• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 5
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 27
  • 22
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Device Structure And Material Exploration For Nanoscale Transistor

Majumdar, Kausik 06 1900 (has links) (PDF)
There is a compelling need to explore different material options as well as device structures to facilitate smooth transistor scaling for higher speed, higher density and lower power. The enormous potential of nanoelectronics, and nanotechnology in general, offers us the possibility of designing devices with added functionality. However, at the same time, the new materials come with their own challenges that need to be overcome. In this work, we have addressed some of these challenges in the context of quasi-2D Silicon, III-V semiconductor and graphene. Bulk Si is the most widely used semiconductor with an indirect bandgap of about 1.1 eV. However, when Si is thinned down to sub-10nm regime, the quasi-2D nature of the system changes the electronic properties of the material significantly due to the strong geometrical confinement. Using a tight-binding study, we show that in addition to the increase in bandgap due to quantization, it is possible to transform the original in direct bandgap to a direct one. The effective masses at different valleys are also shown to vary uniquely in an anisotropic way. This ultra-thin Si, when used as a channel in a double gate MOSFET structure, creates so called “volume in version” which is extensively investigated in this work. It has been found that the both the quantum confinement as well as the gating effect play a significant role in determining the spatial distribution of the charge, which in turn has an important role in the characteristics of transistor. Compound III-V semiconductors, like Inx Ga1-xAs, provide low effective mass and low density of states. This, when coupled with strong confinement in a nanowire channel transistor, leads to the “Ultimate Quantum Capacitance Limit” (UQCL) regime of operation, where only the lowest subband is occupied. In this regime, the channel capacitance is much smaller than the oxide capacitance and hence dominates in the total gate capacitance. It is found that the gate capacitance change qualitatively in the UQCL regime, allowing multi-peak, non-monotonic capacitance-voltage characteristics. It is also shown that in an ideal condition, UQCL provides improved current saturation, on-off ratio and energy-delay product, but a degraded intrinsic gate delay. UQCL shows better immunity towards series resistance effect due to increased channel resistance, but is more prone to interfacial traps. A careful design can provide a better on-off ratio at a given gate delay in UQCL compared to conventional MOSFET scenario. To achieve the full advantages of both FinFET and HEMT in III-V domain, a hybrid structure, called “HFinFET” is proposed which provides excellent on performance like HEMT with good gate control like FinFET. During on state, the carriers in the channel are provided using a delta-doped layer(like HEMT) from the top of a fin-like non-planar channel, and during off state, the gates along the side of the fin(like FinFET) help to pull-off the carriers from the channel. Using an effective mass based coupled Poisson-Schrodinger simulation, the proposed structure is found to outperform the state of the art planar and non-planar MOSFETs. By careful optimization of the gate to source-drain underlap, it is shown that the design window of the device can be increased to meet ITRS projections at similar gate length. In addition, the performance degradation of HFinFET in presence of interface traps has been found to be significantly mitigated by tuning the underlap parameter. Graphene is a popular 2D hexagonal carbon crystal with extraordinary electronic, mechani-cal and chemical properties. However, the zero band gap of grapheme has limited its application in digital electronics. One could create a bandgap in grapheme by making quasi-1D strips, called nanoribbon. However, the bandgap of these nanoribbons depends on the the type of the edge, depending on which, one can obtain either semiconducting or metallic nanoribbon. It has been shown that by the application of an external transverse field along the sides of a nanoribbon, one could not only modulate the magnitude of the bandgap, but also change it from direct to indirect. This could open up interesting possibilities for novel electronic and optoelectronic applications. The asymmetric potential distribution inside the nanoribbon is found to result in such direct to indirect bandgap transition. The corresponding carrier masses are also found to be modulated by the external field, following a transition from a“slow”electron to a“fast” electron and vice-versa. Experimentally, it is difficult to control the bandgap in nanoribbons as precise edge control at nanometer scale is nontrivial. One could also open a bandgap in a bilayer graphene, by the application of vertical electric field, which has raised a lot of interest for digital applications. Using a self-consistent tight binding theory, it is found that, inspite of this bandgap opening, the intrinsic bias dependent electronic structure and the screening effect limit the subthreshold slope of a metal source drain bilayer grapheme transistor at a relatively higher value-much above the Boltzmann limit. This in turn reduces the on-off ratio of the transistor significantly. To overcome this poor on-off ratio problem, a semiconductor source-drain structure has been proposed, where the minority carrier injection from the drain is largely switched off due to the bandgap of the drain. Using a self-consistent Non-Equilibrium Green’s Function(NEGF) approach, the proposed device is found to be extremely promising providing unipolar grapheme devices with large on-off ratio, improved subthreshold slope and better current saturation. At high drain bias, the transport properties of grapheme is extremely intriguing with a number of nontrivial effects. Optical phonons in monolayer grapheme couple with carriers in a much stronger way as compared to a bilayer due to selection rules. However, it is difficult to experimentally probe this through transport measurements in substrate supported grapheme as the surface polar phonons with typical low activation energy dominates the total scattering. However, at large drain field, the carriers obtain sufficient energy to interact with the optical phonons, and create so called ‘hot phonons’ which we have experimentally found to result in a negative differential conductance(NDC). The magnitude of this NDC is found to be much stronger in monolayer than in bilayer, which agrees with theoretical calculations. This NDC has also been shown to be compensated by extra minority carrier injection from drain at large bias resulting in an excellent current saturation through a fundamentally different mechanism as compared to velocity saturation. A transport model has been proposed based on the theory, and the experimental observations are found to be in agreement with the model.
22

Physics Of Conductivity Noise In Graphene

Pal, Atindra Nath 01 1900 (has links) (PDF)
This thesis describes the conductivity fluctuations or noise measurements in graphenebased field effect transistors. The main motivation was to study the effect of disorder on the electronic transport in graphene. In chapter 4, we report the noise measurements in graphene field effect (GraFET) transistors with varying layer numbers. We found that the density dependence of noise behaves oppositely for single and multilayer graphene. An analytical model has been proposed to understand the microscopic mechanism of noise in GraFETs, which reveals that noise is intimately connected to the band structure of graphene. Our results outline a simple portable method to separate the single layer devices from multi layered ones. Chapter 5 discusses the noise measurements in two systems with a bandgap: biased bilayer graphene and graphene nanoribbon. We show that noise is sensitive to the presence of a bandgap and becomes minimum when the bandgap is zero. At low temperature, mesoscopic graphene devices exhibit universal conductance fluctuations (UCF) arising due to quantum interference effect. In chapter 6, we have studied UCF in single layer graphene and show that it can be sensitive to the presence of various physical symmetries. We report that time reversal symmetry exists in graphene at low temperature and, for the first time, we observed enhanced UCF at lower carrier density where the scattering is dominated by the long-range Coulomb scattering. Chapter 7 presents the transport and noise measurements in single layer graphene in the quantum Hall regime. At ultra-low temperature several broken symmetry states appear in the lowest Landau level, which originate possibly due to strong electron-electron interactions. Our preliminary noise measurements in the quantum Hall regime reveal that the noise is sensitive to the bulk to edge transport and can be a powerful tool to investigate these new quantum states.
23

Etude des propriétés électroniques du graphène et des matériaux à base de graphène sous champs magnétiques intenses / Electronics properties of graphene and graphene-based systems under pulsed magnetic field

Poumirol, Jean-Marie 22 July 2011 (has links)
Cette thèse présente des mesures de transport électronique dans des systèmes bi-dimensionels et uni-dimensionels à base de graphène sous champ magnétique pulsé (60T). L'objectif de ces travaux consiste à sonder la dynamique des porteurs de charge en modifiant la densité d'états du système par l'application d'un champ magnétique. Une première partie est consacrée à l'étude de l'influence des îlots électrons-trous sur les propriétés de transport du graphène au voisinage du point de neutralité de charge. Nous avons constaté l'apparition de fluctuations de la magnéto-résistance liée à la transition progressive des îlots de taille finie dans le régime quantique lorsque le champ magnétique augmente. Nous avons aussi montré que la variation de l'énergie de Fermi, liée à l'augmentation de la dégénérescence orbitale des niveaux de Landau, est directement responsable d'une modification du ratio entre électrons et trous. Dans une deuxième partie consacrée à l'étude des nanorubans de graphène, nous avons exploré deux gammes de largeur différentes. Dans les rubans larges (W>60nm), la quantification de la résistance a été observée révélant ainsi une signature évidente de la quantification du spectre énergétique en niveaux de Landau. Le confinement magnétique des porteurs de charge sur les bords des nanorubans a permis de mettre en évidence, pour la première fois, la levée de dégénérescence de vallée liée à la configuration armchair du ruban. Pour des rubans plus étroits (W<30nm), en présence de défauts de bord et d'impuretés chargées, la formation progressive des états de bords chiraux donne lieu à une magnéto-conductance positive quelque soit la densité de porteurs. Enfin, la dernière partie traite du magnéto-transport dans le graphene multi-feuillet. En particulier, nous avons observé l'effet Hall quantique dans les systèmes tri-couche de graphène. Une étude comparative des résultats expérimentaux avec des simulations numériques a permis de déterminer l'empilement rhombohedral des trois couches de graphene constituant l'échantillon / This thesis presents transport measurements on two-dimensional and one-dimensional graphene-based systems under pulsed magnetic field (60T). The objective of this work is to probe the dynamics of charge carriers by changing the density of states of the system by applying a strong magnetic field. The first part is devoted to the study of the influence of electron-hole pockets on the transport properties of graphene near the charge neutrality point. We found the appearance of fluctuations in the magneto-resistance due to the progressive transition of the electron/hole puddles of finite size in the quantum regime as the magnetic field increases. We have also shown that the variation of the Fermi energy, due to the increase of orbital Landau level degeneracy, is directly responsible of a change in the electron and hole ratio. The second part is devoted to the study of graphene nano-ribbons, we explored two different ranges of width. In the broad nano-ribbons of width W larger than 60 nm, the quantification of the resistance is observed, revealing a clear signature of the quantization of the energy spectrum into Landau levels. We show for the first time the effect of valley degeneracy lifting induced by the magnetic confinement of charge carriers at the edges of the armchair nano-ribbons. For narrower nano-ribbons (W <30 nm) in presence of edge defects and charged impurities, the progressive formation of chiral edge states leads to a positive magneto-conductance whatever the carrier density. Finally, the last part of this thesis deals with magneto-transport fingerprints in multi-layer graphene as we observed the quantum Hall effect in tri-layer graphene. A comparative study of the experimental results with numerical simulations was used to determine the rhombohedral stacking of three layers of graphene in the sample
24

Analysis and Optimization of Graphene FET based Nanoelectronic Integrated Circuits

Joshi, Shital 05 1900 (has links)
Like cell to the human body, transistors are the basic building blocks of any electronics circuits. Silicon has been the industries obvious choice for making transistors. Transistors with large size occupy large chip area, consume lots of power and the number of functionalities will be limited due to area constraints. Thus to make the devices smaller, smarter and faster, the transistors are aggressively scaled down in each generation. Moore's law states that the transistors count in any electronic circuits doubles every 18 months. Following this Moore's law, the transistor has already been scaled down to 14 nm. However there are limitations to how much further these transistors can be scaled down. Particularly below 10 nm, these silicon based transistors hit the fundamental limits like loss of gate control, high leakage and various other short channel effects. Thus it is not possible to favor the silicon transistors for future electronics applications. As a result, the research has shifted to new device concepts and device materials alternative to silicon. Carbon is the next abundant element found in the Earth and one of such carbon based nanomaterial is graphene. Graphene when extracted from Graphite, the same material used as the lid in pencil, have a tremendous potential to take future electronics devices to new heights in terms of size, cost and efficiency. Thus after its first experimental discovery of graphene in 2004, graphene has been the leading research area for both academics as well as industries. This dissertation is focused on the analysis and optimization of graphene based circuits for future electronics. The first part of this dissertation considers graphene based transistors for analog/radio frequency (RF) circuits. In this section, a dual gate Graphene Field Effect Transistor (GFET) is considered to build the case study circuits like voltage controlled oscillator (VCO) and low noise amplifier (LNA). The behavioral model of the transistor is modeled in different tools: well accepted EDA (electronic design automation) and a non-EDA based tool i.e. \simscape. This section of the dissertation addresses the application of non-EDA based concepts for the analysis of new device concepts, taking LC-VCO and LNA as a case study circuits. The non-EDA based approach is very handy for a new device material when the concept is not matured and the model files are not readily available from the fab. The results matches very well with that of the EDA tools. The second part of the section considers application of multiswarm optimization (MSO) in an EDA tool to explore the design space for the design of LC-VCO. The VCO provides an oscillation frequency at 2.85 GHz, with phase noise of less than -80 dBc/Hz and power dissipation less than 16 mW. The second part of this dissertation considers graphene nanotube field effect transistors (GNRFET) for the application of digital domain. As a case study, static random access memory (SRAM) hs been design and the results shows a very promising future for GNRFET based SRAM as compared to silicon based transistor SRAM. The power comparison between the two shows that GNRFET based SRAM are 93% more power efficient than the silicon transistor based SRAM at 45 nm. In summary, the dissertation is to expected to aid the state of the art in following ways: 1) A non-EDA based tool has been used to characterize the device and measure the circuit performance. The results well matches to that obtained from the EDA tools. This tool becomes very handy for new device concepts when the simulation needs to be fast and accuracy can be tradeoff with. 2)Since an analog domain lacks well-design design paradigm, as compared to digital domain, this dissertation considers case study circuits to design the circuits and apply optimization. 3) Performance comparison of GNRFET based SRAM to the conventional silicon based SRAM shows that with maturation of the fabrication technology, graphene can be very useful for digital circuits as well.
25

Elektronentransport in Graphen-Nanobändern mit Kantenrauheit

Rodemund, Tom 07 December 2018 (has links)
Diese Arbeit untersucht die Auswirkungen von Kantendefekten auf die Leitfähigkeit von Graphen-Nanobändern (GNRs). Es werden die Kantenatome von zigzag- und armchair-GNRs zufällig umverteilt. Mittels Tight-Binding-Verfahren und rekursivem Greenfunktions-Formalismus werden die Transmissionsspektren der Systeme berechnet und mit Landauer-Formalismus die Leitfähigkeit bei variierter Länge bestimmt. Aus der Leitfähigkeit in Abhängigkeit von der Länge wird die Lokalisierungslänge nach Anderson ermittelt. Es wurde berechnet, dass die Lokalisierungslänge bei rauhen zigzag-GNRs gegen einen konstanten Wert strebt. Bei armchair-GNRs wurde ein linearer Abfall der Lokalisierungslänge bei zunehmender Rauheit vorgefunden.:1. Einleitung 2. Physikalische Grundlagen 2.1 Graphen 2.2 Landauer-Formalismus 2.3 Tight-Binding-Verfahren 2.4 Greenfunktions-Formalismus 2.5 Anderson-Lokalisierung 3. Methoden 3.1 Bandstrukturen 3.2 Strukturerzeugung 3.2.1 Allgemeines 3.2.2 zigzag-GNRs 3.2.3 armchair-GNRs 3.3 Rauheitsparameter 3.4 Leitfähigkeit 3.5 Lokalisierungslänge 4. Ergebnisse 4.1 Atomumverteilung 4.2 Transmissionsspektren 4.3 Leitfähigkeit 4.4 Lokalisierungslängen 4.5 Weitere Rauheitsmaße 5. Zusammenfassung und Ausblick
26

On-surface synthesis of porous graphene nanoribbons containing nonplanar [14]annulene pores

Ajayakumar, M. R., Di Giovannantonio, Marco, Pignedoli, Carlo A., Yang, Lin, Ruffieux, Pascal, Ma, Ji, Fasel, Roman, Feng, Xinliang 22 January 2024 (has links)
The precise introduction of nonplanar pores in the backbone of graphene nanoribbon represents a great challenge. Here, we explore a synthetic strategy toward the preparation of nonplanar porous graphene nanoribbon from a predesigned dibromohexabenzotetracene monomer bearing four cove-edges. Successive thermal annealing steps of the monomers indicate that the dehalogenative aryl-aryl homocoupling yields a twisted polymer precursor on a gold surface and the subsequent cyclodehydrogenation leads to a defective porous graphene nanoribbon containing nonplanar [14]annulene pores and five-membered rings as characterized by scanning tunneling microscopy and noncontact atomic force microscopy. Although the C–C bonds producing [14] annulene pores are not achieved with high yield, our results provide new synthetic perspectives for the on-surface growth of nonplanar porous graphene nanoribbons.
27

Solution Synthesis and Characterization of a Long and Curved Graphene Nanoribbon with Hybrid Cove–Armchair–Gulf Edge Structures

Yang, Lin, Zheng, Wenhao, Osella, Silvio, Droste, Jörn, Komber, Hartmut, Liu, Kun, Böckmann, Steffen, Beljonne, David, Hansen, Michael Ryan, Bonn, Mischa, Wang, Hai I., Liu, Junzhi, Feng, Xinliang, Ma, Ji 22 April 2024 (has links)
Curved graphene nanoribbons (GNRs) with hybrid edge structures have recently attracted increasing attention due to their unique band structures and electronic properties as a result of their nonplanar conformation. This work reports the solution synthesis of a long and curved multi-edged GNR (cMGNR) with unprecedented cove–armchair–gulf edge structures. The synthesis involves an efficient A2B2-type Diels–Alder polymerization between a diethynyl-substituted prefused bichrysene monomer (3b) and a dicyclopenta[e,l]pyrene-5,11-dione derivative (6) followed by FeCl3-mediated Scholl oxidative cyclodehydrogenation of the obtained polyarylenes (P1). Model compounds 1a and 1b are first synthesized to examine the suitability and efficiency of the corresponding polymers for the Scholl reaction. The successful formation of cMGNR from polymer P1 bearing prefused bichrysene units is confirmed by FTIR, Raman, and solid-state NMR analyses. The cove-edge structure of the cMGNR imparts the ribbon with a unique nonplanar conformation as revealed by density functional theory (DFT) simulation, which effectively enhances its dispersibility in solution. The cMGNR has a narrow optical bandgap of 1.61 eV, as estimated from the UV–vis absorption spectrum, which is among the family of low-bandgap solution-synthesized GNRs. Moreover, the cMGNR exhibits a carrier mobility of ≈2 cm2 V−1 s−1 inferred from contact-free terahertz spectroscopy.

Page generated in 0.0547 seconds