61 |
The state of network research / Tillståndet för nätverksforskningZhu, Haoyu January 2020 (has links)
In the past decades, networking researchers experienced great changes. Being familiar with the development of networking researches is the first step for most scholars to start their work. The targeted areas, useful documents, and active institutions are helpful to set up the new research. This project is focused on developing an assistant tool based on public accessed papers and information on the Internet that allows researchers to view most cited papers in networking conferences and journals. NLP tools are implemented over crawled full-text in order to classify the papers and extract the keywords. Papers are located based on authors to show the most active countries around the world that are working in this area. References are analyzed to view the most cited topics and detailed paper information. We draw some interesting conclusions from our system, showing that some topics attract more attention in the past decades. / Under de senaste decennierna upplevde nätverksundersökningar stora förändringar. Att känna till utvecklingen av nätverksundersökningar är det första steget för de flesta forskare att starta sitt arbete. De riktade områdena, användbara dokument och aktiva institutioner är användbara för att skapa den nya forskningen. Projektet fokuserade på att utveckla ett assistentverktyg baserat på offentliga åtkomstpapper och information via internet. Som gör det möjligt för forskare att se de mest citerade artiklarna i nätverkskonferenser och tidskrifter. NLP- verktyg implementeras över genomsökt fulltext för att klassificera papperet och extrahera nyckelorden. Artiklar är baserade på författare för att visa de mest aktiva länderna runt om i världen som arbetar inom detta område. Hänvisningar analyseras för att se det mest citerade ämnet och detaljerad pappersinformation. Vi drar några intressanta slutsatser från vårt system och visar att något ämne inte lockar till sig mer under de senaste decennierna.
|
62 |
Language Models as Evaluators : A Novel Framework for Automatic Evaluation of News Article Summaries / Språkmodeller som Utvärderare : Ett Nytt Ramverk för Automatiserad Utvärdering av NyhetssammanfattningarHelgesson Hallström, Celine January 2023 (has links)
The advancements in abstractive summarization using Large Language Models (LLMs) have brought with it new challenges in evaluating the quality and faithfulness of generated summaries. This thesis explores a human-like automated method for evaluating news article summaries. By leveraging two LLMs with instruction-following capabilities (GPT-4 and Claude), the aim is to examine to what extent the quality of summaries can be measured by predictions of an LLM. The proposed framework involves defining specific attributes of desired summaries, which are used to design generation prompts and evaluation questions. These questions are presented to the LLMs in natural language during evaluation to assess of various summary qualities. To validate the effectiveness of the evaluation method, an adversarial approach is employed, in which a dataset comprising summaries with distortions related to various summary attributes is generated. In an experiment, the two LLMs evaluate the adversarial dataset, and their ability to detect known distortions is measured and analyzed. The findings suggest that the LLM-based evaluations demonstrate promise in detecting binary qualitative issues, such as incorrect facts. However, the reliability of the zero-shot evaluation varies depending on the evaluating LLM and the specific questions used. Further research is required to validate the accuracy and generalizability of the results, particularly in subjective dimensions where the results of this thesis are inconclusive. Nonetheless, this thesis provides insights that can serve as a foundation for future advancements in the field of automatic text evaluation. / De framsteg som gjorts inom abstrakt sammanfattning med hjälp av stora språkmodeller (LLM) har medfört nya utmaningar när det gäller att utvärdera kvaliteten och sanningshalten hos genererade sammanfattningar. Detta examensarbete utforskar en mänskligt inspirerad automatiserad metod för att utvärdera sammanfattningar av nyhetsartiklar. Genom att dra nytta av två LLM:er med instruktionsföljande förmågor (GPT-4 och Claude) är målet att undersöka i vilken utsträckning kvaliteten av sammanfattningar kan bestämmas med hjälp av språkmodeller som utvärderare. Det föreslagna ramverket innefattar att definiera specifika egenskaper hos önskade sammanfattningar, vilka används för att utforma genereringsuppmaningar (prompts) och utvärderingsfrågor. Dessa frågor presenteras för språkmodellerna i naturligt språk under utvärderingen för att bedöma olika kvaliteter hos sammanfattningar. För att validera utvärderingsmetoden används ett kontradiktoriskt tillvägagångssätt där ett dataset som innefattar sammanfattningar med förvrängningar relaterade till olika sammanfattningsattribut genereras. I ett experiment utvärderar de två språkmodellerna de motstridiga sammanfattningar, och deras förmåga att upptäcka kända förvrängningar mäts och analyseras. Resultaten tyder på att språkmodellerna visar lovande resultat vid upptäckt av binära kvalitativa problem, såsom faktafel. Dock varierar tillförlitligheten hos utvärderingen beroende på vilken språkmodell som används och de specifika frågorna som ställs. Ytterligare forskning krävs för att validera tillförlitligheten och generaliserbarheten hos resultaten, särskilt när det gäller subjektiva dimensioner där resultaten är osäkra. Trots detta ger detta arbete insikter som kan utgöra en grund för framtida framsteg inom området för automatisk textutvärdering.
|
63 |
Progressiva glasögons inverkan på huvudposition hos bildskärmsanvändare / The impact of progressive lenses on head position in VDU operatorsLindergård, Eli, Månbris, Mathias January 2017 (has links)
Bakgrund Muskuloskeletala besvär i nacke och skuldra är vanligt förekommande arbetsrelaterade sjukdomar bland bildskärmsarbetare. Detta orsakar individuellt lidande med stora kostnader för samhället i storleksordningen 0.5% till 2% av ett lands BNP, men även för företag som utöver ökade omkostnader även riskerar sämre produktion och kvalitet. Det finns en oro att bildskärmsarbetande med progressiva glasögon arbetar med en ökad huvudextension och huvudprotraktion sk ”gamnacke”. Få jämförande studier har dock gjorts på HE respektive FHP vid användandet av progressiva glasögon, och ännu färre med subjekten i deras naturliga arbetsmiljö. Syfte – I denna studie undersöktes om det, i subjektens egen arbetsmiljö, föreligger ett samband mellan begreppet gamnacke och bildskärmsarbete vid användandet av progressiva glasögon avseende faktorerna FHP och HE jämfört med bildskärmsarbete utan progressiva glasögon. Subjekt –Datainsamlingen har skett på sju stycken olika företag i storstockholmsområdet under tidsperioden Mars-April 2017. Testgruppen bestod av 3 män och 7 kvinnor med en medelålder på 57,80 år (±8,18). Tid som de använt progressiva glasögon var 5,85 år (±5,59). kontrollgruppen bestod av 4 män och 6 kvinnor med en medelålder på 55,90 år (±3,60). Metod – Subjekten fotograferades med en smartphonekamera i ett stativ med horisontellt vattenpass, sittande vid sina skrivbord framför sina egna bildskärmar. Tre fotografier togs under 5 minuters tid på respektive subjekt. Subjekten var inte varse om exakt vid vilken tidpunkt fotografierna togs. En mobilapplikation användes för att ta ut vinklar för HE och FHP. Medelvärdena användes sedan för vidare analys med ett two-independent-sample test. Resultat – Testgruppens medelvärde för huvudets protraktion, TFHP var 42,20° (±7,15°). Testgruppens vinkel för mätning av huvudets extension, THE, hade medelvärdet 17,73° (±5,55°). Kontrollgruppens medelvärde för huvudets protraktion, KFHP var 40,87° (±7,53°). Kontrollgruppens medelvärde av huvudets extension, KHE var 11,53° (±7,42°). Korrelationen mellan progressiva glasögon och FHP var inte statistisk signifikant (p = 0,739), detta gällde även för korrelationen mellan progressiva glasögon och HE (p = 0,063). Konklusion – Resultatet av studien visade inget statistiskt signifikant samband gällande att bildskärmsarbetande i subjektetens naturliga arbetsmiljö med fullprogressiva glasögon hade en högre grad FHP eller HE än bildskärmsarbetande utan fullprogressiva glasögon i förhållande till lodlinjen respektive horisontallinjen, däremot sågs en tendens till en högre grad av HE hos gruppen med fullprogressiva glasögon i förhållande till horisontallinjen (p=0,063). / Introduction – Musculoskeletal disorders of the neck and shoulders are common occupational diseases among VDU operators. This causes individual suffering with high costs for society at around 0.5% to 2% of a countries GDP, as well as for companies, that besides high costs also risk a poorer production and quality. There is a concern that VDU operators with progressive lenses have an increased head extension and Forward head posture. However, Few comparative studies have been made on head extension and Forward head posture on subjects with progressive lenses and even fewer with subjects in their natural working environment. Aim – In this study, the aim was to, in the subjects own natural working environment, investigate whether there is a connection between the concept of poor posture in regards of FHP and HE, and VDU operators in the use of progressive lenses, compared to VDU operators without progressive lenses. Materials – The data was collected from seven different companies in the Greater Stockholm area during the period March-April 2017. The test group consisted of 3 men and 7 women with an average age of 57.80 years (± 8.18). The time spent using progressive lenses was 5.85 years (± 5.59). The control group consisted of 4 men and 6 women with an average age of 55.90 years (± 3.60). Method - The subjects were photographed with a smartphone on a leveled tripod, sitting at their own desks in front of their own monitors. Three photos were taken within 5 minutes on each subject. The subjects did not know exactly when the photographs were taken. A mobile application was used to extract angles for HE and FHP measurements. The mean values were then used for further analysis with a two-independent sample test. Results – The test group's mean head protrusion, TFHP was 42.20° (±7.15°). The test group's angle for measuring the head extension, THE, had an average of 17.73° (±5.55°). The control group's mean head protrusion, KFHP was 40.87° (±7.53°). The control group's mean of the head extension, KHE was 11.53° (±7.42°). The correlation between progressive lenses and FHP was not significant (p = 0.739), nor was the correlation between progressive lenses and HE significant (p = 0.063). Conclusion – The results of the study showed no statistically significant correlation that VDU operators in the subject's natural working environment with progressive lenses have a higher degree of FHP or HE than VDU operators without progressive lenses in relation to the vertical- and horizontal line respectively. On the other hand, they had a trend towards a higher HE than VDU operators without progressive lenses with a p-value of 0.063.
|
64 |
USING RULE-BASED METHODS AND MACHINE LEARNING FOR SHORT ANSWER SCORINGPihlqvist, Fredrik, Mulongo, Benedith January 2018 (has links)
Automatiskt rättning av korta texter är ett område som spänner allt från naturlig språkbehandling till maskininlärning. Projektet behandlar maskininlärning för att förutsäga korrektheten av svar i fritext. Naturlig språkbehandling används för att analysera text och utvinna viktiga underliggande relationer i texten. Det finns idag flera approximativa lösningar för automatiskt rättning av korta svar i fritext. Två framstående metoder är maskininlärning och regelbaserad metod. Vi kommer att framföra en alternativ metod som kombinerar maskininlärning med en regelbaserad metod för att approximativt lösa förenämnda problemet. Studien handlar om att implementera en regelbaserad metod, maskininlärning metod och en slutgiltig kombination av båda dessa metoder. Utvärderingen av den kombinerade metoden utförs genom att titta på de relativa ändringarna i prestanda då vi jämför med den regelbaserade och maskininlärning metoden. De erhållna resultaten har visat att det inte finns någon ökning av noggrannheten hos den kombinerade metoden jämfört med endast maskininlärning metoden. Den kombinerade metoden använder emellertid en liten mängd märkta data med en noggrannhet som är nästan lika metoden med maskininlärning, vilket är positivt. Ytterligare undersökning inom detta område behövs, denna uppsats är bara ett litet bidrag till nya metoder i automatisk rättning. / Automatic correction of short text answers is an area that involves everything from natural language processing to machine learning. Our project deals with machine learning for predicting the correctness of candidate answers and natural language processing to analyse text and extract important underlying relationships in the text. Given that today there are several approximative solutions for automatically correcting short answers, ranging from rule-based methods to machine learning methods. We intend to look at how automatic answer scoring can be solved through a clever combination of both machine learning methods and rule-based method for a given dataset. The study is about implementing a rule-based method, a machine learning method and a final combination of both these methods. The evaluation of the combined method is done by measuring its relative performance compared to the rule-based method and machine learning method. The results obtained have shown that there is no increase in the accuracy of the combined method compared to the machine learning method alone. However, the combined method uses a small amount of labeled data with an accuracy almost equal to the machine learning, which is positive. Further investigation in this area is needed, this thesis is only a small contribution, with a new approaches and methods in automatic short answer scoring.
|
65 |
A Comparison of Keyboard and Tilt Interaction Techniques for Racing Video GameZhu, Ziyi January 2022 (has links)
In gaming, the market is increasingly emphasizing "natural" interaction techniques, introducing a wide range of external devices. The high price of many external devices reduced its popularity. However, smartphone as another widely available product, I wanted to use sensors of the smartphone to simulate "natural" interaction techniques and explore the changes and influence it had on players as opposed to traditional keyboard input in order to understand its value as an intermediary between traditional input methods and unique external devices. In this study, I developed a racing game that uses the button and tilt input via the phone to simulate a steering wheel. Also, I studied the participants’ gaming data and experiences during the experiment. My experiments found that the tilt input outperformed the keyboard input, especially for participants with less than five years of gaming experience. Furthermore, the tilt input gave players an immersive and varied gaming experience. I offered four hypotheses to explain my findings and suggested that game designers refer to them. / På spelmarknaden betonas i allt högre grad "naturliga" interaktionstekniker, vilket innebär att ett brett utbud av externa enheter introduceras. Det höga priset på många externa enheter har minskat deras popularitet. Jag ville dock använda smartphones som en annan allmänt tillgänglig produkt, och jag ville använda smartphonesensorer för att simulera "naturliga" interaktionstekniker och utforska vilka förändringar och vilket inflytande de hade på spelarna jämfört med traditionell tangentbordsinmatning, för att förstå dess värde som en mellanhand mellan traditionella inmatningsmetoder och unika externa anordningar. I den här studien utvecklade jag ett racingspel som använder knapp- och lutningsinmatning via telefonen för att simulera en ratt. Dessutom studerade jag deltagarnas speldata och upplevelser under experimentet. Mina experiment visade att tilt-inmatningen överträffade tangentbordsinmatningen, särskilt för deltagare med mindre än fem års spelvana. Dessutom gav lutningsinmatningen spelarna en uppslukande och varierad spelupplevelse. Jag erbjöd fyra hypoteser för att förklara mina resultat och föreslog att speldesigners ska hänvisa till dem.
|
66 |
Applying Natural Language Processing to document classification / Tillämpning av Naturlig Språkbehandling för dokumentklassificeringKragbé, David January 2022 (has links)
In today's digital world, we produce and use more electronic documents than ever before. And this trend is far from slowing down. Particularly, more and more companies and businesses now need to treat a considerable amount of documents to deal with their clients' requests. Scaling this process often requires building an automatic document treatment pipeline. Since the treatment of a document depends on its content, those pipelines heavily rely on an automatic document classifier to correctly process the documents received. Such document classifier should be able to receive a document of any type and output its class based on the text content of the document. In this thesis, we designed and implemented a machine learning pipeline for automated insurance claims documents classification. In order to find the best pipeline, we created several combination of different classifiers (logistic regressor and random forest classifier) and embedding models (Fasttext and Doc2vec). We then compared the performances of all of the pipelines using a the precision and accuracy metrics. We found that a pipeline composed of a Fasttext embedding model combined with a logistic regressor classifier was the most performant, yielding a precision of 85% and an accuracy of 86% on our dataset. / I dagens digitala värld, producerar och använder vi fler elektroniska dokument än någonsin tidigare. Denna trend är långt ifrån att sakta ner sig. Särskilt fler och fler företag behöver nu behandla en stor mängd dokument för att hantera sina kunders önskemål. Att skala denna process kräver ofta att man bygger en pipeline för automatisk dokumentbehandling. Eftersom behandlingen av ett dokument beror på dess innehåll, är dessa pipelines starkt beroende av en automatisk dokumentklassificerare för att korrekt bearbeta de mottagna dokumenten. En sådan dokumentklassificerare skall kunna ta emot ett dokument av vilken typ som helst och mata ut dess klass baserat på dokumentets textinnehåll. I detta examensarbete, designade och implementerade vi en maskininlärningspipeline för automatiserad klassificering av försäkringskrav-dokument. För att hitta den bästa pipelinen, skapade vi flera kombinationer av olika klassificerare (logistisk regressor och random forest klassificerare) och inbäddningsmodeller (Fasttext och Doc2vec). Vi jämförde sedan prestandan för alla pipelines med hjälp av precisions- och noggrannhetsmåtten. Vi fann att en pipeline bestående av en Fasttext-inbäddningsmodell kombinerad med en logistisk regressorklassificerare var den mest presterande, vilket gav en precision på 85% och en noggrannhet på 86% på vår datauppsättning.
|
67 |
AI Enabled Cloud RAN Test Automation : Automatic Test Case Prediction Using Natural Language Processing and Machine Learning Techniques / AI Cloud RAN test automatisering : Automatisk generering av testfall med hjälp av naturlig språkbehandling och maskininlärningsteknikerSantosh Nimbhorkar, Jeet January 2023 (has links)
The Cloud Radio Access Network (RAN) is a technology used in the telecommunications industry. It provides a flexible, scalable, and costeffective solution for managing and delivering seamless wireless network services. However, the testing of Cloud RAN applications poses formidable challenges due to its complex nature, resulting in potential delays in product delivery and amplified costs. Using the power of test automation is an approach to tackling these challenges. By automating the testing process, we can reduce manual efforts, enhance the accuracy and efficiency of testing procedures, and ultimately expedite the delivery of high-quality products. In this era of cutting-edge advancements, artificial intelligence (AI) and machine learning (ML) can be used to aid Cloud RAN testing. These technologies empower us to swiftly identify and address complex issues. The goal of this thesis is to have a data-driven approach toward Cloud RAN test automation. Machine learning along with natural language processing techniques are used to automatically predict test cases from test instructions. The test instructions are analyzed and keywords are extracted from them using natural language processing techniques. The performance of two keyword extraction techniques is compared. SpaCy was the best-performing keyword extractor. Test script prediction from these keywords is done using two approaches; using test script names and using test script contents. Random Forest was the best performing model for both these approaches when the data were oversampled and when it was undersampled as well. / Cloud Radio Access Network (RAN) är en revolutionerande teknik som används inom telekommunikationsindustrin. Det ger en flexibel, skalbar och kostnadseffektiv lösning för att hantera och leverera sömlösa trådlösa nätverkstjänster. Testningen av Cloud RAN-applikationer innebär dock enorma utmaningar på grund av dess komplexa natur, vilket resulterar i potentiella förseningar i produktleverans och förstärkta kostnader. Att använda kraften i testautomatisering är en avgörande metod för att tackla dessa utmaningar. Genom att automatisera testprocessen kan vi dramatiskt minska manuella ansträngningar, avsevärt förbättra noggrannheten och effektiviteten i testprocedurerna och i slutändan påskynda leveransen av högkvalitativa produkter. I denna era av banbrytande framsteg kan artificiell intelligens (AI) och maskininlärning (ML) användas för att revolutionera Cloud RAN-testning. Dessa banbrytande teknologier ger oss möjlighet att snabbt identifiera och ta itu med komplexa problem. Målet med detta examensarbete är att ha ett datadrivet förhållningssätt till Cloud RAN-testautomatisering. Maskininlärning tillsammans med naturliga språkbehandlingstekniker används för att automatiskt generera testfall från testinstruktioner. Testinstruktionerna analyseras och nyckelord extraheras från dem med hjälp av naturliga språkbehandlingstekniker. Resultatet av två sökordsextraktionstekniker jämförs. SpaCy var den bäst presterande sökordsextraktorn. Förutsägelse av testskript från dessa nyckelord görs med två metoder; använda testskriptnamn och använda testskriptinnehåll. Random forests var den bäst presterande modellen för båda dessa tillvägagångssätt när data överstämplades och även undersamplades.
|
68 |
Data Augmentation in Solving Data Imbalance ProblemsGao, Jie January 2020 (has links)
This project mainly focuses on the various methods of solving data imbalance problems in the Natural Language Processing (NLP) field. Unbalanced text data is a common problem in many tasks especially the classification task, which leads to the model not being able to predict the minority class well. Sometimes, even we change to some more excellent and complicated model could not improve the performance, while some simple data strategies that focus on solving data imbalanced problems such as over-sampling or down-sampling produce positive effects on the result. The common data strategies include some re-sampling methods that duplicate new data from the original data or remove some original data to have the balance. Except for that, some other methods such as word replacement, word swap, and word deletion are used in previous work as well. At the same time, some deep learning models like BERT, GPT and fastText model, which have a strong ability for a general understanding of natural language, so we choose some of them to solve the data imbalance problem. However, there is no systematic comparison in practicing these methods. For example, over-sampling and down-sampling are fast and easy to use in previous small scales of datasets. With the increase of the dataset, the newly generated data by some deep network models is more compatible with the original data. Therefore, our work focus on how is the performance of various data augmentation techniques when they are used to solve data imbalance problems, given the dataset and task? After the experiment, Both qualitative and quantitative experimental results demonstrate that different methods have their advantages for various datasets. In general, data augmentation could improve the performance of classification models. For specific, BERT especially our fine-tuned BERT has an excellent ability in most using scenarios(different scales and types of the dataset). Still, other techniques such as Back-translation has a better performance in long text data, even it costs more time and has a complicated model. In conclusion, suitable choices for data augmentation methods could help to solve data imbalance problems. / Detta projekt fokuserar huvudsakligen på de olika metoderna för att lösa dataobalansproblem i fältet Natural Language Processing (NLP). Obalanserad textdata är ett vanligt problem i många uppgifter, särskilt klassificeringsuppgiften, vilket leder till att modellen inte kan förutsäga minoriteten Ibland kan vi till och med byta till en mer utmärkt och komplicerad modell inte förbättra prestandan, medan några enkla datastrategier som fokuserar på att lösa data obalanserade problem som överprov eller nedprovning ger positiva effekter på resultatet. vanliga datastrategier inkluderar några omprovningsmetoder som duplicerar nya data från originaldata eller tar bort originaldata för att få balans. Förutom det används vissa andra metoder som ordbyte, ordbyte och radering av ord i tidigare arbete Samtidigt har vissa djupinlärningsmodeller som BERT, GPT och fastText-modellen, som har en stark förmåga till en allmän förståelse av naturliga språk, så vi väljer några av dem för att lösa problemet med obalans i data. Det finns dock ingen systematisk jämförelse när man praktiserar dessa metoder. Exempelvis är överprovtagning och nedprovtagning snabba och enkla att använda i tidigare små skalor av datamängder. Med ökningen av datauppsättningen är de nya genererade data från vissa djupa nätverksmodeller mer kompatibla med originaldata. Därför fokuserar vårt arbete på hur prestandan för olika dataförstärkningstekniker används när de används för att lösa dataobalansproblem, givet datamängden och uppgiften? Efter experimentet visar både kvalitativa och kvantitativa experimentella resultat att olika metoder har sina fördelar för olika datamängder. I allmänhet kan dataförstärkning förbättra prestandan hos klassificeringsmodeller. För specifika, BERT speciellt vår finjusterade BERT har en utmärkt förmåga i de flesta med hjälp av scenarier (olika skalor och typer av datamängden). Ändå har andra tekniker som Back-translation bättre prestanda i lång textdata, till och med det kostar mer tid och har en komplicerad modell. Sammanfattningsvis lämpliga val för metoder för dataökning kan hjälpa till att lösa problem med obalans i data.
|
69 |
Improving Dialogue Context and Repeatability in Human-Robot Interaction / Förbättra dialogkontext och repeterbarhet vid människa-robotinteraktionWilczek, Andrej January 2021 (has links)
Natural Language Generation and generating believable verbal communication are critical components in the development of social robots. The work presented in this paper is based on the sequence-to-sequence model and is focused on improving context and repeatability through the inclusion of task- specific information. The data set on which this study was conducted was collected through a Wizard of Oz framework using a social robot. The generated dialogue was evaluated through a survey designed to measure the adherence to the game context and perceived human qualities. The human qualities were measured using attributes from two well-known attribute scales intended for evaluating Human-Robot Interaction. The evaluation results indicate that the quality of the generated dialogue is on par with examples of actual dialogue spoken during the experiments. This paper also highlights interesting aspects regarding the usefulness of transfer learning in narrow contextual applications. The results presented in this paper show that it is possible to improve the contextual nature of generated dialogue by including additional task-specific information. / Generering av naturligt språk och uppgiften att skapa trovärdig verbal kommunikation är kritiska komponenter i utvecklingen av sociala robotar. Arbetet som presenteras i denna uppsats är baserat på sekvens-till-sekvens-modellen och fokuserar på att förbättra sammanhang och repeterbarhet genom att inkludera uppgiftspecifik information. Datauppsättningen som denna studie genomförde samlades in via ett Wizard of Oz-ramverk med hjälp av en social robot. Den genererade dialogen utvärderades genom en onlineundersökning utformad för att mäta efterlevnaden av spelskontexten och upplevda mänskliga egenskaper. Dessa mänskliga egenskaper mättes med attribut från två välkända attributskalor avsedda för utvärdering av människa-robot-interaktion. Utvärderingsresultaten visar att kvaliteten på den genererade dialogen är i nivå med exempel på faktisk dialog som talats under experimenten. Denna uppsats belyser också intressanta aspekter beträffande nyttan av överföringsinlärning i smala kontextuella applikationer. Resultaten som presenteras i denna uppsats visar att det är möjligt att förbättra den kontextuella karaktären hos genererad dialog genom att inkludera ytterligare uppgiftspecifik information.
|
70 |
Smart Compose for Live Chat Agent / Kundtjänstens automatiska kompletteringssystemZhang, Tonghua January 2021 (has links)
In the digital business environment, customer service communication has grown up to become a labor- intensive task. In consideration of high labor costs, automatic customer service could be such a good alternative for many companies. However, communication with customers can not be easily automated. Staffs of customer service always need task-specific knowledge and information, which is incapable for automated systems to reply. Therefore, industries with frequent communication to consumers need a semiauto completion system, to cut manpower cost. In this thesis project, I utilized the GPT2 model, which was pre-trained by OpenAI, and finetuned it on MultiWOZ dataset in unsupervised way to train a full-fledged and task-oriented language model. On the basis of this auto-regressive language model, I designed and deployed an auto-completion system that timely predicts words or sentences which users may input in the next moment and provides quick completing suggestions for subsequent dialogue. After that, I evaluated the performance of the language model and practicability of the auto-completion system, and furthermore proposed a possible optimization framework to balance the system’s endogenous contradictions. / I den digitala affärsmiljön har kundservicekommunikation vuxit upp till att bli en arbetsintensiv uppgift. Med tanke på höga arbetskraftskostnader kan automatisk kundservice vara ett bra alternativ för många företag. Kundtjänstpersonal behöver alltid uppgiftspecifik kunskap och information, vilket inte är möjligt för automatiska system att leverera. Därför behöver industrier med frekvent kommunikation till konsumenterna ett semiautomatiskt kompletteringssystem, för att sänka arbetskraftskostnaderna. I detta avhandlingsprojekt använde jag GPT-2-modellen, som förtränats av OpenAI, och finjusterade den på MultiWOZ-datamängden på ett oövervakat sätt för att träna en fullfjädrad och uppgiftsorienterad språkmodell. På grundval av denna autoregressiva språkmodell designade och implementerade jag ett system för automatisk komplettering som i rätt tid förutsäger ord eller meningar som användarna kan mata in i nästa ögonblick och ger snabba kompletteringsförslag för efterföljande dialog. Därefter utvärderade jag prestandan för språkmodellen och genomförbarheten för det automatiska kompletteringssystemet och föreslog dessutom en möjlig optimeringsram för att balansera systemets endogena motsägelser.
|
Page generated in 0.0654 seconds