• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 8
  • 2
  • Tagged with
  • 23
  • 9
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Etude du transport ionique à travers un nanocanal fluidique : vers l'électropréconcentration sélective

Nanteuil, Clément 14 October 2010 (has links) (PDF)
Ces travaux de recherche ont porté sur la thématique de concentration de traces d'analytes dans un échantillon grâce à l'électropréconcentration dans un dispositif fluidique contenant une nanofente. La technique étudiée est très récente, car mise en évidence il y a quelques années. De nombreux paramètres sont impliqués dans l'électropréconcentration, dont une grande majorité sont difficilement maîtrisables, rendant l'interprétation des résultats très délicate. Le Chapitre 1 présente le contexte sociétal et économique qui justifient les efforts de recherche pour les dispositifs fluidiques intégrant des structures nanométriques. Les techniques concurrentes permettent de fixer les limites actuelles. Enfin, la théorie et l'état de l'art de l'électropréconcentration fixe le point de départ de ces trois années. Le Chapitre 2 présente le procédé de fabrication initial. Les optimisations testées et leurs résultats sont décrits mais n'ont pas permis d'obtenir des résultats satisfaisants. Une partie importante de ce travail de thèse a donc servi au développement d'une solution alternative qui a permis de continuer les expériences fluidiques. Le procédé innovant développé a mené à une demande de brevet. Le Chapitre 3 présente le banc expérimental optimisé. Le protocole, très important pour ces expériences, a été étudié afin d'obtenir des résultats fluidiques expérimentaux fiables. Le Chapitre 4 décrit les expériences fluidiques réalisées au cours de ces trois ans. Les expériences originales de transport ionique à travers la nanofente grâce à une surpression seule, un champ électrique seul puis grâce à la combinaison d'un champ électrique et hydrodynamique y sont présentées.
2

Préconcentration sélective immunologique en nanofluidique : vers l’identification rapide d’agents du risque biologique / Immunological selective preconcentration in nanofluidics : towards a fast identification of pathogenic agents

Louer, Anne claire 12 September 2013 (has links)
La nanofluidique est l’étude du transport de molécules au travers de nanostructures filtrantes dont la taille avoisine l'épaisseur de la double-couche diffuse à la surface du verre. A cette échelle de la centaine de nanomètres, la charge de surface qui induit une exclusion des ions négatifs à l'extérieur du "nanofiltre" produit un effet de rétention des biomolécules. Des études menées sur le transport électrocinétique au sein d’un nanocanal unique ont permis de montrer qu’il était théoriquement possible de concentrer des solutions, même fortement diluées, avec des taux élevés (jusqu’à 103) grâce à un effet de concentration de polarisation. Ce phénomène pourrait être exploité dans de nombreuses applications de diagnostic médical (analyses rapides et précoces d’échantillons bruts), de contrôle qualité (agroalimentaire) ou encore de défense (suivi continu de zones à risques pour la menace terroriste biologique).La modélisation de la dynamique des phénomènes d’électropréconcentration (sous champ électrique) et de rétention (sous gradient de pression) d’un nanocanal unique s’avère extrêmement ardue. Une multitude d’observations, souvent contradictoires quant au profil de préconcentration obtenu, ont été par ailleurs rapportées dans la littérature, avec des points focaux de préconcentration observés parfois du côté anodique ou du coté cathodique pour une même protéine. Certaines expériences observent ces points focaux soit très loin en amont dans le microcanal réservoir soit directement à proximité de l’entrée du nanocanal. C’est dans ce contexte qu’a été développé précédemment un modèle unidimensionnel permettant de prédire le profil de concentration de l’analyte en tout point de la structure MNM(Micro/Nano/Microcanal) proposée. Ce travail de modélisation a démontré l’existence de quatre régimes distincts: deux régimes coté anodique et deux régimes coté cathodique, plus ou moins éloignés du nanocanal. Ce modèle a mis en avant la sélectivité de ce processus vis-à-vis de la mobilité électrophorétique et de la valence des analytes préconcentrés, et il a permis d’appréhender un peu mieux la diversité des expériences rapportées. Cependant, le régime de préconcentration obtenu dépend du bioanalyte étudié. Il serait pourtant intéressant de ne plus être tributaire des caractéristiques intrinsèques de la solution analysée et de ne plus subir le régime obtenu mais, au contraire, d’effectuer ce que l’on pourrait appeler une électropréconcentration sélective du dit analyte. Ceci pourrait permettre d’effectuer deux étapes primordiales de tout diagnostic que sont la séparation et la préconcentration d’un mélange. Pour se faire, nous avons introduit un paramètre expérimental, une composante hydrodynamique (ou surpression), en sus du champ électrique, pour moduler la localisation de la préconcentration.A l’aide d’une technologie "tout verre" récemment brevetée, nous élaborons aujourd’hui des puces intégrant une nanofente dans un long microcanal. Ces puces sont parfaitement isolantes, biocompatibles et présentent une tenue exceptionnelle au cours du temps. Elles sont combinées à un banc expérimental "fait maison" complètement automatisé (interfacé avec Matlab), qui permet de contrôler les différents paramètres imposés. Les données recueillies sont ensuite prétraitées par d’autres codes Matlab que nous avons développés. Grâce à ces divers outils, de nombreuses expériences d’électropréconcentration "classique" (champ électrique seul) et assistée en pression ont été réalisées pour deux bioanalytes modèles : la fluorescéine et la BSA (Bovin Serum Albumin). Elles ont permis de déterminer les différents paramètres influant sur la préconcentration de ces deux analytes et de prouver la sélectivité et l’efficacité de la méthode proposée ici. Des régimes de préconcentration inattendus, stables et présentant des taux élevés ont en effet été obtenus au cours de cette thèse. / Nanofluidics is the study of the transport of molecules through filtering nanostructures whose size approximates the thickness of the diffuse double layer at the surface of the glass. At this scale of hundreds of nanometers, the surface charge induces an exclusion of negative species outside the "nanofilter" and a retention effect of biomolecule. Studies on the electrokinetic transport in a single nanochannel have shown that it was theoretically possible to concentrate solutions, even highly diluted, with high rates (up to 103) thanks to a concentration polarization effect. This phenomenon can be exploited in many medical diagnostic applications (early and fast sample analysis), quality control (food, water) or defense (continuous monitoring of risky areas for biological terrorist threat). Modeling the dynamics of electropreconcentration phenomena (under an electric field) and retention phenomena (under a pressure gradient) of a single nanochannel is extremely difficult. A multitude of observations, often contradictory regarding the obtained preconcentration profile, were also reported with focal points observed sometimes in the anodic side and other times in the cathodic side for the same protein . Some experiments observe these focal points either upstream in the microchannel reservoir or directly at the entrance of the nanochannel. In this context, a one-dimensional model was previously developed to predict the concentration profile of the analyte at any point of the proposed MNM (Micro/Nano/Microchannel) structure. This modeling work has demonstrated the existence of four distinct regimes: two regimes in the anodic side and two regimes in the cathodic side, more or less distant from the nanochannel. This model highlighted the selectivity of the process regarding the electrophoretic mobility and the valence of the preconcentrated analytes and allowed to understand a little better the diversity of reported experiments. However, the obtained regime depends on the bioanalyte. Though it would be interesting not to be dependent of the characteristics of the analyzed solution and, on the contrary, to realize a selective electropreconcentration of the analyte. This could allow to perform two important steps in any diagnosis: the separation and the preconcentration of a mixture. To do so, we introduced an experimental setting, a hydrodynamic component (or pressure) in addition to the electric field to modulate the localization of the preconcentration .Using an "all glass" technology patented in LPN, chips perfectly insulating, biocompatible and with an exceptional resistance over time are now manufactured. These chips presenting a nanoslit in a straight microchannel are combined with a "homemade" experimental set-up fully automated (interfaced with Matlab®) which allow a perfect control of the various experimental parameters. The data obtained during experiments are then preprocessed by other Matlab codes that we have developed. Thanks to these various tools, many electropreconcentration experiments were performed for two bioanalytes: fluorescein and BSA (Bovin Serum Albumin). They have identified different parameters affecting the preconcentration of these analytes and they have demonstrated the selectivity and the efficiency of the method proposed in this thesis. Unexpected and stable preconcentration regime have been obtained with high rates of preconcentration.
3

Développements de systèmes micro-nanofluidiques appliqués à la filtration et la préconcentration / Development of nanofluidic components applied to filtration and Concentration.

Aizel, Koceila 09 December 2013 (has links)
Les recherches menées au cours de cette thèse constituent une première étape de développement de méthodes expérimentales de concentration de nanoparticules à l'aide de composants micro-nanofluidiques. L'objectif principal est donc d'explorer différentes architectures de systèmes micro-nanofluidiques où l'étape de concentration est effectuée par effet d'exclusion stérique et/ou ionique sous l'application d'un champ de pression et/ou électrique. Une attention toute particulière a été portée sur les méthodes de caractérisation, comprenant notamment les méthodes de particule Tracking Micro-PIV et de microscopie par fluorescence pour mesurer la répartition en nanoparticules et quantifier les facteurs de concentration. Le premier axe concerne la concentration de nanoparticules dans des architectures de type « Bypass ». Dans le cas de la filtration stérique, une modélisation par méthode de différence finie permet de prédire l'apparition d'une zone localisée où la concentration est d'une centaine à un millier de fois plus élevée que la concentration initiale après une heure d'opération. Des composants micro-nano fluidique en silicium ont été réalisés afin de mener une étude paramétrique. En accord avec le modèle proposé, cette étude montre que le nombre de Peclet est le paramètre déterminent dans le choix du design et des conditions d'expérimentations optimums. Concernant la préconcentration par effet électrocinétique, les expérimentations ont essentiellement consisté à explorer le phénomène d'ICP (Ion Concentration Polarisation) et d'appliquer cette technique pour la concentration de nanoparticules. Enfin le type de géométries « Bypass » a été testé sous différentes conditions. Ainsi, le couplage avantageux de phénomènes électro-hydrodynamiques tel que le « streaming potentiel » permet d'ouvrir la voie à des systèmes de préconcentration à actionnements manuels, rapides et très simples d'utilisation. Le deuxième axe d'étude est quant à lui dédié à la conception et l'utilisation de configuration micro-nanofluidique plus originales. Y sont notamment étudiés des systèmes à configuration radial offrant une meilleure stabilité lors des étapes de préconcentration électrocinétiques. Sur la base des performances et limitations des différents systèmes micro-nanofluidiques réalisés, le dernier chapitre est une mise en perspective des champs d'applications potentiels, notamment pour les laboratoires sur puces. / The researches conducted during this thesis consist in a first step for the development of experimental methods applied to the concentration of nanoparticles using micro-nanofluidic devices. The main aim is to explore different system architectures where the préconcentration step are achieved using steric and/or ion exclusion under the influence of a pressure and/or electric field. A special attention is directed toward the characterization methods including Micro-Particle Image Velocimetry micro-PIV and fluorescent microscopy to measure the nanoparticles repartition and to quantify the concentration folds. The first axis deals with the preconcentration of nanoparticles within « Bypass » like architectures. Concerning the steric filtration, a theoretical model using finite element method allows to predict the rising of a located preconcentration zone where the local concentration is enhanced 1000 fold as compared to the initial concentration after 1h of concentration operation. Silicon Micro-nanofluidic devices were fabricated in order to conduct a parametric study. According to the proposed theoretical model, this study shows that the Peclet number is a key parameter to choose the optimal design and experimental conditions. Concerning the electrokinetic preconcentration, the experiments mainly consisted in exploring the ICP phenomenon (Ion Concentration Polarization) and in using this technic to preconcentrate nanoparticles. Finally the Bypass geometry was tested in many conditions. Thus, the advantageous coupling of electro-hydrodynamic phenomena such as the so called “streaming potential” opens new ways to fast, simple and manual preconcentration systems suitable for LOC applications. The second axis is dedicated to the conception and utilization of original micro-nanofluidic configurations. Will also be studied radial micro-nanofluidic devices offering better stability during electrokinetic preconcentration. On the basis of the performances and limitations inherent to each systems, the last chapter will focus on the potential applications relative to LOC.
4

Nanofluidics : a theoretical and numerical investigation of fluid transport in nanochannels / Nanofluidique : une investigation théorique et numérique du transport fluidique dans les nanocannaux

Gravelle, Simon 17 November 2015 (has links)
Cette thèse décrit diverses situations liées au transport fluidique aux nano-échelles. Le premier chapitre est une introduction à la nanofluidique qui contient une revue des longueurs caractéristiques, des forces et des phénomènes présents aux nano-échelles. Le deuxième chapitre est une étude de l'impact de la géométrie sur la perméabilité hydrodynamique d'un nanopore. Inspirée par la forme des aquaporines, cette étude suggère une optimisation possible pour des canaux biconiques. Le troisième chapitre est une étude du remplissage capillaire dans des canaux sub-nanométriques en carbone. Cette étude montre l'importance de la pression de disjonction induite par la structure du fluide sur le remplissage. Le quatrième chapitre est une étude d'une diode nanofluidique, un composant connu pour imiter le comportement d'une diode à semi-conducteur. On montre qu'un fort couplage entre l'eau et la dynamique des ions entraîne une rectification du flux d'eau à l'intérieur de la diode. Le cinquième et dernier chapitre est une étude de l'origine du bruit rose (1=f) communément observé lors des mesures de courant ionique dans les nanopores / This thesis discusses various situations linked to transport at the nanoscale. The first chapter is an introduction to nanofluidics, containing a review of characteristic lengths, forces, or phenomena existing at the nanoscale. The second chapter is a study of the impact of geometry on the hydrodynamic permeability of a nanopore. This study, inspired by the shape of aquaporins, suggests a possible optimisation of permeability for bi-conical channels. The third chapter is a study of capillary filing inside subnanometric carbon channels which highlights the importance of the disjoining pressure induced by the fluid structuring inside the nanochannel. The fourth chapter is a study of nanofluidic diode, a component known to mimic the behaviour of semiconductor diode. The study highlights a strong coupling between water and ion dynamics which leads to a water flow rectification inside the diode. The fifth and last chapter is a study of the origin of commonly observed pink noise (1=f) in ionic current measurements through nanopores
5

Ecoulements de fluides complexes dans des canaux sub-microniques / Sub-micron flow of complex fluids

Cuenca, Amandine 09 November 2012 (has links)
Les écoulements de fluides complexes à l’échelle sub-micronique est une problématique rencontrée dans des domaines aussi divers que la récupération assistée du pétrole ou la lubrification des surfaces. Un fluide complexe a des propriétés rhéologiques riches, dues à la présence d’objets déformables en solution, comme les pelotes de polymère. Les phénomènes de surface, comme le glissement jouent un rôle important aux petites échelles. La question de l’effet du confinement sur la rhéologie de solutions de polymères est abordée. Nous caractérisons la taille des objets en solution et la rhéologie volumique des fluides. Grâce au développement d’une technique de photobleaching de fluorescence pour la mesure de vitesse d’écoulement dans des canaux sub-microniques, nous déterminons la viscosité effective des fluides en géométrie confinée. Cette approche expérimentale nous permet de montrer que le confinement induit une diminution de la viscosité effective des fluides. Une mesure directe des vitesses et longueurs de glissement est réalisée en microcanaux par vélocimétrie de particules (micro-PIV). Ces données mettent en évidence une réduction du glissement en géométrie confinée, qui est interprétée en termes de modification du mécanisme de glissement. Une distinction entre le comportement volumique et les phénomènes de surface ne permet plus de rendre compte du comportement du fluide à l’échelle sub-micronique. Une étude préliminaire des écoulements de solutions de tensioactifs à l’échelle sub-micronique est également proposée. / Rheology of high molecular weight polymer solutions at submicroscale is investigated, with a particular emphasis on the wall slip characterization. Our approach is to measure the velocity of a pressure-driven flow in sub-microchannels in order to determine an effective viscosity of fluids. We have been using fluorescence photobleaching as a non-invasive technique to evaluate the velocity of a pressure-driven flow in 175 to 4000 nm high channels. A striking reduction of the effective viscosity is observed with the confinement, as compared to the bulk one. Direct measurement of slip velocity in microchannels is performed, using z-resolved micro-Particle Image Velocimetry (PIV). This study enables to draw two important conclusions, which have never been experimentally demonstrated. Slippage of polymer solutions in the semi-dilute unentangled regime is greatly reduced by confinement. A distinction of bulk and surface phenomena seems no longer valid at the submicroscale. This experimental method is also adapted to the study of surfactant solutions flows at the submicroscale.
6

Coupled electrokinetic fluxes in a single nanochannel for energy conversion / Flux électrocinétiques couplés dans un nanocanal unique pour la conversion d'énergie

Sharma, Preeti 14 April 2017 (has links)
Les phénomènes électrocinétiques couplés au sein d'un nanocanal sont d'intérêt pour la conversion d'énergie et la production d'électricité reposant sur le mélange contrôlé d'eau douce et d'eau salée aussi appelée "énergie bleue". L'origine des phénomènes est lié à l'interaction avec des parois chargées et au transport d'ions au sein de ce qu'on nomme les couches de Debye. Ce travail vise à une meilleure compréhension de la physique et des phénomènes de transport dans ces couches dans le cadre de solutions confinées dans des nanocanaux.Une instrumentation spécifique a été développée pendant la thèse pour étudier les mécanismes qui gouvernent ces flux couplés. L'idée est de caractériser simultanément le transport de masse et le courant électrique au sein d'un nanocanal soumis à une différence de salinité de pression ou de tension électrique. Ce travail est divisé en trois parties.Dans la première partie, est décrite une cellule conçue pour la mesure et le contrôle de courant et tension électrique en présence de différence de pression ou de salinité au bornes d'un nanopores. L'utilisation de la cellule est illustrer dans le cas d'une membrane nanoporeuse de nafion.La seconde partie est focalisée sur une méthode simple de préparation d'un nanocanal directement connectable à un dispositif macroscopique. Le nanocanal, d'un micromètre de long, présente une géométrie conique, d'angle ajustable, et des extrémités équipées d'électrode déposées par pulvérisation cathodique.La troisième partie, concerne le développement d'une méthode pour la mesure directe de débit jusqu'à 10 pL/min s'écoulant au sein d'un nanocanal. Cette méthode combinée à une caractérisation électrique, pourra être utilisée, en présence de gradient de pression, de tension ou de salinité pour mesurer le débit et le courant électrique au sein d'un nanocanal de manière simultanée et indépendante. / Coupled electrokinetic phenomena within nanochannel are of interest for energy harvestingand production of electricity based on the controlled mixing of river water with sea water known as "blue energy". The origin of the phenomena is related to interaction with charged walls and transport of ions within the so called Debye layer. This work aims at a better understanding of the physics and transport phenomena in this layer associated with solution confined in nanochannel.A specific instrumentation has been developed during this thesis to study the mechanisms governing coupled nanofluics fluxes. The idea is to characterize simultaneously the mass transport within the nanochannel and the electrical current driven through the nanochannel by the application of either salinity difference , pressure difference or voltage difference across the channel. The thesis is divided into three parts.In the first part, a custom made flow cell and experimental conditions to control and measure various fluxes is presented. The capability of cell to measure current or voltage under applied pressure or salinity gradient is presented taking the benefit of commercial nanoporous Nafion membrane.The second part is focused on an easy way of preparation of nanochannel sample in the form of single chip, in which nanochannel is interfaced to micro and macroscopic world. A well-controlled, 1.4µm long nanochannel of conical geometry with a maximum aspect ratio of 10 is fabricated. The minimum apex size of nanochannel achieved here is 50 nm which is about 30 times less than the length of channel. The presence of electrode directly at the interface of nano to micro cavity allow to perform electrical characterization of nanochannel with high precision.The third part of the thesis is devoted to the development of a method for the direct measurement of flow rate as low as 10 pL/min across a single nanochannel. This measurement approach combined with electrical measurement, could be used, in presence of pressure, voltage or salinity gradient, to measure the flow rate and the electrical current across a single nanochannel simultaneously and independently.
7

Développement d'un système autonome de détection et de quantification des microARNs avec une plateforme nanofluidique pour la prise en charge du cancer du pancréas / Development of an autonomous system for the detection and the quantification of microRNAs using a nanofluidic platform for pancreatic cancer detection

Cacheux, Jean 12 October 2018 (has links)
85% des patients atteints de cancer du pancréas présentent au diagnostic des formes avancées de la maladie qui empêchent leur prise en charge thérapeutique efficace. Il est donc urgent de mettre en évidence des marqueurs diagnostics permettant de détecter plus tôt ces cancers, mais également leur rechute, afin d'améliorer leur prise en charge. Les miARNs (micro acides ribonucléiques) sont des biomarqueurs du cancer du pancréas, présentant une valeur clinique démontrée pour la détection précoce des tumeurs et le suivi de la réponse au traitement. Cependant, les méthodes actuelles d'extraction et de détection de ces molécules ne sont pas adaptées à une utilisation clinique. Les nouvelles technologies issues des méthodes de micro et nanofabrication ont le potentiel de permettre la mise en place de tests diagnostiques, offrant un haut degré de portabilité et de robustesse, une lecture en temps réel, et à bas coût. Nous proposons ici une plateforme nanofluidique couplée à une détection en fluorescence permettant la mesure en temps réel d'interactions moléculaires en milieu hyper-confiné. Nous décrivons dans un premier temps la plateforme de détection via un modèle théorique à une dimension basé sur la dynamique moléculaire permettant de prédire la capture spécifique des miARNs dans un nanocanal fonctionnalisé. L'originalité du système réside dans une accroche non homogène des miARNs sur la surface du capteur. Ainsi, nous démontrons que l'étude du profil spatial d'hybridation engendré permet de déterminer l'affinité du miARN capturé avec la séquence sonde en une seule étape, sans lavage. Nous démontrons également l'excellente spécificité du biocapteur qui permet la discrimination rapide (moins de 10 minutes) de SND (single nucleotide difference). Les performances du dispositif pour des applications au plus près des problématiques biologiques dans le cadre de la détection du cancer du pancréas sont enfin discutées : les effets de la préparation d'échantillon types biofluides complexes sur l'extraction de miARNs sont étudiés, puis deux approches permettant la détection de miARNs endogènes sont décrites et comparées, conduisant à la détection de miARNs extraits de cultures cellulaires modèles du cancer du pancréas. / 85% of patients affected by pancreatic adenocarcinoma (PDA) are diagnosed at an advanced stage, preventing effective care and curative treatments. Therefore, it is urgent to identify reliable biomarkers for the early detection of disease status, including relapse. MiRNAs (micro ribonucleic acids) are biomarkers of PDA, with demonstrated clinical value for early detection of tumors and monitoring of response to treatment. However, current methods of extraction and detection of miRNA are not compatible with clinical use. New technologies derived from micro and nanofabrication methods have the potential to facilitate the implementation of diagnostic tests, by offering a high degree of portability and robustness, short time to results at low cost. Here, we propose a nanofluidic platform coupled to fluorescence detection for the real time measurement of molecular interactions in a confined environment. We first describe the detection platform via a one-dimension theoretical model based on molecular dynamics to predict the capture of miRNAs into biofunctionalized nanochannels. The originality of the system lies in the non-homogeneous hybridization of miRNA targets onto the sensor. We demonstrate that the analysis of the spatial hybridization profile enables the determination of the affinity of the captured miRNA with the probe sequence in a wash-free single step. We then show the rapid discrimination (less than 10 minutes) of single nucleotide difference (SND) using this strategy. The performance of the device in the context of pancreatic cancer detection is discussed: the effect of sample preparation of complex biofluids is studied and two labeling approaches compatible with the detection of endogenous miRNAs are described and compared, leading to the detection of miRNAs extracted from model cell cultures of pancreatic cancer.
8

Étude théorique et simulations de dynamique moléculaire du frottement liquide/solide dans des nanopores à base de graphite : rôle de la courbure dans le transport rapide des fluides à l'intérieur des nanotubes de carbone

Falk, Kerstin 23 September 2011 (has links) (PDF)
Ce manuscrit présente une description théorique des propriétés de transport exceptionnelles des liquides dans les nanotubes de carbone (CNT). La perméabilité de ces canaux dépasse largement ce qui est prévu par les équations de l'hydrodynamique et la condition limite de non-glissement. Au cours des dernières années, plusieurs groupes ont effectué des expériences d'écoulement de liquides dans des membranes de CNT. Une perméabilité très supérieure à l'attente classique a été observée. Dans ce contexte, nous avons mené une étude exhaustive du frottement liquide/solide qui apparaît pendant l'écoulement d'un fluide dans un CNT, à l'aide de simulations de dynamique moléculaire. Le coefficient de frottement a été mesuré pour différents systèmes en utilisant plusieurs méthodes indépendantes. Les simulations ont montré que le coefficient de frottement était indépendant du confinement, mais qu'il dépendait considérablement de la courbure de la paroi. Pour l'eau dans un CNT, le coefficient de frottement diminue avec le rayon du tube. Nous avons ensuite établi une expression approchée du coefficient de frottement, qui le relie à des propriétés microscopiques de l'interface entre le liquide et la paroi. Cette expression reproduit la dépendance du coefficient de frottement avec la courbure, et permet de l'expliquer à partir des trois paramètres statiques suivants : la densité surfacique de l'eau, la rugosité de la paroi et la commensurabilité entre les structures de la paroi et de la première couche d'eau à l'interface. En résumé, notre étude a permis une compréhension détaillée du frottement de l'eau dans les CNT, qui explique l'origine de sa valeur extrêmement basse.
9

Ecoulements de fluides complexes dans des canaux sub-microniques

Cuenca, Amandine 09 November 2012 (has links) (PDF)
Les écoulements de fluides complexes à l'échelle sub-micronique est une problématique rencontrée dans des domaines aussi divers que la récupération assistée du pétrole ou la lubrification des surfaces. Un fluide complexe a des propriétés rhéologiques riches, dues à la présence d'objets déformables en solution, comme les pelotes de polymère. Les phénomènes de surface, comme le glissement jouent un rôle important aux petites échelles. La question de l'effet du confinement sur la rhéologie de solutions de polymères est abordée. Nous caractérisons la taille des objets en solution et la rhéologie volumique des fluides. Grâce au développement d'une technique de photobleaching de fluorescence pour la mesure de vitesse d'écoulement dans des canaux sub-microniques, nous déterminons la viscosité effective des fluides en géométrie confinée. Cette approche expérimentale nous permet de montrer que le confinement induit une diminution de la viscosité effective des fluides. Une mesure directe des vitesses et longueurs de glissement est réalisée en microcanaux par vélocimétrie de particules (micro-PIV). Ces données mettent en évidence une réduction du glissement en géométrie confinée, qui est interprétée en termes de modification du mécanisme de glissement. Une distinction entre le comportement volumique et les phénomènes de surface ne permet plus de rendre compte du comportement du fluide à l'échelle sub-micronique. Une étude préliminaire des écoulements de solutions de tensioactifs à l'échelle sub-micronique est également proposée.
10

Préconcentration sélective immunologique en nanofluidique : vers l'identification rapide d'agents du risque biologique

Louer, Anne claire 12 September 2013 (has links) (PDF)
La nanofluidique est l'étude du transport de molécules au travers de nanostructures filtrantes dont la taille avoisine l'épaisseur de la double-couche diffuse à la surface du verre. A cette échelle de la centaine de nanomètres, la charge de surface qui induit une exclusion des ions négatifs à l'extérieur du "nanofiltre" produit un effet de rétention des biomolécules. Des études menées sur le transport électrocinétique au sein d'un nanocanal unique ont permis de montrer qu'il était théoriquement possible de concentrer des solutions, même fortement diluées, avec des taux élevés (jusqu'à 103) grâce à un effet de concentration de polarisation. Ce phénomène pourrait être exploité dans de nombreuses applications de diagnostic médical (analyses rapides et précoces d'échantillons bruts), de contrôle qualité (agroalimentaire) ou encore de défense (suivi continu de zones à risques pour la menace terroriste biologique).La modélisation de la dynamique des phénomènes d'électropréconcentration (sous champ électrique) et de rétention (sous gradient de pression) d'un nanocanal unique s'avère extrêmement ardue. Une multitude d'observations, souvent contradictoires quant au profil de préconcentration obtenu, ont été par ailleurs rapportées dans la littérature, avec des points focaux de préconcentration observés parfois du côté anodique ou du coté cathodique pour une même protéine. Certaines expériences observent ces points focaux soit très loin en amont dans le microcanal réservoir soit directement à proximité de l'entrée du nanocanal. C'est dans ce contexte qu'a été développé précédemment un modèle unidimensionnel permettant de prédire le profil de concentration de l'analyte en tout point de la structure MNM(Micro/Nano/Microcanal) proposée. Ce travail de modélisation a démontré l'existence de quatre régimes distincts: deux régimes coté anodique et deux régimes coté cathodique, plus ou moins éloignés du nanocanal. Ce modèle a mis en avant la sélectivité de ce processus vis-à-vis de la mobilité électrophorétique et de la valence des analytes préconcentrés, et il a permis d'appréhender un peu mieux la diversité des expériences rapportées. Cependant, le régime de préconcentration obtenu dépend du bioanalyte étudié. Il serait pourtant intéressant de ne plus être tributaire des caractéristiques intrinsèques de la solution analysée et de ne plus subir le régime obtenu mais, au contraire, d'effectuer ce que l'on pourrait appeler une électropréconcentration sélective du dit analyte. Ceci pourrait permettre d'effectuer deux étapes primordiales de tout diagnostic que sont la séparation et la préconcentration d'un mélange. Pour se faire, nous avons introduit un paramètre expérimental, une composante hydrodynamique (ou surpression), en sus du champ électrique, pour moduler la localisation de la préconcentration.A l'aide d'une technologie "tout verre" récemment brevetée, nous élaborons aujourd'hui des puces intégrant une nanofente dans un long microcanal. Ces puces sont parfaitement isolantes, biocompatibles et présentent une tenue exceptionnelle au cours du temps. Elles sont combinées à un banc expérimental "fait maison" complètement automatisé (interfacé avec Matlab), qui permet de contrôler les différents paramètres imposés. Les données recueillies sont ensuite prétraitées par d'autres codes Matlab que nous avons développés. Grâce à ces divers outils, de nombreuses expériences d'électropréconcentration "classique" (champ électrique seul) et assistée en pression ont été réalisées pour deux bioanalytes modèles : la fluorescéine et la BSA (Bovin Serum Albumin). Elles ont permis de déterminer les différents paramètres influant sur la préconcentration de ces deux analytes et de prouver la sélectivité et l'efficacité de la méthode proposée ici. Des régimes de préconcentration inattendus, stables et présentant des taux élevés ont en effet été obtenus au cours de cette thèse.

Page generated in 0.0643 seconds