• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 97
  • 80
  • 17
  • 14
  • 9
  • 5
  • 4
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 274
  • 106
  • 103
  • 60
  • 50
  • 47
  • 46
  • 44
  • 32
  • 32
  • 29
  • 29
  • 28
  • 27
  • 27
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
261

Détection des mauvaises herbes dans les cultures du bleuets nains

Sirois, Charles January 2020 (has links) (PDF)
No description available.
262

Hybrid Bermudagrass and Kentucky Bluegrass Response Under Deficit Irrigation in a Semi-Arid, Cool Season Climate

Burgin, Hanna R. 29 November 2021 (has links)
As average global temperatures rise, cool-season C3 turfgrasses, such as the most commonly grown Kentucky bluegrass (Poa pratensis L.; KBG), struggle to tolerate extreme summer heat and increase their water consumption. Hybrid Bermudagrass (Cynodon dactylon [L.] Pers. × Cynodon transvaalensis Burtt Davy; HBG) is a warm-season C4 grass that may be increasingly suited for northern ecosystems traditionally classified as transition or cool-season climate zones. Glasshouse and field studies were conducted to compare HBG and KBG water use. The objective of the glasshouse study was to evaluate plant health and growth for two HBG cultivars (‘DT-1’ and ‘NorthBridge’) compared to a blend of KBG cultivars in all combinations of deficit, moderate, and high irrigation at optimum or short mowing height. The study was conducted in a glasshouse at Provo, UT, USA from 2020-2021. Grass was grown in pots arranged in a randomized complete block, full factorial design, with four replications of each treatment. The moderate KBG was also significantly different from both high and deficit for verdure and for the last half of NDVI. The objective of the field study was to evaluate two HBG cultivars (‘Tahoma 31’ and ‘Latitude 36’) compared to a blend of KBG cultivars for water loss and canopy health, temperature, and growth when subjected to deficit, moderate, and high irrigation. The study was arranged in a randomized complete block, full factorial design with three replications per treatment, and was conducted at Provo, UT, USA throughout the summer of 2021. In both the glasshouse and field trials, the deficit irrigated KBG consistently scored lower for NDVI and visual turf quality than all other treatments, including moderate and high KBG. This same trend was seen in the field study for percent cover. Although not observed in the glasshouse trial, it was observed in the field trial that the different irrigation levels of HBG resulted in no significant differences for any measurements but the HBG regularly scored better than KBG. The canopy temperatures of deficit irrigated KBG were also higher than all other treatments on most dates. The shoot mass, thatch mass, and total biomass of KBG were significantly less than either HBG cultivar. In the glasshouse trial it was observed that all deficit grasses were significantly lower than the other irrigation treatments and HBG had significantly deeper roots than KBG, although these results were not seen in the field trial. The data suggest that irrigation needs will be less for HBG than KBG and that HBG could provide a water-saving turfgrass alternative to KBG in semi-arid, cool-season regions with increasing water scarcity.
263

Spatia-temporal dynamics in land use and habitat fragmentation in the Sandveld, South Africa

Magidi, James Takawira January 2010 (has links)
>Magister Scientiae - MSc / The Cape Floristic Region (CFR) in South Africa, is one of the world's five Mediterranean hotspots, and is also one of the 34 global biodiversity hotspots. It has rich biological diversity, high level of species endemism in flora and fauna and an unusual high level of human induced threats. The Sandveld forms part of the CFR and is also highly threatened by intensive agriculture (potato, rooibos and wheat farming), proliferation of tourism facilities, coastal development, and alien invasions. These biodiversity threats have led to habitat loss and are threatening the long-term security of surface and ground water resources. In order to understand trends in such biodiversity loss and improve in the management of these ecosystems, earth-orbiting observation satellite data were used. This research assessed landuse changes and trends in vegetation cover in the Sandveld, using remote sensing images. Landsat TM satellite images of 1990, 2004 and 2007 were classified using the maximum likelihood classifier into seven landuse classes, namely water, agriculture, fire patches, natural vegetation, wetlands, disturbed veld, and open sands. Change detection using remote sensing algorithms and landscape metrics was performed on these multi-temporal landuse maps using the Land Change ModelIer and Patch Analyst respectively. Markov stochastic modelling techniques were used to predict future scenarios in landuse change based on the classified images and their transitional probabilities. MODIS NDVI multi-temporal datasets with a 16day temporal resolution were used to assess seasonal and annual trends in vegetation cover using time series analysis (PCA and time profiling).Results indicated that natural vegetation decreased from 46% to 31% of the total landscape between 1990 and 2007 and these biodiversity losses were attributed to an increasing agriculture footprint. Predicted future scenario based on transitional probabilities revealed a continual loss in natural habitat and increase in the agricultural footprint. Time series analysis results (principal components and temporal profiles) suggested that the landscape has a high degree of overall dynamic change with pronounced inter and intra-annual changes and there was an overall increase in greenness associated with increase in agricultural activity. The study concluded that without future conservation interventions natural habitats would continue to disappear, a condition that will impact heavily on biodiversity and significant water dependent ecosystems such as wetlands. This has significant implications for the long-term provision of water from ground water reserves and for the overall sustainability of current agricultural practices.
264

A Small Unmanned Aerial System (sUAS) Based Method for Monitoring Wetland Inundation & Vegetation

Dehm, Dustin 28 August 2019 (has links)
No description available.
265

Harmful Algal Blooms in Small Lakes: Causes, Health Risks, and Novel Exposure Prevention Strategies

Mrdjen, Igor 28 September 2018 (has links)
No description available.
266

Neighborhood Satisfaction, Physical and Perceived Characteristics

Hur, Misun 24 December 2008 (has links)
No description available.
267

Entre désertification et reverdissement du Sahel : Diagnostic des observations spatiales et in situ

Dardel, Cécile 29 January 2014 (has links) (PDF)
Le Sahel est une région semi-aride caractérisée par un fort gradient bioclimatique et qui est particulièrement sensible à la variabilité des précipitations. Les périodes de très forte sécheresse qui ont sévi sur l'ensemble du Sahel entre les années 1970 et 1980 ont eu des effets dévastateurs sur les écosystèmes, les populations et leurs ressources. La théorie d'une désertification du Sahel a été ravivée, ainsi que celle prédisant une avancée rapide du Sahara sur le reste du continent. Dès les années 1990, l'analyse des premiers indices de végétation satellitaires (NDVI) acquises à l'échelle du globe à une fréquence temporelle journalière a mis en évidence une nette augmentation du NDVI depuis les années 1980. On parle alors de reverdissement du Sahel. L'objectif de cette thèse est de faire la part de ce reverdissement et d'une éventuelle dégradation des écosystèmes sahéliens, sur les 30 dernières années. Les indices de végétation satellitaires basés sur les propriétés optiques de la végétation verte sont de "simples estimateurs" de la production annuelle : la validation des tendances de NDVI sur le long-terme nécessite une vérité terrain. De telles données sont très difficiles à acquérir sur des échelles spatiales compatibles avec la résolution des satellites d'observation de la Terre et sur une période de temps permettant l'analyse de tendances temporelles. Dans le cadre du projet AMMA et de projets antérieurs, nous bénéficions de séries longues de masse de la strate herbacée pour deux régions : le Gourma au Mali (1984-2011) et le Fakara au Niger (1994-2011). La confrontation des deux sources de données (NDVI GIMMS-3g et productivité végétale mesurée sur le terrain) montre que le Sahel pastoral du Gourma est marqué par un reverdissement ainsi que par une augmentation de la productivité végétale mesurée in situ. En revanche, le Sud-ouest Nigérien montre une tendance à la baisse de ces deux variables. La cohérence des données de terrain avec les observations satellitaires confirme que le NDVI peut être utilisé comme outil de détection de l'évolution des écosystèmes semi-arides sur de longues périodes de temps. A l'échelle du Sahel, des tendances au reverdissement sont mises en évidence sur la plus grande partie de la région, sur la période 1981-2011. L'analyse du RUE, le rapport de la production par le cumul de pluie, a montré que le reverdissement du Gourma est majoritairement expliqué par le rétablissement des précipitations, et que les écosystèmes sahéliens sont particulièrement résilients aux évènements climatiques extrêmes. Cette résilience, cependant, est surtout mise en évidence pour les sols profonds sableux. Des changements contradictoires sont en effet observés sur la partie du paysage constituée de sols superficiels qui connaissent une augmentation des coefficients de ruissellement et de l'érosion, provoquant parfois une dégradation du couvert végétal. Le reverdissement observé à l'échelle du Gourma doit donc être nuancé par des changements des écosystèmes pouvant toucher une petite portion du paysage (les sols superficiels). Sur le Fakara nigérien, des tendances à la dégradation du couvert herbacé sont mises en évidence par les deux sources de données et ne sont pas expliquées par les précipitations. Les changements d'occupation du sol (augmentation des superficies cultivées, raccourcissement des temps de jachère) peuvent expliquer une diminution de la fertilité du sol et donc de la capacité de production de la région. Nous n'observons donc pas de désertification du Sahel sur les 30 dernières années mais bien une reprise généralisée de la végétation qui suit globalement le rétablissement des précipitations. Cela n'exclut pas que dans certaines régions, ou à l'échelle locale, une dégradation du couvert puisse aussi être observée, comme par exemple sur les sols soumis à une forte érosion ou sur quelques terroirs agricoles, ce qui tend à réconcilier les deux théories.
268

Trends in climate and urbanization and their impacts on surface water supply in the city of Addis Ababa, Ethiopia

Bisrat Kifle Arsiso 01 1900 (has links)
Understanding climate change and variability at urban scale is essential for water resource management, land use planning, and development of adaption plans. However, there are serious challenges to meet these goals due to unavailability of observed and / or simulated high resolution spatial and temporal climate data. Recent efforts made possible the availability of high resolution climate data from non-hydrostatic regional climate model (RCM) and statistically downscaled General Circulation Models (GCMs). This study investigates trends in climate and urbanization and their impact on surface water supply for the city of Addis Ababa, Ethiopia. The methodology presented in this study focused on the observed and projected NIMRHadGEM2- AO model and Special Report on Emissions Scenarios (SRES) of B2 and A2 of HadCM3 model are also employed for rainfall, maximum temperature and minimum temperature data using for climate analysis. Water Evaluation and Planning (WEAP) modeling system was used for determination of climate and urbanization impacts on water. Land-Sat images were analyzed using Normalized Differencing Vegetation Index (NDVI). Statistical downscaling model (SDSM) was employed to investigate the major changes and intensity of the urban heat island (UHI). The result indicates monthly rainfall anomalies with respect to the baseline mean showing wet anomaly in summer (kiremt) during 2030s and 2050s, and a dry anomaly in the 2080s under A2 and B2 scenarios with exception of a wet anomaly in September over the city. The maximum temperature anomalies under Representative Concentration Pathways (RCPs) also show warming during near, mid and end terms. The mean monthly minimum temperature anomalies under A2 and B2 scenarios are warm but the anomalies are much lower than RCPs. The climate under the RCP 8.5 and high population growth (3.3 %) scenario will lead to the unmet demand of 462.77 million m3 by 2039. Future projection of urban heat island under emission pathway of A2 and B2 scenario shows that, the nocturnal UHI will be intense in winter or dry season episodes in the city. Under A2 scenario the highest urban warming will occur during October to December (2.5 ºC to 3.2 ºC). Under RCP 8.5 scenario the highest urban warming will occur during October to December (0.5 ºC to 1.0 °C) in the 2050s and 2080s. Future management and adaptation strategies are to expand water supply to meet future demand and to implement demand side water management systems of the city and UHI / College of Agriculture and Environmental Sciences / Ph. D. (Environmental Management)
269

Impact of climate change on vegetative species diversity in Masvingo Province, Zimbabwe

Chapungu, Lazarus 04 1900 (has links)
Vegetative species diversity is under threat from environmental pressures, particularly climate change. As the impacts of climate change vary from place to place, response of vegetative species diversity to a changing climate also vary depending on geographical location. The response of vegetative species diversity under dry conditions in Zimbabwe is not well known. This study assessed the impact of climate change on vegetative species diversity under semiarid conditions of Masvingo province in Zimbabwe. This was achieved by determining climate change trends over a period of forty years (1974-2014), and examining the relationship between vegetative species diversity and spatially interpolated climate data. The absence of historical diversity data prompted the use of remote sensing to enable the assessment of spatial and temporal changes. Thus, the Normalised difference vegetation index (NDVI) was used to assess vegetative species diversity changes after establishing a positive relationship between species diversity and NDVI. The mixed methods research design was used as the strategy of inquiry. The non-aligned block sampling design was used as the sampling framework from which 198 sampling points were identified. Meteorological data obtained from Zimbabwe Meteorological Services Department (ZMSD) and the National Climate Data Centre (NCDC) were used for climate change analysis. Data collected through image analysis, direct observations, questionnaire surveys and interviews were used to assess the impact of climate change on vegetative species diversity. Results indicate that all temperature and precipitation variables have significant (p<0.05) trends over the period under study. However, the trend for seasonal total precipitation was not significant but declining. The significant trends indicate that climate change occurred over the period under study. 93% of the respondents confirmed having experienced the climate change phenomenon. Results also show a significant relationship between climate elements (precipitation and temperature) and vegetative species diversity represented by Shannon Weaver Index (H). More so, there is a positive relationship between NDVI and H. Vegetative species diversity represented by NDVI decreased over the period under review. The results indicate that climate change has contributed to the decrease of vegetative species diversity in Masvingo province, thus it is a force behind many other factors contributing to biodiversity loss. / College of Agriculture and Environmental Sciences / Ph. D. (Environmental Sciences)
270

Comparison of IKONOS Derived Vegetation Index and LiDAR Derived Canopy Height Model for Grassland Management.

Parker, Gary 12 1900 (has links)
Forest encroachment is understood to be the main reason for prairie grassland decline across the United States. In Texas and Oklahoma, juniper has been highlighted as particularly opportunistic. This study assesses the usefulness of three remote sensing techniques to aid in locating the areas of juniper encroachment for the LBJ Grasslands in Decatur, Texas. An object based classification was performed in eCognition and final accuracy assessments placed the overall accuracy at 94%, a significant improvement over traditional pixel based methods. Image biomass was estimated using normalized difference vegetation index (NDVI) for 1 meter resolution IKONOS winter images. A high correlation between the sum of NDVI for tree objects and field tree biomass was determined where R = 0.72, suggesting NDVI sum of a tree area is plausible. However, issues with NDVI saturation and regression produced unrealistically high biomass estimates for large NDVI. Canopy height model (CHM) derived from 3-5m LiDAR data did not perform as well. LiDAR typically used for digital elevation model (DEM) production was acquired for the CHM and produced correlations of R = 0.26. This suggests an inability for this particular dataset to identify juniper trees. When points that registered a tree height where correlated with field values, an R = 0.5 was found, suggesting denser point spacing would be necessary for this type of LiDAR data. Further refining of the methods used in this study could yield such information as the amount of juniper tree for a given location, fuel loads for prescribed burns and better information for the best approach to remove the juniper and ultimately management juniper encroachment into grasslands.

Page generated in 0.0412 seconds