterisation of the collagen binding domain of fibronectin

Millard, Christopher John January 2007 (has links)
Fibronectin is an extracellular multidomain glycoprotein that directs and regulates a variety of cell processes such as proliferation, development, haemostasis, embryogenesis, and wound healing. As a major component of blood, fibronectin exists as a soluble disulphide linked dimer, but it can also be incorporated into an insoluble cross-linked fibrillar network to form a major component of the extracellular matrix. Fibronectin is composed of an extended chain of module repeats termed Fn1, Fn2, and Fn3 that bind to a wide range of transmembrane receptors and extracellular matrix components, including collagen. The gelatin binding domain of fibronectin was first isolated as a 45kDa proteolytic fragment and has since been found to be composed of six modules: 6Fn1-1Fn2-2Fn2-7Fn1-8Fn1-9Fn1 (in this notation nFX represents the nth type X module in the native protein). This domain has been reported to bind to both collagen and denatured collagen (gelatin), but with 10-100 times higher affinity to the latter; it can be purified to homogeneity on a gelatin affinity column. In the work presented here, fragments of the gelatin binding domain are expressed in P. pastoris, purified to homogeneity, and investigated at the molecular level. Through a dissection approach, surface plasmon resonance (SPR) is used to characterise the recombinantly produced protein, to accumulate more information about the function of the full domain. NMR is used to assess the folding of the protein fragments at atomic resolution. In particular, the secondary structure of 8Fn1-9Fn1 is mapped using inter-strand NOEs, which suggests that the construct takes the fold of a pair of typical Fn1 modules. Gelatin affinity chromatography is used to confirm that both Fn1 and Fn2 modules contribute to gelatin binding, possibly in two clusters (1Fn2-2Fn2 and 8Fn1-9Fn1). The 7Fn1 module may perform a structural role in linking together these two interaction sites, in the same way as suggested for 6Fn1, which is thought to act in a structural manner to enhance the binding of 1Fn2-2Fn2 to gelatin. Three carbohydrate moieties are found on this domain, one on 2Fn2 and two on 8Fn1. Here, by means of expressing different protein length fragments, and by site directed mutagenesis, the role of each sugar chain is investigated independently. The sugar chain on 2Fn2 does not appear to promote binding to collagen, nor does the first sugar chain on 8Fn1 (N-linked to N497), implying another role for these sugars such as protection from proteolysis. However, the presence of at least a single GlcNAc sugar residue on the second sugar chain site on 8Fn1 (N- linked to N511) is essential for full affinity binding to collagen. Direct binding of the 8Fn1-9Fn1 module pair to collagen is assessed with a short collagen peptide and the binding is monitored by NMR. The peptide appears to bind, predominantly to the final strand of 8Fn1, the first β- strand of 9Fn1, and the linker between the two modules, with μM affinity. A model for bound peptide is proposed. The highly conserved amino acid motif Ile-Gly-Asp (IGD) is found on four of the nine N-terminal Fn1 modules of fibronectin. Tetrapeptides containing the IGD were demonstrated to promote the migration of fibroblast cells into a native collagen matrix. Two of these “bioactive” IGD motifs are found within the gelatin binding domain, one on 7Fn1 and one on 9Fn1. In this study, the motif in the 8Fn1-9Fn1 module pair is shown to be located in a tightly constrained loop within 9Fn1. By site directed mutagenesis, the IGD motifs of 7Fn1 and 9Fn1 are subjected to single amino acid substitutions, and their ability to stimulate cell migration assessed in our assay. By NMR, the fold of the IGD mutant proteins is found to be unaffected by the mutation with respect to the wild type, with the exception of small perturbations around the substitution site. While the wild type module is able to stimulate fibroblast migration, the mutant proteins show reduced or negligible bioactivity. The larger fragments show far more potency in stimulating fibroblast migration, with 8Fn1-9Fn1 (one IGD motif) 104 times more potent than the IGD peptide, and the full gelatin binding domain (two IGD motifs) 106 times more potent than the 8Fn1-9Fn1. Potential mechanisms for this enormous enhancement of the IGD potency in different contexts are discussed.
710

Directed evolution of human dihydrofolate reductase: towards a better understanding of binding at the active site

Fossati, Elena 11 1900 (has links)
La dihydrofolate réductase humaine (DHFRh) est une enzyme essentielle à la prolifération cellulaire, ce qui en fait une cible de choix pour le traitement de différents cancers. À cet effet, plusieurs inhibiteurs spécifiques de la DHFRh, les antifolates, ont été mis au point : le méthotrexate (MTX) et le pemetrexed (PMTX) en sont de bons exemples. Malgré l’efficacité clinique certaine de ces antifolates, le développement de nouveaux traitements s’avère nécessaire afin de réduire les effets secondaires liés à leur utilisation. Enfin, dans l’optique d’orienter la synthèse de nouveaux composés inhibiteurs des DHFRh, une meilleure connaissance des interactions entre les antifolates et leur enzyme cible est primordiale. À l’aide de l’évolution dirigée, il a été possible d’identifier des mutants de la DHFRh pour lesquels l’affinité envers des antifolates cliniquement actifs se voyait modifiée. La mutagenèse dite ¬¬de saturation a été utilisée afin de générer des banques de mutants présentant une diversité génétique au niveau des résidus du site actif de l’enzyme d’intérêt. De plus, une nouvelle méthode de criblage a été mise au point, laquelle s’est avérée efficace pour départager les mutations ayant entrainé une résistance aux antifolates et/ou un maintient de l’activité enzymatique envers son substrat natif, soient les phénotypes d’activité. La méthode de criblage consiste dans un premier temps en une sélection bactérienne à haut débit, puis dans un second temps en un criblage sur plaques permettant d’identifier les meilleurs candidats. Plusieurs mutants actifs de la DHFRh, résistants aux antifolates, ont ainsi pu être identifiés et caractérisés lors d’études de cinétique enzymatique (kcat et IC50). Sur la base de ces résultats cinétiques, de la modélisation moléculaire et des données structurales de la littérature, une étude structure-activité a été effectuée. En regardant quelles mutations ont les effets les plus significatif sur la liaison, nous avons commencé à construire un carte moléculaire des contacts impliqués dans la liaison des ligands. Enfin, des connaissances supplémentaires sur les propriétés spécifiques de liaison ont put être acquises en variant l’inhibiteur testé, permettant ainsi une meilleure compréhension du phénomène de discrimination du ligand. / Human dihydrofolate reductase (hDHFR) is an essential enzyme for cellular proliferation and it has long been the target of antifolate drugs for the treatment of various types of cancer. Despite the clinical effectiveness of current antifolate treatments, new drugs are required to reduce the side-effects associated with their use. An essential requirement for design of new antifolates is a better understanding of how these drugs interact with their targets. We applied directed evolution to identify mutant hDHFR variants with modified binding to some clinically relevant antifolates. A saturation mutagenesis approach was used to create genetic diversity at active-site residues of hDHFR and a new, efficient screening strategy was developed to identify the amino acids that preserved native activity and/or conferred antifolate resistance. The screening method consists in a high-throughput first-tier bacterial selection coupled with a second-tier in vitro assay that allows for rapid detection of the best variants among the leads, according to user-defined parameters. Many active, antifolate-resistant mutants of hDHFR were identified. Moreover, the approach has proven efficient in rapidly assessing kinetic (kcat) and inhibition parameters of the hDHFR variants (IC50). Structure-function relationship analysis based on kinetic investigation, available structural and functional data as well as modeling were performed. By monitoring which mutations have the greatest effect on binding, we have begun to build a molecular picture of the contacts involved in drug binding. By varying the drugs we test against, we gain a better understanding of the specific binding properties that determine ligand discrimination.

Page generated in 0.0689 seconds