1 |
Myélogenèse dans la moëlle épinière de l'opossum Monodelphis domesticaLamoureux, Stéphanie January 2001 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
|
2 |
Rôle des voies Wnt dans la régulation des gènes de la myéline et le cytosquelette des cellules de SchwannBelle, Martin 14 December 2011 (has links) (PDF)
Les cellules de Schwann sont responsables de la myélinisation du système nerveuxpériphérique. C'est un phénomène complexe et finement régulé. En effet, des altérationsde l'expression touchant les protéines de la myéline périphérique (P0 et PMP22)peuvent provoquer des pathologies comme la Charcot‐Marie‐Tooth. Par ailleurs, lescellules de Schwann subissent d'importantes modifications de leur cytosquelette aucours du processus de myélinisation.Nous avons identifié la voie Wnt/β‐caténine comme directement impliquées dansla régulation de l'expression des gènes de la myéline P0 et PMP22 à la fois in vitro maiségalement in vivo. De plus, nous avons initié la démonstration de l'implication de la voieWnt non canonique au cours de ce même processus. Par ailleurs, nous avons montré queles ligands Wnts aussi bien canoniques que non canoniques pouvaient provoquerl'allongement des extensions des cellules de Schwann. Le chlorure de lithium est uninhibiteur de la GSK3β, mimant l'activation de la voie Wnt/β‐caténine. Il provoque unimportant allongement des cellules de Schwann accompagné de profonds remaniementsde l'architecture interne. Par la suite nous nous sommes intéressés aux effets d'unelésion sur la remyélinisation. La voie Wnt/β‐caténine est réactivée par une lésion in vitrotandis que le lithium accélère la récupération fonctionnelle du battement des vibrissesde souris après pincement du nerf facial, améliore les structures de la gaine de myélineet induit l'expression des gènes de la myéline in vivo.ConclusionNotre travail a mis en évidence le rôle majeur des voies Wnt canoniques et noncanoniques dans la régulation de l'expression de gènes de la myéline et dans lecytosquelette des cellules de Schwann.
|
3 |
Rôle des gènes de polarité Dlg1 et Crb3 dans la géométrie de la myéline du nerf périphérique / Role of the polarity genes Dlg1 and Crb3 in the myelin geometry of the peripheral nerveCotter, Laurent 06 November 2017 (has links)
Chez les vertébrés, la vitesse de la conduction nerveuse dépend du processus de myélinisation. Dans le système nerveux périphérique, ce sont les cellules de Schwann (CS) qui en s’enroulant autour de l’axone, constituent les gaines de myéline, séparés par des nœuds de Ranvier. La succession de ces gaines augmente la vitesse de conduction nerveuse car les potentiels d’action sont forcés de « sauter » d’un nœud de Ranvier à un autre, ce qui accélère leur vitesse de propagation. La géométrie (l’épaisseur et la longueur) de la gaine de myéline est donc un paramètre essentiel de la conduction de l’influx. Une publication à laquelle j’ai participé, a mis en évidence la polarisation cellulaire de la cellule de Schwann myélinisante. Notre hypothèse est que ce processus est capital pour la formation d’une gaine de myéline fonctionnelle. Comme trois complexes protéiques, conservés au cours de l’évolution, établissent et maintiennent la polarisation cellulaire (ces complexes sont: aPKC/Par3/Par6, Pals1/Patj/Crb3 et Dlg1/Lgl/Scrib chez les mammifères), mon travail consiste à étudier le rôle fonctionnel des protéines de la polarité Dlg1 et Crb3 lors de la myélinisation. Comme l’altération de la géométrie de la myéline est la cause d’un grand nombre de pathologies du système nerveux périphérique mais aussi central. Mon travail sur la mise en lumière des mécanismes qui préside à ce phénomène permet d’envisager de nouvelles voies thérapeutiques. / In the mammalian nervous system, the nerve conduction velocity depends on the myelin sheath. Myelin is produced by Schwann cells in the peripheral nervous system. The myelin sheath, together with the highly specialized nodes of Ranvier that are regulary arrayed along the myelinated fibers, is responsible for efficient and rapid propagation of action potentials along the nerve. Optimal conduction is obtained by adjusting the geometry (length and thickness) of the myelin sheath When I arrived in the laboratory, the team just showed the polarization of the myelinating Schwann cell ( mSC). We hypothesized then that cell polarity proteins are key players for the formation of the myelin sheath. Three complexes, well conserved among species, organize polarized cellular processes. In mammals, these complexes are aPKC/Par3/Par6, Pals1/Patj/Crb3 et Dlg1/Lgl/Scrib. Using an approch allowing the in vivo transduction of mSC, I investigate the relevance of Dlg1 and Crb3 in myelin formation. Changes in the myelin geometry is linked to several human neuropathies in the central and peripheral nervous system. This work highlights mechanisms which control correct myelin formation and allow designing strategies for their treatment.
|
4 |
Optical molecular structural imaging of myelin in a multiple sclerosis context : polarization dependence coherent anti-Stokes Raman scattering microscopyTurcotte, Raphaël 19 April 2018 (has links)
Pouvoir visualiser de nouveaux éléments pathogéniques est un but standard dans la monde de l’imagerie médicale. L’objectif principal de ce projet de maîtrise est le développement d’une modalité en microscopie optique qui permet la caractérisation de l’intégrité de la structure moléculaire de la myéline in vivo. Cet outil sera utilisé pour la recherche sur la sclérose en plaques. En utilisant la dépendance en polarisation présente en diffusion Raman cohérente, nous avons été en mesure de quantifier le degré d’ordre de la myéline. Représenter cet ordre à tous les pixels d’une image résulte en imagerie de la structure moléculaire. L’imagerie de la structure moléculaire de la myé- line est similaire à la microscopie électronique, sauf qu’elle peut être appliquée sur des tissus biologiques épais et vivants. L’indice qui décrit l’organisation de la myéline est l’amplitude de modulation. L’imagerie de la structure moléculaire a été utilisée pour étudier le modèle animal EAE de la sclérose en plaques. Un nouveau type de lésions focales de la membrane de myéline a été identifié. Aucune autre technique existante permet une description de l’organisation moléculaire de la myéline à une si grande échelle dans du tissu vivant. L’imagerie de la structure moléculaire de la myéline a aussi été utilisée pour l’étude du développement de la moelle épinière de dard-perches (zebrafish), une espèce de poisson, et pour évaluer l’impact de certaines drogues sur ce dernier. Nous avons pu mesurer une fine, mais néanmoins généralisée, réorganisation de la membrane de myéline et ce malgré l’absence de modification morphologique. Cette capacité d’observer de subtiles modifications de la myéline se révélera certainement utile pour l’étude de la remyélinisation. / Being able to visualize new pathogenic features is a gold standard in the biological imag- ing community. The principal goal of this master’s project is to develop a new optical microscopy modality capable of characterizing myelin molecular structural integrity in vivo. This tool is to be used in multiple sclerosis research. Using the polarization de- pendence of coherent anti-Stokes Raman scattering (CARS), we were able to quantify the degree of myelin ordering. Mapping this ordering for every pixels in an image results in molecular structural imaging. Optical molecular structural imaging is, to some ex- tent, similar to electron microscopy, but has the distinct advantage that it can be used on thick and live tissue which provides better context. The index describing myelin ordering is the amplitude modulation. After a full analysis of the amplitude modula- tion, myelin molecular structural imaging was used to study the EAE animal model of multiple sclerosis. A new type of focal myelin membrane disruption was identified. No other existing technique can describe the myelin molecular structure at such a large scale and in live biological tissue. Myelin molecular imaging was also applied to study the spinal cord development in zebrafish. We were able to quantitatively describe a fine but nonetheless generalized reorganization of the myelin sheath through early stages of development although no microscopic morphological changes were apparent. This capacity of observing subtle myelin modification will certainly reveal itself useful in the monitoring of remyelination.
|
5 |
Rôle des voies Wnt dans la régulation des gènes de la myéline et le cytosquelette des cellules de Schwann / Wnt pathways in myelin genes and cytoskeleton regulation of Schwann cellsBelle, Martin 14 December 2011 (has links)
Les cellules de Schwann sont responsables de la myélinisation du système nerveuxpériphérique. C’est un phénomène complexe et finement régulé. En effet, des altérationsde l’expression touchant les protéines de la myéline périphérique (P0 et PMP22)peuvent provoquer des pathologies comme la Charcot‐Marie‐Tooth. Par ailleurs, lescellules de Schwann subissent d’importantes modifications de leur cytosquelette aucours du processus de myélinisation.Nous avons identifié la voie Wnt/β‐caténine comme directement impliquées dansla régulation de l’expression des gènes de la myéline P0 et PMP22 à la fois in vitro maiségalement in vivo. De plus, nous avons initié la démonstration de l’implication de la voieWnt non canonique au cours de ce même processus. Par ailleurs, nous avons montré queles ligands Wnts aussi bien canoniques que non canoniques pouvaient provoquerl’allongement des extensions des cellules de Schwann. Le chlorure de lithium est uninhibiteur de la GSK3β, mimant l’activation de la voie Wnt/β‐caténine. Il provoque unimportant allongement des cellules de Schwann accompagné de profonds remaniementsde l’architecture interne. Par la suite nous nous sommes intéressés aux effets d’unelésion sur la remyélinisation. La voie Wnt/β‐caténine est réactivée par une lésion in vitrotandis que le lithium accélère la récupération fonctionnelle du battement des vibrissesde souris après pincement du nerf facial, améliore les structures de la gaine de myélineet induit l’expression des gènes de la myéline in vivo.ConclusionNotre travail a mis en évidence le rôle majeur des voies Wnt canoniques et noncanoniques dans la régulation de l’expression de gènes de la myéline et dans lecytosquelette des cellules de Schwann. / The myelination is performed by Schwann cells in the peripheral nervous system.Myelination involves the extension of large sheaths of membranes and their wrapping around axons, accompanied by the coordinated synthesis of a variety of myelin components, including myelin‐specific proteins (MPZ and PMP22).We identified the Wnt/β‐caténin pathway as an essential and direct driver of myelin gene expression and myelinogenesis. Moreover, we identified non canonical Wnt protein as regulators of myelin genes expression MPZ and PMP22. Canonical and non canonical Wnt protein elongate the Schwann cells in vitro by microtubules stabilizationmechanisms.We used lithium chloride, an inhibitor of GSK3β to test either effects on Schwann cells cytoskeleton and recovery after nerve crash in vivo. Lithium chloride provokes Schwann cells elongation and biochemicals modifications by enhencing cholesterol as we show by IR spectroscopy. Lithium chloride accelerates the recovery of the whisker mouvements after nerve crash, provokes the remyelination of sciatic neve after crush and stimulates myelin genes expression.ConclusionWe have identified Wnt pathways as direct driver of myelin genes expression and important for cytoskeleton stabolization. Our findings, open new perspectivesin the treatment of nerves demyelination by administration of GSK3βinhibitors like lithium.
|
6 |
Le Rôle de la myéline dans les maladies dégénérativesKnoll, Wiebke 17 September 2012 (has links) (PDF)
La gaine de myéline joue un rôle essentiel dans l'efficacité de la conduction électrique des impulsions nerveuses dans le système nerveux central et le système nerveux périphérique. Afin de mieux comprendre le rôle de la myéline dans les maladies auto-immunes qui affectent le système nerveux, l'influence des protéines MBP-C1, MBP-C8 (une forme mutante) et P2 sur la structure de la membrane a été étudiée par diffraction neutronique, et sur sa dynamique par diffusion neutronique élastique incohérente (EINS) et diffusion neutronique quasi-élastique (QENS). Les expériences ont révélé que des changements de structure se produisent dans les membranes de myéline modèles dans la région de température couvrant les transitions de phase des lipides. Par des mesures de diffraction neutronique, on a observé que les protéines MBP-C1 et P2 affectent profondément la structure des membranes de myéline reconstituées, révélant des changements importants dans la bicouche de la phase liquide. Une variété de comportements dynamiques fonctions de la température sont également observés par EINS dans le modèle des membranes de myéline: une transition entre un régime harmonique vers un régime non harmonique en raison des rotations du groupe de méthyle est suivie par d'autres transitions induites par la transition de phase gel-liquide de la bicouche et de la fusion de l'eau d'hydratation. MBP-C1 s'avère réduire la dynamique de la membrane, augmentant la température à partir de laquelle la première transition se produit et réduisant la dynamique dans la phase de gel. Ces résultats sont en adéquation avec les mesures par QENS qui montrent une réduction de la dynamique de la membrane dans la phase de gel induite par MBP-C1. Au contraire, dans la phase liquide, MBP-C1 s'avère accroître les mouvements de diffusion observés par QENS, ce qui est consistant avec l'observation des changements de la structure bicouche induits par MBP-C1 dans la phase liquide: en raison de l'élargissement de l'espace à l'intérieur de la bicouche, causé par la protéine MBP-C1 qui pénètre dans la bicouche, les lipides pourraient avoir augmenté leur degré de liberté. Aucune différence significative sur les mouvements observés de la membrane entre les effets de MBP-C1 et sa forme modifiée MBP-C8 associée à de multiples scléroses n'a été observée dans cette étude. Par ailleurs, on a démontré que les protéines MBP-C1 et P2 agissent de façon fortement synergique et il se pourrait qu'elles s'associent à l'intérieur de la membrane. Leur capacité à réduire la dynamique de la membrane dans la phase liquide est considérablement accrue quand les deux protéines sont présentes. Un modèle est proposé dans lequel les protéines associées influencent des grandes parties de la membrane en améliorant l'adhésion entre les bicouches par leurs fortes interactions électrostatiques et par un effet de synergie sur leur empilement.
|
7 |
Le Rôle de la myéline dans les maladies dégénératives / The Role of Myelin in Degenerative DiseasesKnoll, Wiebke 17 September 2012 (has links)
La gaine de myéline joue un rôle essentiel dans l'efficacité de la conduction électrique des impulsions nerveuses dans le système nerveux central et le système nerveux périphérique. Afin de mieux comprendre le rôle de la myéline dans les maladies auto-immunes qui affectent le système nerveux, l'influence des protéines MBP-C1, MBP-C8 (une forme mutante) et P2 sur la structure de la membrane a été étudiée par diffraction neutronique, et sur sa dynamique par diffusion neutronique élastique incohérente (EINS) et diffusion neutronique quasi-élastique (QENS). Les expériences ont révélé que des changements de structure se produisent dans les membranes de myéline modèles dans la région de température couvrant les transitions de phase des lipides. Par des mesures de diffraction neutronique, on a observé que les protéines MBP-C1 et P2 affectent profondément la structure des membranes de myéline reconstituées, révélant des changements importants dans la bicouche de la phase liquide. Une variété de comportements dynamiques fonctions de la température sont également observés par EINS dans le modèle des membranes de myéline: une transition entre un régime harmonique vers un régime non harmonique en raison des rotations du groupe de méthyle est suivie par d'autres transitions induites par la transition de phase gel-liquide de la bicouche et de la fusion de l'eau d'hydratation. MBP-C1 s'avère réduire la dynamique de la membrane, augmentant la température à partir de laquelle la première transition se produit et réduisant la dynamique dans la phase de gel. Ces résultats sont en adéquation avec les mesures par QENS qui montrent une réduction de la dynamique de la membrane dans la phase de gel induite par MBP-C1. Au contraire, dans la phase liquide, MBP-C1 s'avère accroître les mouvements de diffusion observés par QENS, ce qui est consistant avec l'observation des changements de la structure bicouche induits par MBP-C1 dans la phase liquide: en raison de l'élargissement de l'espace à l'intérieur de la bicouche, causé par la protéine MBP-C1 qui pénètre dans la bicouche, les lipides pourraient avoir augmenté leur degré de liberté. Aucune différence significative sur les mouvements observés de la membrane entre les effets de MBP-C1 et sa forme modifiée MBP-C8 associée à de multiples scléroses n'a été observée dans cette étude. Par ailleurs, on a démontré que les protéines MBP-C1 et P2 agissent de façon fortement synergique et il se pourrait qu'elles s'associent à l'intérieur de la membrane. Leur capacité à réduire la dynamique de la membrane dans la phase liquide est considérablement accrue quand les deux protéines sont présentes. Un modèle est proposé dans lequel les protéines associées influencent des grandes parties de la membrane en améliorant l'adhésion entre les bicouches par leurs fortes interactions électrostatiques et par un effet de synergie sur leur empilement. / The myelin sheath is essential for efficient electrical conduction of nerve impulses in the central and in the peripheral nervous system. To gain insight into the role of myelin, in autoimmune diseases that affect the nervous system, the influence of the myelin protein MBP-C1, a mutated form MBP-C8, and P2 on the membrane structure was investigated using neutron diffraction and on the membrane dynamics using incoherent elastic (EINS) and quasielastic neutron scattering (QENS). The experiments revealed that structural changes occur in the model myelin membranes across the temperature region covering the lipid phase transitions. The myelin proteins MBP-C1 and P2 are shown to strongly affect the structure of the model myelin membranes, shown by neutron diffraction measurements revealing significant changes in the bilayer spacing in the liquid phase. A range of distinct dynamical behaviours are observed by EINS in the model myelin membranes as a function of temperature: a first transition from a harmonic to an anharmonic temperature regime, assigned to methyl group rotations, is followed by further transitions induced by the gel-liquid phase transition of the bilayer and melting of the hydration water. MBP-C1 is shown to reduce the dynamics of the membrane, increasing the temperature at which the first transition occurs, and reducing the dynamics in the gel phase. These results were in agreement with quasielastic neutron scattering measurements, which showed a reduction of confined diffusive motions of the membrane in the gel phase induced by MBP-C1. In contrast, in the liquid phase, MBP-C1 was found to enhance diffusive motions, revealed with QENS, which is consistent with the observed changes to the bilayer structure that are induced by MBP-C1 in the liquid phase: due to the widening of the interbilayer space caused by MBP-C1, which penetrates into the bilayer, the lipids may have increased their conformational freedom. Any significant difference between the effects of MBP-C1 and its modified form MBP-C8, which is associated with multiple sclerosis, on motions of the membrane, investigated by QENS, were not identified in this study. It was demonstrated that both proteins MBP-C1 and P2 act in a highly synergistic manner and may associate within the membrane. Their ability to reduce the membrane dynamics in the liquid phase is considerably enhanced when both proteins are present. A model is proposed in which the associated proteins influence large fractions of the membranes by promoting adhesion between the bilayers through their strong electrostatic interactions and by their synergistic stacking effect.
|
8 |
Ciliary neurotrophic factor controle la migration des progéniteurs du cerveau adulte de rongeur pendant la phase de rémyélinistion.Vernerey, Julien 02 October 2012 (has links)
Le remplacement des oligodendrocytes myélinisants par des progéniteurs endogènes a été observé dans le contexte des pathologies démyélinisantes via le recrutement de deux populations distinctes de progéniteurs : les progéniteurs dérivant des cellules souches adultes de la zone sous ventriculaire (SVZ) et les précurseurs d'oligodendrocytes (OPCs) du parenchyme. Réactivés par des facteurs présents dans le cerveau après lésion, ces progéniteurs acquièrent de nouvelles propriétés migratoires et sont recrutés au niveau du site lésionnel. Toutefois, ces tentatives d'autoréparation endogènes sont limitées et ne permettent pas une récupération fonctionnelle, dans la grande majorité des cas. Cet échec dans la régénération peut être imputé en parti à des défauts de migration de ces cellules vers les zones lésées. Divers signaux sont impliqués dans le recrutement des cellules progénitrices allant de signaux développementaux ré‐exprimés au niveau de la lésion à l'expression de cytokines induite par la neuroinflammation. Nos données dévoilent de nouvelles fonctions pour Reelin et CNTF dans le contrôle de la migration des progéniteurs neuraux pendant la phase de remyélinisation chez la souris. Alors que Reelin induit la dispersion des cellules dérivant de la SVZ hors de leur niche rendant plus efficace les processus de recrutement spontané vers la lésion démyélinisée, CNTF participe au contrôle directionnel de leur migration vers de la zone endommagée in vivo. L'utilisation de tests in vitro nous a permis de montrer que Reelin, en plus de son effet décrit sur le détachement des neuroblastes de la SVZ migrant en chaîne, exerce un effet chimiocinétique. / Replacement of myelinating oligodendrocytes by endogenous progenitors has been demonstrated to occur in demyelinating diseases via the recruitment of two distinct pools of progenitors: Subventricular zone (SVZ)‐derived progenitors and parenchymal oligodendrocyte precursors (OPCs). Becoming re‐activated by factors present in the brain after injury, these progenitors acquire new migration properties and are recruited to the lesion sites. However these spontaneous repair attempts are limited and do not permit efficient functional recovery. This failure can be due in part to an inefficient migration of these cells to the lesion site. Numerous signals are involved in the migration of precursor cells into the area of brain damage ranging from developmental signals re‐expressed at the lesion site to neuroinflammation‐induced cytokines. Our data uncover new functions for Reelin and CNTF in the control of neural progenitor's recruitment during the remyelination phase in mouse model of demyelination. While Reelin induces SVZ‐derived cells dispersion form their niche which potentiates the spontaneous recruitment processes to the demyelinated lesion, CNTF participates in the control of their migration toward the damaged site in vivo. Using in vitro assays we show that Reelin, in addition to its already described detachment effect on SVZ neuroblasts chain migration, is chemokinetic. CNTF is acting on SVZ derived progenitors and parenchymal OPCs as a chemoattractant, which cells respond to it in gradient sensing manner. All together, these two studies reveal key function for Reelin and CNTF in the post‐lesional migration.
|
9 |
Prévention des neuropathies périphériques induites par les chimiothérapies par une modulation pharmacologique des dérives des formes réactives de l'oxygène et des récepteurs muscariniques / Prevention of peripheral neuropathies induced by chemotherapies trough a pharmalogical modulation of reactive oxygen species and muscarinic receptorsCerles, Olivier 18 September 2017 (has links)
Les chimiothérapies à base de sels de platine exercent leurs effets anti-tumoraux en compromettant l'intégrité de l'ADN. Cette cytotoxicité conduit à une augmentation du stress oxydant qui, à son tour, favorise les processus de mort cellulaire. L'oxaliplatine indiquée dans les cancers métastatiques secondaires du colon et dans les cancers colorectaux, induit une augmentation des espèces réactives de l’oxygène en diminuant le glutathion réduit dans les cellules cancéreuses. Similairement aux autres chimiothérapies à base de sels de platine, elle doit être utilisée avec précaution. En effet, la majorité des patients recevant de l'oxaliplatine développent des neuropathies périphériques. Cette neurodégénérescence est un facteur limitant de cette chimiothérapie puisqu'elle peut nécessiter une réduction du dosage ou même une interruption du traitement si cet effet secondaire atteint une sévérité de grade 3. Les toxicités neurologiques peuvent se manifester dans les heures suivant l'injection sous forme aiguë. La forme chronique résulte d'injections cumulées de doses élevées. La forme aiguë, caractérisée par une paresthésie transitoire et une myotonie, est réversible et se résout généralement en quelques jours tandis que la forme chronique présente une paresthésie et une thermoalgie persistantes résultant de la dégradation axonale distale et de la démyélinisation des fibres nerveuses de gros diamètre. Les voies inflammatoires ont été incriminées dans l'étiologie de cette neurodégénérescence. Le niclosamide, un ténicide modulant les voies Stat3, Wnt, Notch et Beta-caténine, a été étudié in vitro et in vivo. Ayant déjà démontré les propriétés anti-inflammatoires de ce composé dans la sclérodermie systémique, nous avons cherché à déterminer si le niclosamide pourrait également prévenir la neurotoxicité de l'oxaliplatine. Le niclosamide a démontré une neuroprotection à la fois in vitro sur les neurones traités par l'oxaliplatine et in vivo dans les modèles de neuropathies périphériques induites par l'oxaliplatine. Le niclosamide est déjà utilisé en clinique avec des effets secondaires limités. L'association de cette molécule avec l'oxaliplatine pourrait augmenter l'indice thérapeutique de cette chimiothérapie. La benztropine est un inhibiteur des récepteurs muscariniques M1 et M3 possédant un potentiel de remyélinisation démontré dans le système nerveux central en favorisant la différenciation et la prolifération des cellules précurseurs des oligodendrocytes. La répartition différentielle entre les sous-types de récepteurs peut permettre le ciblage spécifique des cellules tumorales, notamment par l'inhibition de la signalisation autocrine de l'acétylcholine. La benztropine est un composé bien toléré qui ne provoque aucune réaction immunologique lors de son administration. Cette molécule présente un effet neuroprotecteur in vitro sur les neurones traités par l'oxaliplatine au cours d’études de viabilité cellulaire ainsi qu’in vivo dans les modèles murins de neuropathies périphériques induites par l'oxaliplatine et le diabète. L'association de cette molécule avec l'oxaliplatine pourrait augmenter l'indice thérapeutique de cette chimiothérapie, en potentialisant ses effets antitumoraux tout en diminuant la neurotoxicité. L’ubiquité des propriétés neuroprotectrices de la benztropine a été démontrée sur des neuropathies périphériques résultants d’autres étiologies. Nous avons ici décrit deux molécules permettant de conserver l’efficacité antitumorale du traitement par oxaliplatine tout en limitant ses effets neurotoxiques. Nous avons décrit les mécanismes par lesquels ces molécules exercent leur neuroprotection. Les résultats prometteurs obtenus au cours de ces travaux permettent d’envisager l’utilisation en clinique de ces molécules afin de prévenir non seulement les neuropathies périphériques induites par l'oxaliplatine, mais aussi les neuropathies périphériques résultant d'autres étiologies. / Platinum-based chemotherapies have been shown to elicit their anti-tumoral effects by compromising DNA integrity. These impairments ultimately lead to a burst in oxidative stress which in turn promotes cell death processes. Oxaliplatin, a platinum-based antineoplastic drug is usually indicated in secondary metastatic colon cancers and colorectal cancers and mediates a rise in reactive oxygen species through the depletion of reduced glutathione in cancerous cells. This chemotherapy is indicated as a frontline and an adjuvant treatment and similarly to other platinum-based chemotherapies, it warrants for particular caution. Most patients receiving oxaliplatin develop peripheral neuropathies. This neurodegeneration is a limiting factor of this chemotherapy since it may require the lowering of dosage or even the interruption of the treatment if this side-effect is assessed as a grade 3 peripheral neuropathy. Neurological toxicities may manifest within hours of injection as an acute form or as a chronic form resulting from cumulated high-dosage injections. The acute form, characterized by transient paresthesia and myotonia, is reversible and usually resolves within days while the chronic form presents persistent paresthesia and thermoalgia resulting from distal axonal degradation and demyelination of large fibers. Inflammatory pathways have also been incriminated in the etiology of this neurodegeneration. Niclosamide, a teniacide known to downregulate Stat3, Wnt, Notch and Beta-catenin pathways was investigated in vitro and in vivo. Having previously demonstrated this compound’s anti-inflammatory properties in systemic sclerosis, we sought to investigate whether niclosamide could also prevent oxaliplatin’s neurotoxicity. Niclosamide demonstrated neuroprotection both in vitro on oxaliplatin-treated neurons and in vivo in models of oxaliplatin-induced peripheral neuropathies. Niclosamide is used in humans with limited side-effects. The association of this molecule with oxaliplatin could increase the therapeutic index of this chemotherapy. Benztropine is an inhibitor of muscarinic M1 and M3 receptors with known remyelinating potential in the central nervous system by promoting oligodendrocytes precursor cells differentiation and proliferation. The differential distribution between subtypes of receptors can allow the specific targeting of tumor cells, namely through the inhibition of autocrine acetylcholine signaling. This compound is well tolerated and does not elicit any immunological reaction upon its administration. These observations of potential for both, preventing neurotoxicity as well as increasing the efficacy profile of neurotoxic chemotherapies, prompted us to investigate this M1 and M3 receptors inhibitor. Benztropine demonstrated neuroprotection in vitro on oxaliplatin-treated neurons as demonstrated by viability assays studies as well as in vivo in models of oxaliplatin-induced as well as diabetic peripheral neuropathies. The association of this molecule with oxaliplatin could increase the therapeutic index of this chemotherapy, potentiate this chemotherapy’s antitumoral effects against certain cancers as well as decrease the occurrence of diabetic neuropathies, a prevalent complication of diabetes. We have herein described two molecules which allow oxaliplatin treatment to exert its cytotoxic effects without eliciting its neurotoxicity. Furthermore, we have described the mechanisms by which these molecules exert their neuroprotection. The neuroprotective abilities of one of these molecules have also been broadened by the study of other types of peripheral neuropathies, namely diabetic neuropathies. The promising results obtained over the course of these works allow for optimism in the prospect of finding therapies to counteract not only oxaliplatin-induced peripheral neuropathies but peripheral neuropathies resulting from other etiologies.
|
10 |
Measurement and correction of aberrations in light and electron microscopyBinding, Jonas 15 June 2012 (has links) (PDF)
La diffraction constitue une limite fondamentale en microscopie, mais souvent cette limite n'est même pas atteinte. Des imperfections dans la formation d'image, appelées aberrations, peuvent être induites par le microscope ou l'échantillon. Un élément actif, dit correcteur, est intégré au chemin optique pour leur compensation. Les paramètres de ce correcteur doivent être déterminés sans dommage excessif pour l'échantillon. Il faut comparer le gain en signal et/ou en résolution avec cet endommagement, surtout pour des échantillons biologiques fragiles. En première partie de cette thèse je présente une modalité particulière de la microscopie par cohérence optique (nommé deep-OCM). Ce développement a permis la mesure exacte et in vivo de l'indice de réfraction moyen du cerveau du rat. Cette valeur implique que la microscopie bi-photonique est limitée par des aberrations optiques à partir d'une profondeur de 200 µm dans ce type d'échantillon. Le deep-OCM est bien adapté à l'imagerie de fibres nerveuses myélinisées. Des fibres individuelles peuvent être visualisées in vivo dans le cerveau à des profondeurs auparavant inaccessibles, supérieures à 300 µm. Dans la deuxième partie de cette thèse je présente le développement d'un autofocus et auto-stigmateur (nommé MAPFoSt) pour le microscope électronique à balayage qui permet d'assurer la qualité maximale des images lors d'un changement d'échantillon ou pendant des séries d'acquisitions de longue durée. MAPFoSt permet de déterminer avec précision les trois paramètres du focus et du stigmatisme en utilisant seulement deux images de test
|
Page generated in 0.0691 seconds