• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 25
  • 2
  • Tagged with
  • 43
  • 43
  • 20
  • 19
  • 17
  • 13
  • 13
  • 12
  • 11
  • 10
  • 8
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Exploring the column elimination optimization in LIF-STDP networks

Sun, Mingda January 2022 (has links)
Spiking neural networks using Leaky-Integrate-and-Fire (LIF) neurons and Spike-timing-depend Plasticity (STDP) learning, are commonly used as more biological possible networks. Compare to DNNs and RNNs, the LIF-STDP networks are models which are closer to the biological cortex. LIF-STDP neurons use spikes to communicate with each other, and they learn through the correlation among these pre- and post-synaptic spikes. Simulation of such networks usually requires high-performance supercomputers which are almost all based on von Neumann architecture that separates storage and computation. In von Neumann architecture solutions, memory access is the bottleneck even for highly optimized Application-Specific Integrated Circuits (ASICs). In this thesis, we propose an optimization method that can reduce the memory access cost by avoiding a dual-access pattern. In LIF-STDP networks, the weights usually are stored in the form of a two-dimensional matrix. Pre- and post-synaptic spikes trigger row and column access correspondingly. But this dual-access pattern is very costly for DRAM. We eliminate the column access by introducing a post-synaptic buffer and an approximation function. The post-synaptic spikes are recorded in the buffer and are processed at pre-synaptic spikes together with the row updates. This column update elimination method will introduce errors due to the limited buffer size. In our error analysis, the experiments show that the probability of introducing intolerable errors can be bounded to a very small number with proper buffer size and approximation function. We also present a performance analysis of the Column Update Elimination (CUE) optimization. The error analysis of the column updates elimination method is the main contribution of our work. / Spikande neurala nätverk som använder LIF-neuroner och STDP-inlärning, används vanligtvis som ett mer biologiskt möjligt nätverk. Jämfört med DNN och RNN är LIF-STDP-nätverken modeller närmare den biologiska cortex. LIFSTDP-neuroner använder spikar för att kommunicera med varandra, och de lär sig genom korrelationen mellan dessa pre- och postsynaptiska spikar. Simulering av sådana nätverk kräver vanligtvis högpresterande superdatorer som nästan alla är baserade på von Neumann-arkitektur som separerar lagring och beräkning. I von Neumanns arkitekturlösningar är minnesåtkomst flaskhalsen även för högt optimerade Application-Specific Integrated Circuits (ASIC). I denna avhandling föreslår vi en optimeringsmetod som kan minska kostnaden för minnesåtkomst genom att undvika ett dubbelåtkomstmönster. I LIF-STDPnätverk lagras vikterna vanligtvis i form av en tvådimensionell matris. Preoch postsynaptiska toppar kommer att utlösa rad- och kolumnåtkomst på motsvarande sätt. Men detta mönster med dubbel åtkomst är mycket dyrt i DRAM. Vi eliminerar kolumnåtkomsten genom att införa en postsynaptisk buffert och en approximationsfunktion. De postsynaptiska topparna registreras i bufferten och bearbetas vid presynaptiska toppar tillsammans med raduppdateringarna. Denna metod för eliminering av kolumnuppdatering kommer att introducera fel på grund av den begränsade buffertstorleken. I vår felanalys visar experimenten att sannolikheten för att införa oacceptabla fel kan begränsas till ett mycket litet antal med korrekt buffertstorlek och approximationsfunktion. Vi presenterar också en prestandaanalys av CUE-optimeringen. Felanalysen av elimineringsmetoden för kolumnuppdateringar är det huvudsakliga bidraget från vårt arbete
42

Exploring Column Update Elimination Optimization for Spike-Timing-Dependent Plasticity Learning Rule / Utforskar kolumnuppdaterings-elimineringsoptimering för spik-timing-beroende plasticitetsinlärningsregel

Singh, Ojasvi January 2022 (has links)
Hebbian learning based neural network learning rules when implemented on hardware, store their synaptic weights in the form of a two-dimensional matrix. The storage of synaptic weights demands large memory bandwidth and storage. While memory units are optimized for only row-wise memory access, Hebbian learning rules, like the spike-timing dependent plasticity, demand both row and column-wise access of memory. This dual pattern of memory access accounts for the dominant cost in terms of latency as well as energy for realization of large scale spiking neural networks in hardware. In order to reduce the memory access cost in Hebbian learning rules, a Column Update Elimination optimization has been previously implemented, with great efficacy, on the Bayesian Confidence Propagation neural network, that faces a similar challenge of dual pattern memory access. This thesis explores the possibility of extending the column update elimination optimization to spike-timing dependent plasticity, by simulating the learning rule on a two layer network of leaky integrate-and-fire neurons on an image classification task. The spike times are recorded for each neuron in the network, to derive a suitable probability distribution function for spike rates per neuron. This is then used to derive an ideal postsynaptic spike history buffer size for the given algorithm. The associated memory access reductions are analysed based on data to assess feasibility of the optimization to the learning rule. / Hebbiansk inlärning baserat på neural nätverks inlärnings regler används vid implementering på hårdvara, de lagrar deras synaptiska vikter i form av en tvådimensionell matris. Lagringen av synaptiska vikter kräver stor bandbredds minne och lagring. Medan minnesenheter endast är optimerade för radvis minnesåtkomst. Hebbianska inlärnings regler kräver som spike-timing-beroende plasticitet, både rad- och kolumnvis åtkomst av minnet. Det dubbla mönstret av minnes åtkomsten står för den dominerande kostnaden i form av fördröjning såväl som energi för realiseringen av storskaliga spikande neurala nätverk i hårdvara. För att minska kostnaden för minnesåtkomst i hebbianska inlärnings regler har en Column Update Elimination-optimering tidigare implementerats, med god effektivitet på Bayesian Confidence Propagation neurala nätverket, som står inför en liknande utmaning med dubbel mönster minnesåtkomst. Denna avhandling undersöker möjligheten att utöka ColumnUpdate Elimination-optimeringen till spike-timing-beroende plasticitet. Detta genom att simulera inlärnings regeln på ett tvålagers nätverk av läckande integrera-och-avfyra neuroner på en bild klassificerings uppgift. Spike tiderna registreras för varje neuron i nätverket för att erhålla en lämplig sannolikhetsfördelning funktion för frekvensen av toppar per neuron. Detta används sedan för att erhålla en idealisk postsynaptisk spike historisk buffertstorlek för den angivna algoritmen. De associerade minnesåtkomst minskningarna analyseras baserat på data för att bedöma genomförbarheten av optimeringen av inlärnings regeln.
43

A deep learning theory for neural networks grounded in physics

Scellier, Benjamin 12 1900 (has links)
Au cours de la dernière décennie, l'apprentissage profond est devenu une composante majeure de l'intelligence artificielle, ayant mené à une série d'avancées capitales dans une variété de domaines. L'un des piliers de l'apprentissage profond est l'optimisation de fonction de coût par l'algorithme du gradient stochastique (SGD). Traditionnellement en apprentissage profond, les réseaux de neurones sont des fonctions mathématiques différentiables, et les gradients requis pour l'algorithme SGD sont calculés par rétropropagation. Cependant, les architectures informatiques sur lesquelles ces réseaux de neurones sont implémentés et entraînés souffrent d’inefficacités en vitesse et en énergie, dues à la séparation de la mémoire et des calculs dans ces architectures. Pour résoudre ces problèmes, le neuromorphique vise à implementer les réseaux de neurones dans des architectures qui fusionnent mémoire et calculs, imitant plus fidèlement le cerveau. Dans cette thèse, nous soutenons que pour construire efficacement des réseaux de neurones dans des architectures neuromorphiques, il est nécessaire de repenser les algorithmes pour les implémenter et les entraîner. Nous présentons un cadre mathématique alternative, compatible lui aussi avec l’algorithme SGD, qui permet de concevoir des réseaux de neurones dans des substrats qui exploitent mieux les lois de la physique. Notre cadre mathématique s'applique à une très large classe de modèles, à savoir les systèmes dont l'état ou la dynamique sont décrits par des équations variationnelles. La procédure pour calculer les gradients de la fonction de coût dans de tels systèmes (qui dans de nombreux cas pratiques ne nécessite que de l'information locale pour chaque paramètre) est appelée “equilibrium propagation” (EqProp). Comme beaucoup de systèmes en physique et en ingénierie peuvent être décrits par des principes variationnels, notre cadre mathématique peut potentiellement s'appliquer à une grande variété de systèmes physiques, dont les applications vont au delà du neuromorphique et touchent divers champs d'ingénierie. / In the last decade, deep learning has become a major component of artificial intelligence, leading to a series of breakthroughs across a wide variety of domains. The workhorse of deep learning is the optimization of loss functions by stochastic gradient descent (SGD). Traditionally in deep learning, neural networks are differentiable mathematical functions, and the loss gradients required for SGD are computed with the backpropagation algorithm. However, the computer architectures on which these neural networks are implemented and trained suffer from speed and energy inefficiency issues, due to the separation of memory and processing in these architectures. To solve these problems, the field of neuromorphic computing aims at implementing neural networks on hardware architectures that merge memory and processing, just like brains do. In this thesis, we argue that building large, fast and efficient neural networks on neuromorphic architectures also requires rethinking the algorithms to implement and train them. We present an alternative mathematical framework, also compatible with SGD, which offers the possibility to design neural networks in substrates that directly exploit the laws of physics. Our framework applies to a very broad class of models, namely those whose state or dynamics are described by variational equations. This includes physical systems whose equilibrium state minimizes an energy function, and physical systems whose trajectory minimizes an action functional (principle of least action). We present a simple procedure to compute the loss gradients in such systems, called equilibrium propagation (EqProp), which requires solely locally available information for each trainable parameter. Since many models in physics and engineering can be described by variational principles, our framework has the potential to be applied to a broad variety of physical systems, whose applications extend to various fields of engineering, beyond neuromorphic computing.

Page generated in 0.1041 seconds