• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 5
  • 4
  • Tagged with
  • 15
  • 13
  • 7
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Beiträge zum Verständnis nahfeldoptischer Phänomene an Raster-Sonden-Geometrien

Demming-Janssen, Frank 12 August 2002 (has links) (PDF)
Es werden nahfeldoptische Phänomene an Raster-Sonden-Geometrien untersucht. Hierzu zählen die Feldverstärkung an laserbestrahlten Rastersondenspitzen und die Feldverteilung in nahfeldoptischen Apertur- und Koaxialspitzen. Zur Berechnung der Feldverteilung werden verschiedene numerische Verfahren wie die Methode der Randelemente (BEM) und die Methode der Finiten Integration (FIT) angewendet. Die durchgeführten Berechnungen sagen eine erhebliche Feldüberhöhung im Nahfeld von laserbestrahlten Rastersondenspitzen voraus. Es wird diskutiert, ob diese Feldüberhöhung ursächlich für die Modifikation der Oberfläche unter der Sondenspitze verantwortlich ist. Zur weiteren Klärung der Strukturierungsmechanismen wird die Stromantwort des Tunnelübergangs auf Laserbestrahlung experimentell untersucht. Die Detektion des Stromsignals erfolgt mit einem neuen Vorverstärker, der die Eigenschaften einer hohen Eingangsimpedanz, einer hohen Transimpedanz und einer hohen Bandbreite miteinander vereinigt. Weiterhin wird die Feldverteilung in SNOM-Spitzen, insbesondere in den sogenannten Koaxialspitzen, bestimmt. Es wird untersucht wie sich koaxial Moden in koaxialen SNOM-Spitzen anregen lassen und wie sie sich ausbreiten. Ausgehend von bereits existierenden Entwürfen solcher Spitzen wird diskutiert, welche Strukturen sich zur Anregung von koaxialen Moden eignen.
2

Ordered Structures from Nanoparticles/Block Copolymer Hybrids: Ex-situ Approaches toward Binary and Ternary Nanocomposites

Horechyy, Andriy 28 July 2011 (has links) (PDF)
Within the field of modern technology, nanomatrials, such as nanoparticles (NP), nanorods (NR), quantum dots (QD) etc. are, probably, the most prominent and promising candidates for current and future technological applications. The interest in nanomaterials arise not only form the continuous tendency towards dimensions minimisation of electronic devices, but also due to the fact, that new and, often, unique properties are acquired by the matter at the length scale between 1 and 100 nm. The ability to organize nanoparticles into ordered arrays extends the range of useful NP-based systems that can be fabricated and the diversity of functionalities they can serve. However, in order to successfully exploit nanoparticle assemblies in technological applications and to ensure efficient scale-up, a high level of direction and control is required. Recently, block copolymers (BCP) have attracted much attention as a powerful and very promising tool for creation of nanoscale ordered structures owing to their self-assembling properties. In addition, these systems offer the possibility to fabricate nanostructured composite materials via incorporation of certain nanoadditives (i.e. NPs). The concept is that by selective inclusion of the nanoparticles into one of the blocks of a self-assembling copolymer, the nanoparticles are forced into a defined spatial arrangement determined by the phase morphology of the block copolymer. In present work self-assembling phenomena of block copolymers was exploited to fabricate binary (NP/BCP) and ternary (NP1/NP2/BCP) composites, filled with pre-synthesized nanoparticles of various nature. Polystyrene-block-polyvinylpyridine block copolymers (PS-b-PVP) of various composition and molecular weight were used for fabrication of nanocomposites. The first part of the thesis focuses on fabrication of functional BCP-based composites containing magnetic nanoparticles (MNP), selectively assembled within one of the blocks of BCP matrix. Magnetic nanoparticles (MNPs) were selected among others since, as for today, there is the least number of successful results reported in literature on their selective incorporation into one of the phases of a BCP matrix. From the application point of view fabrication of periodic arrays of “magnetic domains” with periodicity on nanometer scale is also of interest for potential use in high-density magnetic data storage devices. For this purpose, ferrite-type MNP (Fe3O4, CoFe2O4) having apparent affinity toward polyvinylpyridine (PVP) phase were prepared using simple one-pot synthesis. Highly selective nanoparticles segregation into PVP domains of BCP was achieved owing to the presence of sparse stabilizing organic shell on the nanoparticles surface. Importantly, as-prepared MNPs did not require any additional surface modification step to acquire affinity towards PVP phase. Appropriate selection of annealing conditions allowed to produce patterns of nearly perfect degree of lateral order over relatively large surface large area (more than 4 sq µm). The second task of present work was fabrication of ternary NP1/NP2/BCP hybrid composites with two different types of nanoparticles being selectively localized in different microdomains of phase segregated block copolymer matrix. So far as only few studies have been reported on developing of approaches toward ternary composites, creation of alternative and straight forward routes toward such systems is still a challenge. In the frame of this part of present work, silver nanoparticles (AgNPs) covered with polystyrene shell were prepared, with the purpose to be incorporated into polystarene phase of phase separated PS-b-PVP block copolymer matrix. Two different approaches were tested to achieve desired three-component system. First, supposed simple blending of block copolymer and two kinds of nanoparticles having specific affinity toward different blocks of BCP in common solvent. After preparation of MNP/AgNP/BCP composite thin film and subsequent solvent vapour annealing, different domains of microphase segregated PS-b-PVP BCP were filled with different type of nanoparticles. Alternatively, step-wise approach for nanoparticles incorporation was developed and implemented for successful selective nanoparticles incorporation. For this purpose polystyrene stabilized AgNPs (i.e. NP1) were initially mixed with PS-b-PVP BCP to produce composite thin films having nanoparticles selectively located within PS microdomains, while citrate-stabilized second type nanoparticles (i.e NP2) were deposited from their aqueous solutions into PVP domains of AgNP/PS-b-PVP composites. By partition of nanoparticles incorporation procedure into two distinct steps it was also possible to increase effective loading of each type of NPs into BCP matrix.
3

Ordered Structures from Nanoparticles/Block Copolymer Hybrids: Ex-situ Approaches toward Binary and Ternary Nanocomposites

Horechyy, Andriy 01 July 2011 (has links)
Within the field of modern technology, nanomatrials, such as nanoparticles (NP), nanorods (NR), quantum dots (QD) etc. are, probably, the most prominent and promising candidates for current and future technological applications. The interest in nanomaterials arise not only form the continuous tendency towards dimensions minimisation of electronic devices, but also due to the fact, that new and, often, unique properties are acquired by the matter at the length scale between 1 and 100 nm. The ability to organize nanoparticles into ordered arrays extends the range of useful NP-based systems that can be fabricated and the diversity of functionalities they can serve. However, in order to successfully exploit nanoparticle assemblies in technological applications and to ensure efficient scale-up, a high level of direction and control is required. Recently, block copolymers (BCP) have attracted much attention as a powerful and very promising tool for creation of nanoscale ordered structures owing to their self-assembling properties. In addition, these systems offer the possibility to fabricate nanostructured composite materials via incorporation of certain nanoadditives (i.e. NPs). The concept is that by selective inclusion of the nanoparticles into one of the blocks of a self-assembling copolymer, the nanoparticles are forced into a defined spatial arrangement determined by the phase morphology of the block copolymer. In present work self-assembling phenomena of block copolymers was exploited to fabricate binary (NP/BCP) and ternary (NP1/NP2/BCP) composites, filled with pre-synthesized nanoparticles of various nature. Polystyrene-block-polyvinylpyridine block copolymers (PS-b-PVP) of various composition and molecular weight were used for fabrication of nanocomposites. The first part of the thesis focuses on fabrication of functional BCP-based composites containing magnetic nanoparticles (MNP), selectively assembled within one of the blocks of BCP matrix. Magnetic nanoparticles (MNPs) were selected among others since, as for today, there is the least number of successful results reported in literature on their selective incorporation into one of the phases of a BCP matrix. From the application point of view fabrication of periodic arrays of “magnetic domains” with periodicity on nanometer scale is also of interest for potential use in high-density magnetic data storage devices. For this purpose, ferrite-type MNP (Fe3O4, CoFe2O4) having apparent affinity toward polyvinylpyridine (PVP) phase were prepared using simple one-pot synthesis. Highly selective nanoparticles segregation into PVP domains of BCP was achieved owing to the presence of sparse stabilizing organic shell on the nanoparticles surface. Importantly, as-prepared MNPs did not require any additional surface modification step to acquire affinity towards PVP phase. Appropriate selection of annealing conditions allowed to produce patterns of nearly perfect degree of lateral order over relatively large surface large area (more than 4 sq µm). The second task of present work was fabrication of ternary NP1/NP2/BCP hybrid composites with two different types of nanoparticles being selectively localized in different microdomains of phase segregated block copolymer matrix. So far as only few studies have been reported on developing of approaches toward ternary composites, creation of alternative and straight forward routes toward such systems is still a challenge. In the frame of this part of present work, silver nanoparticles (AgNPs) covered with polystyrene shell were prepared, with the purpose to be incorporated into polystarene phase of phase separated PS-b-PVP block copolymer matrix. Two different approaches were tested to achieve desired three-component system. First, supposed simple blending of block copolymer and two kinds of nanoparticles having specific affinity toward different blocks of BCP in common solvent. After preparation of MNP/AgNP/BCP composite thin film and subsequent solvent vapour annealing, different domains of microphase segregated PS-b-PVP BCP were filled with different type of nanoparticles. Alternatively, step-wise approach for nanoparticles incorporation was developed and implemented for successful selective nanoparticles incorporation. For this purpose polystyrene stabilized AgNPs (i.e. NP1) were initially mixed with PS-b-PVP BCP to produce composite thin films having nanoparticles selectively located within PS microdomains, while citrate-stabilized second type nanoparticles (i.e NP2) were deposited from their aqueous solutions into PVP domains of AgNP/PS-b-PVP composites. By partition of nanoparticles incorporation procedure into two distinct steps it was also possible to increase effective loading of each type of NPs into BCP matrix.
4

Markierungsfreie Proteinanalytik mit oberflächenverstärkter Ramanspektroskopie / Label-free protein analytics with surface-enhanced Raman spectroscopy

Christou, Konstantin 25 August 2009 (has links)
No description available.
5

Beiträge zum Verständnis nahfeldoptischer Phänomene an Raster-Sonden-Geometrien

Demming-Janssen, Frank 07 September 2001 (has links)
Es werden nahfeldoptische Phänomene an Raster-Sonden-Geometrien untersucht. Hierzu zählen die Feldverstärkung an laserbestrahlten Rastersondenspitzen und die Feldverteilung in nahfeldoptischen Apertur- und Koaxialspitzen. Zur Berechnung der Feldverteilung werden verschiedene numerische Verfahren wie die Methode der Randelemente (BEM) und die Methode der Finiten Integration (FIT) angewendet. Die durchgeführten Berechnungen sagen eine erhebliche Feldüberhöhung im Nahfeld von laserbestrahlten Rastersondenspitzen voraus. Es wird diskutiert, ob diese Feldüberhöhung ursächlich für die Modifikation der Oberfläche unter der Sondenspitze verantwortlich ist. Zur weiteren Klärung der Strukturierungsmechanismen wird die Stromantwort des Tunnelübergangs auf Laserbestrahlung experimentell untersucht. Die Detektion des Stromsignals erfolgt mit einem neuen Vorverstärker, der die Eigenschaften einer hohen Eingangsimpedanz, einer hohen Transimpedanz und einer hohen Bandbreite miteinander vereinigt. Weiterhin wird die Feldverteilung in SNOM-Spitzen, insbesondere in den sogenannten Koaxialspitzen, bestimmt. Es wird untersucht wie sich koaxial Moden in koaxialen SNOM-Spitzen anregen lassen und wie sie sich ausbreiten. Ausgehend von bereits existierenden Entwürfen solcher Spitzen wird diskutiert, welche Strukturen sich zur Anregung von koaxialen Moden eignen.
6

Controlled orientation and periodicity of surface rippling on compliant and brittle amorphous materials induced by scanning probe lithography

Hennig, Jana 21 March 2023 (has links)
This thesis reports on the controlled formation of surface rippling structures induced by tip scanning processes on compliant and brittle materials. Periodic surface structures were generated on polymeric and vitreous materials and with different length scales. Two aspects were focused on: the controlling of orientation and periodicity of the resulting structures via proper tuning the scan conditions and the physical mechanisms ruling the early stages of plowing wear causing the rippling effect. Specifically the influence of the scanned area geometric shape on the orientation of the rippling structure was investigated on a polystyrene surface. Nanoripples were induced by scanning the surface with a silicon tip using atomic force microscopy and dedicated scripts. Inside a structured area two ripple orientations can be observed: near boundaries the ripple orientation is determined by boundary orientation and regions away from the boundaries the ripples are aligned in a steady orientation. This steady orientation can be tuned by the distance between the scan lines. In the boundary regions the orientation of the ripples is different from steady orientation. The orientation of the boundaries clearly affected the orientation of the ripples and the tendency of the ripples to align in a steady angle defined by the scan parameters could be significantly modified. Geometric shapes like squares, circles, stars, pentagons and hearts allowed to distinguish the influence of curved and straight boundaries. Straight boundaries with different orientations allowed a detailed analysis of the influence of the angle on the rippling process. Straight boundaries inclined in the direction of the steady state angle of ripple orientation previously defined generate a uniform ripple pattern covering the entire scan area. The aspect of wear originating from the rippled surface was also investigated on similar polystyrene surfaces. As a result of repetitive scan passes spherical particles with diameters up to 250 nm were nucleated and detached from the surface. The particles originate from the crests of the ripples formed in the first scan pass. As proven by the lateral force signal the detachment occurs smoothly without a static friction peak suggesting a crazing mechanism induced by the scanning tip. Once detached from the surface the particles are displaced and piled up along the edges of scanned area. The formation of periodic surface structures was also investigated on a brittle silica glass. By a combination of scratch tests performed with a diamond microtip mounted in a nanoindenter and imaging with atomic force microscopy the existence of a periodic herringbone pattern inside scratch grooves on silica glass was proven. The rippled pattern was induced in the scratch process when the indenter was pulled laterally along the surface resulting in a microscopic scratch groove. The load was varied up to 30 nN and the scan velocity up to 500 µm/s. The resulting periodicity of the structures was found to increase linearly with increasing scratch velocity. The repetition distance was in the range of sub-µm and the corrugation in the range of a few hundred nm, which was well below indentation depth. In both cases, the surface rippling on a polymeric surfaces and the formation of a periodic pattern inside microscratches on a glass surface, the results were found to be consistent with minimalistic theoretical models for stick-slip.:Contents i Abstract iii Zusammenfassung v 1. Introduction 1 1.1. Periodic surface structures – relevance and formation 1 1.2. Surface rippling created by scanning probe lithography 2 1.3. Wear and nanoparticle release 4 1.4. Aim and outline 4 2. Experimental methods and fundamental concepts 6 2.1. Nanolithography 6 2.2. Atomic force microscopy 7 2.3. Nanoindentation and -scratching 10 2.4. Wear 11 2.5. Stick-slip motion 12 2.6. Spin coating 14 3. Surface rippling on polystyrene 15 3.1. Background and motivation 15 3.2. Methods 20 3.2.1. Sample preparation 20 3.2.2. Scanning probe lithography process 20 3.2.3. Imaging of structures and nanoparticles 21 3.3. Effect of boundaries on the orientation of surface rippling 22 3.4. Particle release as a result of surface rippling 31 4. Periodic structures inside scratches on silica glass 37 4.1. Background and motivation 37 4.2. Methods 38 4.2.1. Sample preparation 39 4.2.2. Scratch tests 39 4.2.3. AFM imaging and analysis 39 4.3. Surface rippling induces by scraping with a sharp indenter 40 5. Conclusion and outlook 49 A. Appendix surface rippling on polymers I B. Appendix surface rippling on glass IV Acknowledgements VII References IX
7

Präparation und Charakterisierung von TMR-Nanosäulen / Preparation and characterisation of TMR-Nanopillars

Höwler, Marcel 27 August 2012 (has links) (PDF)
Diese Arbeit befasst sich mit der Nanostrukturierung von magnetischen Schichtsystemen mit Tunnelmagnetowiderstandseffekt (TMR-Effekt), welche in der Form von Nanosäulen in magnetoresistiven Speichern (MRAM) eingesetzt werden. Solche Nanosäulen können zukünftig ebenfalls als Nanoemitter von Mikrowellensignalen eine Rolle spielen. Dabei wird von der Auswahl eines geeigneten TMR-Schichtsystems mit einer MgO-Tunnelbarriere über die Präparation der Nanosäulen mit Seitenisolierung bis hin zum Aufbringen der elektrischen Zuleitungen eine komplette Prozesskette entwickelt und optimiert. Die Strukturen werden mittels optischer Lithographie und Elektronenstrahllithographie definiert, die anschließende Strukturübertragung erfolgt durch Ionenstrahlätzen (teilweise reaktiv) sowie durch Lift-off. Rückmeldung über Erfolg oder Probleme bei der Strukturierung geben Transmissionselektronenmikroskopie (teilweise mit Zielpräparation per Ionenfeinstrahl, FIB), Rasterelektronenmikroskopie sowie die Lichtmikroskopie. Es können so TMR-Nanosäulen mit minimalen Abmessungen von bis zu 69 nm x 71 nm hergestellt werden, von denen Nanosäulen mit Abmessungen von 65 nm x 87 nm grundlegend magneto-elektrisch charakterisiert worden sind. Dies umfasst die Bestimmung des TMR-Effektes und des Widerstandes der Tunnelbarriere (RA-Produkt). Weiterhin wurde das Verhalten der magnetischen Schichten bei größeren Magnetfeldern bis +-200mT sowie das Umschaltverhalten der magnetisch freien Schicht bei verändertem Winkel zwischen magnetischer Vorzugsachse des TMR-Elementes und dem äußeren Magnetfeld untersucht. Der Nachweis des Spin-Transfer-Torque Effektes an den präparierten TMR-Nanosäulen ist im Rahmen dieser Arbeit nicht gelungen, was mit dem zu hohen elektrischen Widerstand der verwendeten Tunnelbarriere erklärt werden kann. Mit dünneren Barrieren konnte der Widerstand gesenkt werden, allerdings führt ein Stromfluss durch diese Barrieren schnell zur Degradation der Barrieren. Weiterführende Arbeiten sollten das Ziel haben, niederohmige und gleichzeitig elektrisch belastbare Tunnelbarrieren in einem entsprechenden TMR-Schichtsystem abzuscheiden. Eine erste Auswahl an Ansatzpunkten dafür aus der Literatur wird im Ausblick gegeben. / This thesis deals with the fabrication of nanopillars with tunnel magnetoresistance effect (TMR-effect), which are used in magnetoresistive memory (MRAM) and may be used as nanooscillators for future near field communication devices. Starting with the selection of a suitable TMR-layer stack with MgO-tunnel barrier, the whole process chain covering the fabrication of the nanopillars, sidewall isolation and preparation of the supply lines on top is developed and optimised. The structures are defined by optical and electron beam lithography, the subsequent patterning is done by ion beam etching (partially reactive) and lift-off. Techniques providing feedback on the nanofabrication are transmission electron microscopy (partially with target preparation by focused ion beam, FIB), scanning electron microscopy and optical microscopy. In this way nanopillars with minimal dimensions reaching 69 nm x 71 nm could be fabricated, of which nanopillars with a size of 65 nm x 87 nm were characterized fundamentally with respect to their magnetic and electric properties. This covers the determination of the TMR-effect and the resistance of the tunnel barrier (RA-product). In addition, the behaviour of the magnetic layers under higher magnetic fields (up to +-200mT) and the switching behaviour of the free layer at different angles between the easy axis of the TMR-element and the external magnetic field were investigated. The spin transfer torque effect could not be detected in the fabricated nanopillars due to the high electrical resistance of the tunnel barriers which were used. The resistance could be lowered by using thinner barriers, but this led to a quick degradation of the barrier when a current was applied. Continuative work should focus on the preparation of tunnel barriers in an appropriate TMR-stack being low resistive and electrically robust at the same time. A first selection of concepts and ideas from the literature for this task is given in the outlook.
8

Elektrochemische Metallabscheidung mit Kapillarsonden

Müller, Anne-Dorothea 21 February 2002 (has links)
Es wird ein Verfahren zur lokalisierten elektrochemischen Abscheidung metallischer Strukturen aus Kapillarsonden vorgestellt. Der experimentelle Aufbau, die Herstellung der Sonden, das Arbeiten im Nahfeld der Probe (Scherkraft-Abstandsdetektion)sowie die verschiedenen Beschaltungmöglichkeiten der elektrochemischen Zelle werden ausführlich beschrieben. Ergänzend zu den experimentellen Arbeiten werden einerseits numerische Simulationen gezeigt, die zur Veranschaulichung der Potentialverteilung in der Apexregion dienen und qualitativ beschreiben, wie sich das Schichtdickenprofil der abgeschiedenen Strukturen mit den einstellbaren Parametern (Elektrodenpotentiale, Spitze-Probe-Abstand) variieren läßt. Andererseits werden die verschiedenen Beschaltungsmöglichkeiten der Zelle anhand von Schaltungssimulationen verglichen und so die Wahl des günstigsten Arbeitspunktes für die in den Experimenten verwendete (bi)-potentiostatische Abscheidung diskutiert. Mit dieser Anordnung wurden lokalisiert Cluster in einer porösen Aluminiumoxidmembran deponiert und anschließend abgebildet. In weiteren Strukturierungsversuchen wurden Kupfer bzw. Gold lokalisiert elektrochemisch auf ITO abgeschieden, wobei das Schichtwachstum simultan optisch in Transmission beobachtet wurde. Es werden u.a. Strukturen erzeugt, deren laterale Abmessungen kleiner als der Kapillardurchmesser sind (Fokussierung, max. Verhältnis 8:1). Die derzeit kleinsten elektrochemisch erzeugbaren Strukturen haben eine laterale Ausdehnung von ca. 5 Mikrometern. / A method for the localized electrochemical deposition of metal structures using capillary tips is presented. The experimental set-up, the tip preparation, the distance detection in near-field operation (shear-force detection), as well as the different types of circuiting of the electrochemical cell are described in detail. In addition to the experimental work, numerical simulations for the qualitative visualization of the potential distribution around the apex region show, how the films thickness profile can be adjusted with the variable parameters (electrode voltages, tip-sample distance). Circuit simulations of the electrochemical cell allow to pre-estimate the optimum working conditions for the used (bi)-potentiostatic electrode set-up. With this method, clusters have been deposited in a thin film of porous alumin oxide and imaged in shear-force mode. Gold and copper structures have been deposited on ITO, while the film growth was observed optically. The lateral dimension of the deposited structures can be smaller than the inner diameter of the capillaries (maximum focus: 8:1). The smallest structures produced in this work have lateral dimensions of 5 micrometers.
9

Elektrochemische Metallabscheidung mit Kapillarsonden

Müller, Anne-Dorothea 09 April 2001 (has links)
Es wird ein Verfahren zur lokalisierten elektrochemischen Abscheidung metallischer Strukturen aus Kapillarsonden vorgestellt. Der experimentelle Aufbau, die Herstellung der Sonden, das Arbeiten im Nahfeld der Probe (Scherkraft-Abstandsdetektion)sowie die verschiedenen Beschaltungmöglichkeiten der elektrochemischen Zelle werden ausführlich beschrieben. Ergänzend zu den experimentellen Arbeiten werden einerseits numerische Simulationen gezeigt, die zur Veranschaulichung der Potentialverteilung in der Apexregion dienen und qualitativ beschreiben, wie sich das Schichtdickenprofil der abgeschiedenen Strukturen mit den einstellbaren Parametern (Elektrodenpotentiale, Spitze-Probe-Abstand) variieren läßt. Andererseits werden die verschiedenen Beschaltungsmöglichkeiten der Zelle anhand von Schaltungssimulationen verglichen und so die Wahl des günstigsten Arbeitspunktes für die in den Experimenten verwendete (bi)-potentiostatische Abscheidung diskutiert. Mit dieser Anordnung wurden lokalisiert Cluster in einer porösen Aluminiumoxidmembran deponiert und anschließend abgebildet. In weiteren Strukturierungsversuchen wurden Kupfer bzw. Gold lokalisiert elektrochemisch auf ITO abgeschieden, wobei das Schichtwachstum simultan optisch in Transmission beobachtet wurde. Es werden u.a. Strukturen erzeugt, deren laterale Abmessungen kleiner als der Kapillardurchmesser sind (Fokussierung, max. Verhältnis 8:1). Die derzeit kleinsten elektrochemisch erzeugbaren Strukturen haben eine laterale Ausdehnung von ca. 5 Mikrometern. / A method for the localized electrochemical deposition of metal structures using capillary tips is presented. The experimental set-up, the tip preparation, the distance detection in near-field operation (shear-force detection), as well as the different types of circuiting of the electrochemical cell are described in detail. In addition to the experimental work, numerical simulations for the qualitative visualization of the potential distribution around the apex region show, how the films thickness profile can be adjusted with the variable parameters (electrode voltages, tip-sample distance). Circuit simulations of the electrochemical cell allow to pre-estimate the optimum working conditions for the used (bi)-potentiostatic electrode set-up. With this method, clusters have been deposited in a thin film of porous alumin oxide and imaged in shear-force mode. Gold and copper structures have been deposited on ITO, while the film growth was observed optically. The lateral dimension of the deposited structures can be smaller than the inner diameter of the capillaries (maximum focus: 8:1). The smallest structures produced in this work have lateral dimensions of 5 micrometers.
10

Präparation und Charakterisierung von TMR-Nanosäulen

Höwler, Marcel 24 July 2012 (has links)
Diese Arbeit befasst sich mit der Nanostrukturierung von magnetischen Schichtsystemen mit Tunnelmagnetowiderstandseffekt (TMR-Effekt), welche in der Form von Nanosäulen in magnetoresistiven Speichern (MRAM) eingesetzt werden. Solche Nanosäulen können zukünftig ebenfalls als Nanoemitter von Mikrowellensignalen eine Rolle spielen. Dabei wird von der Auswahl eines geeigneten TMR-Schichtsystems mit einer MgO-Tunnelbarriere über die Präparation der Nanosäulen mit Seitenisolierung bis hin zum Aufbringen der elektrischen Zuleitungen eine komplette Prozesskette entwickelt und optimiert. Die Strukturen werden mittels optischer Lithographie und Elektronenstrahllithographie definiert, die anschließende Strukturübertragung erfolgt durch Ionenstrahlätzen (teilweise reaktiv) sowie durch Lift-off. Rückmeldung über Erfolg oder Probleme bei der Strukturierung geben Transmissionselektronenmikroskopie (teilweise mit Zielpräparation per Ionenfeinstrahl, FIB), Rasterelektronenmikroskopie sowie die Lichtmikroskopie. Es können so TMR-Nanosäulen mit minimalen Abmessungen von bis zu 69 nm x 71 nm hergestellt werden, von denen Nanosäulen mit Abmessungen von 65 nm x 87 nm grundlegend magneto-elektrisch charakterisiert worden sind. Dies umfasst die Bestimmung des TMR-Effektes und des Widerstandes der Tunnelbarriere (RA-Produkt). Weiterhin wurde das Verhalten der magnetischen Schichten bei größeren Magnetfeldern bis +-200mT sowie das Umschaltverhalten der magnetisch freien Schicht bei verändertem Winkel zwischen magnetischer Vorzugsachse des TMR-Elementes und dem äußeren Magnetfeld untersucht. Der Nachweis des Spin-Transfer-Torque Effektes an den präparierten TMR-Nanosäulen ist im Rahmen dieser Arbeit nicht gelungen, was mit dem zu hohen elektrischen Widerstand der verwendeten Tunnelbarriere erklärt werden kann. Mit dünneren Barrieren konnte der Widerstand gesenkt werden, allerdings führt ein Stromfluss durch diese Barrieren schnell zur Degradation der Barrieren. Weiterführende Arbeiten sollten das Ziel haben, niederohmige und gleichzeitig elektrisch belastbare Tunnelbarrieren in einem entsprechenden TMR-Schichtsystem abzuscheiden. Eine erste Auswahl an Ansatzpunkten dafür aus der Literatur wird im Ausblick gegeben.:Einleitung I Grundlagen 1 Spinelektronik und Magnetowiderstand 1.1 Der Elektronenspin – Grundlage des Magnetismus 1.2 Magnetoresistive Effekte 1.2.1 AnisotroperMagnetowiderstand 1.2.2 Riesenmagnetowiderstand 1.2.3 Tunnelmagnetowiderstand 1.3 Spin-Transfer-Torque 1.4 Anwendungen 1.4.1 Festplattenleseköpfe 1.4.2 Magnetoresistive Random AccessMemory (MRAM) 1.4.3 Nanooszillatoren für drahtlose Kommunikation 2 Grundlagen der Mikro- und Nanostrukturierung 2.1 Belacken 2.2 Belichten 2.2.1 Optische Lithographie 2.2.2 Elektronenstrahllithographie 2.3 Entwickeln 2.4 Strukturübertragung 2.4.1 Die Lift-off Technik 2.4.2 Ätzen 2.5 Entfernen der Lackmaske 2.6 Reinigung 2.6.1 Quellen von Verunreinigungen 2.6.2 Auswirkungen von Verunreinigungen 2.6.3 Entfernung von Verunreinigungen 2.6.4 Spülen und Trocknen der Probenoberfläche 3 Ionenstrahlätzen 3.1 Physikalisches Ätzen – Sputterätzen 3.2 Reaktives Ionenstrahlätzen – RIBE 3.3 Anlagentechnik 3.3.1 Parameter 3.3.2 Homogenität 3.3.3 Endpunktdetektion II Ergebnisse und Diskussion 4 TMR-Schichtsysteme 4.1 Prinzipielle Schichtfolge 4.2 Verwendete TMR-Schichtsysteme 4.3 Rekristallisation von Kupfer 4.4 Formierung der TMR-Schichtsysteme 4.4.1 Antiferromagnetische Kopplung an PtMn 4.4.2 Rekristallisation an der MgO-Barriere 4.5 Anpassung der MgO-Schicht – TMR-Effekt und RA-Produkt 4.6 Magnetische Charakterisierung 5 Probendesign 5.1 Beschreibung der vier lithographischen Ebenen 5.2 Layout für statische und dynamischeMessungen 5.2.1 Geometrie 5.2.2 Anforderungen für die Hochfrequenzmessung 5.3 Layout für Zuverlässigkeitsmessungen 5.3.1 Geometrie 5.3.2 Voraussetzungen für die Funktion 5.4 Chiplayout 5.4.1 Zusatzstrukturen 5.4.2 Anordnung der Elemente 6 Fertigung eines Maskensatzes für die optische Lithographie 6.1 Vorbereitung desMaskenrohlings 6.2 Strukturierung mittels Elektronenstrahllithographie 6.3 Ätzen der Chromschicht 7 Ergebnisse und Diskussion der Probenpräparation 7.1 Definition der Grundelektrode 7.1.1 Freistellen der Grundelektrode 7.1.2 Gratfreiheit der Grundelektrode 7.1.3 Oberflächenqualität nach der Strukturierung 7.2 Präparation der magnetischen Nanosäulen 7.2.1 Aufbringen einer Ätzmaske 7.2.2 Ionenstrahlätzen der TMR-Nanosäule 7.2.3 Abmessungen der präparierten Nanosäulen 7.3 Vertikale Kontaktierung 7.3.1 Seitenwandisolation 7.3.2 Freilegen der Kontakte 7.3.3 Aufbringen der elektrischen Zuleitungen 7.4 Die komplette Prozesskette und Ausbeute 8 Magneto-elektrische Charakterisierung 8.1 Messung des Tunnelmagnetowiderstandes 8.2 Stabilität der magnetischen Konfiguration 8.3 Spin-Transfer-Torque an TMR-Nanosäulen 9 Zusammenfassung und Ausblick Literaturverzeichnis / This thesis deals with the fabrication of nanopillars with tunnel magnetoresistance effect (TMR-effect), which are used in magnetoresistive memory (MRAM) and may be used as nanooscillators for future near field communication devices. Starting with the selection of a suitable TMR-layer stack with MgO-tunnel barrier, the whole process chain covering the fabrication of the nanopillars, sidewall isolation and preparation of the supply lines on top is developed and optimised. The structures are defined by optical and electron beam lithography, the subsequent patterning is done by ion beam etching (partially reactive) and lift-off. Techniques providing feedback on the nanofabrication are transmission electron microscopy (partially with target preparation by focused ion beam, FIB), scanning electron microscopy and optical microscopy. In this way nanopillars with minimal dimensions reaching 69 nm x 71 nm could be fabricated, of which nanopillars with a size of 65 nm x 87 nm were characterized fundamentally with respect to their magnetic and electric properties. This covers the determination of the TMR-effect and the resistance of the tunnel barrier (RA-product). In addition, the behaviour of the magnetic layers under higher magnetic fields (up to +-200mT) and the switching behaviour of the free layer at different angles between the easy axis of the TMR-element and the external magnetic field were investigated. The spin transfer torque effect could not be detected in the fabricated nanopillars due to the high electrical resistance of the tunnel barriers which were used. The resistance could be lowered by using thinner barriers, but this led to a quick degradation of the barrier when a current was applied. Continuative work should focus on the preparation of tunnel barriers in an appropriate TMR-stack being low resistive and electrically robust at the same time. A first selection of concepts and ideas from the literature for this task is given in the outlook.:Einleitung I Grundlagen 1 Spinelektronik und Magnetowiderstand 1.1 Der Elektronenspin – Grundlage des Magnetismus 1.2 Magnetoresistive Effekte 1.2.1 AnisotroperMagnetowiderstand 1.2.2 Riesenmagnetowiderstand 1.2.3 Tunnelmagnetowiderstand 1.3 Spin-Transfer-Torque 1.4 Anwendungen 1.4.1 Festplattenleseköpfe 1.4.2 Magnetoresistive Random AccessMemory (MRAM) 1.4.3 Nanooszillatoren für drahtlose Kommunikation 2 Grundlagen der Mikro- und Nanostrukturierung 2.1 Belacken 2.2 Belichten 2.2.1 Optische Lithographie 2.2.2 Elektronenstrahllithographie 2.3 Entwickeln 2.4 Strukturübertragung 2.4.1 Die Lift-off Technik 2.4.2 Ätzen 2.5 Entfernen der Lackmaske 2.6 Reinigung 2.6.1 Quellen von Verunreinigungen 2.6.2 Auswirkungen von Verunreinigungen 2.6.3 Entfernung von Verunreinigungen 2.6.4 Spülen und Trocknen der Probenoberfläche 3 Ionenstrahlätzen 3.1 Physikalisches Ätzen – Sputterätzen 3.2 Reaktives Ionenstrahlätzen – RIBE 3.3 Anlagentechnik 3.3.1 Parameter 3.3.2 Homogenität 3.3.3 Endpunktdetektion II Ergebnisse und Diskussion 4 TMR-Schichtsysteme 4.1 Prinzipielle Schichtfolge 4.2 Verwendete TMR-Schichtsysteme 4.3 Rekristallisation von Kupfer 4.4 Formierung der TMR-Schichtsysteme 4.4.1 Antiferromagnetische Kopplung an PtMn 4.4.2 Rekristallisation an der MgO-Barriere 4.5 Anpassung der MgO-Schicht – TMR-Effekt und RA-Produkt 4.6 Magnetische Charakterisierung 5 Probendesign 5.1 Beschreibung der vier lithographischen Ebenen 5.2 Layout für statische und dynamischeMessungen 5.2.1 Geometrie 5.2.2 Anforderungen für die Hochfrequenzmessung 5.3 Layout für Zuverlässigkeitsmessungen 5.3.1 Geometrie 5.3.2 Voraussetzungen für die Funktion 5.4 Chiplayout 5.4.1 Zusatzstrukturen 5.4.2 Anordnung der Elemente 6 Fertigung eines Maskensatzes für die optische Lithographie 6.1 Vorbereitung desMaskenrohlings 6.2 Strukturierung mittels Elektronenstrahllithographie 6.3 Ätzen der Chromschicht 7 Ergebnisse und Diskussion der Probenpräparation 7.1 Definition der Grundelektrode 7.1.1 Freistellen der Grundelektrode 7.1.2 Gratfreiheit der Grundelektrode 7.1.3 Oberflächenqualität nach der Strukturierung 7.2 Präparation der magnetischen Nanosäulen 7.2.1 Aufbringen einer Ätzmaske 7.2.2 Ionenstrahlätzen der TMR-Nanosäule 7.2.3 Abmessungen der präparierten Nanosäulen 7.3 Vertikale Kontaktierung 7.3.1 Seitenwandisolation 7.3.2 Freilegen der Kontakte 7.3.3 Aufbringen der elektrischen Zuleitungen 7.4 Die komplette Prozesskette und Ausbeute 8 Magneto-elektrische Charakterisierung 8.1 Messung des Tunnelmagnetowiderstandes 8.2 Stabilität der magnetischen Konfiguration 8.3 Spin-Transfer-Torque an TMR-Nanosäulen 9 Zusammenfassung und Ausblick Literaturverzeichnis

Page generated in 0.1094 seconds