• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 5
  • 2
  • 1
  • 1
  • Tagged with
  • 27
  • 27
  • 8
  • 7
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

The developmental and evolutionary roles of isoforms of regulator of G protein signalling 3 in neuronal differentiation

Fleenor, Stephen January 2014 (has links)
Fundamental to the complexity of the nervous system is the precise regulation in space and time of the production, maturation, and migration of neurons in the developing embryo. This is eloquently seen in the forming cranial sensory ganglia (CSG) of the peripheral nervous system. Placodes, which are transient pseudostratified neuroepithelia in the surface ectoderm of the embryo, are responsible for generating most of the neurons of the CSG. Placodal progenitors commit to the neuronal fate and delaminate from the epithelium as immature, multipolar neuroblasts. These neuroblasts reside in a staging area immediately outside the placode. Differentiation of the neuroblasts is intimately coupled to their adoption of a bipolar morphology and migration away from the staging area to the future site of the CSG. Thus the forming CSG is a highly tractable model to anatomically separate the three phases of a neuroblast’s lifetime: from neuroepithelial progenitor (in the placode), to immature neuroblast (in the staging area), to mature neuron (in the migratory stream). In this thesis, I used the forming CSG as a model to investigate the role of Regulator of G protein Signalling 3 (RGS3) in neuroblast commitment and differentiation. Promoters within introns of the RGS3 locus generate isoforms in which N-terminal sequences are sequentially truncated, but C-terminal sequences are preserved. Intriguingly, I found that expression of these isoforms in the forming CSG is temporally co-linear with their genomic orientation: longer isoforms are exclusively expressed in the progenitor placode; a medium isoform is expressed exclusively in the neuroblast staging area; and the shortest isoforms are expressed in the neuronal migratory stream. Furthermore, through loss- and gain-of-function experiments, I demonstrated that each of these isoforms plays a specific role in the differentiation state in which it is expressed: placode-expressed isoforms negatively regulate neurogenesis; the neuroblast-expressed isoform negatively regulates differentiation; and the neuron-expressed isoforms negatively regulate neuronal migration. The negative regulatory role which all isoforms play in different cell-biological contexts is intriguing in light of the fact that they all share a C-terminal RGS domain, which canonically negatively regulates G protein signalling. Through domain mutation and deletion, I showed that the RGS and N-terminal domains are important for the function of each isoform. Thus temporally co-linear expression within the RGS3 locus generates later-expressed isoforms which lack the regulatory N-terminal domains of the earlier-expressed isoforms, giving them new license to perform different biochemical functions. Lastly, I investigated the conservation and evolution of RGS3 and its isoforms. RGS3 was found to be present in all extant metazoans, and results from this thesis implicate it as the founding member of the R4 subfamily of RGS proteins. Furthermore, in the early vertebrate lineage, a critical domain was lost. This is intriguing in light of the fact that placodes in their stereotypic forms also emerged early in the vertebrate lineage. Ectopic overexpression of the full-length invertebrate RGS3 protein prevented pseudostratification of the vertebrate placode, suggesting that the domain loss in the early vertebrate lineage was important for the evolution of pseudostratified placodes and the expansion of the vertebrate nervous system. In summary, the work in this thesis has uncovered a previously unseen model of transcriptional regulation of a single locus: intragenic temporal co-linearity. Furthermore, the demonstrated functions of this regulation have profound implications on the generation and differentiation of vertebrate neurons, as well as the evolution of the vertebrate nervous system.
22

Ganglion cell translocation across the retina and its importance for retinal lamination

Icha, Jaroslav 15 February 2017 (has links) (PDF)
Correct layering (lamination) of neurons in the central nervous system (CNS) is critical for the tissue functionality. Neuronal lamination is established during development, when the majority of neurons have to move from their birthplace to the appropriate layer, where they function. Therefore, to grasp the logic of CNS development, it is essential to understand the kinetics and modes of the variety of neuronal translocation events. Most of our knowledge about neuronal translocation has been gained using fixed tissue or ex vivo imaging, which is not ideal for such a dynamic process heavily dependent on the surrounding environment. To avoid these limitations, I combined translucent zebrafish embryos with light sheet fluorescence microscopy, which together enabled gentle in toto imaging of neuronal translocation. I studied the translocation of retinal ganglion cells (RGCs) across the developing zebrafish retina. RGCs are the first neurons that differentiate in the vertebrate retina and are born in a proliferative zone at the retinal apical side. From here, they move basally, spanning the complete apico-basal length of the tissue. They are destined to occupy the most basal layer, where their axons form the optic nerve. Although it was described that RGCs move their soma while being attached to both apical and basal sides of the retina, the kinetics and cell biological mechanisms of somal translocation remained unknown. Extracting single cell behavior of RGCs from high-resolution movies of their translocation allowed for quantitative analysis of RGC movement. I revealed that RGCs cross the retina in less than two hours in a directionally persistent manner. The movement of RGC soma is a cell autonomously generated process, which requires intact microtubules and actin-dependent basal attachment of cells for speed and efficiency. Unexpectedly, interference with somal translocation leads to a shift towards a multipolar migratory mode, previously not observed for RGCs, in which they temporarily lose both apical and basal attachment and apico-basal polarity. The multipolar mode is overall slower and less directionally persistent, but still allows RGCs to reach the basal retina. However, when RGC translocation is inhibited completely, they differentiate ectopically in the center of the retina, which in turn triggers the formation of ectopic layers of later born neurons. These results highlight the importance of establishing the basal layer of ganglion cells for ensuing retinal lamination. Overall, I generated important advances in the understanding of neuronal translocation and lamination, which might be relevant for other parts of the CNS.
23

Estudio de procesos de Migración y Plasticidad en el Sistema Nervioso Central: Papel de Semaforina 4F y kinasa de adhesión focal (FAK)

García García, Beatriz 15 February 2013 (has links)
La presente tesis doctoral presenta varios resultados fundamentales para la ampliación del conocimiento actual de procesos importantes en la generación de los circuitos neuronales, como son la migración y la ramificación de células neurales. En primer lugar, se ha determinado la expresión de la semaforina transmembranal 4F en cerebro de ratón en desarrollo y adulto. Así, se ha visto que se expresa en diversas áreas del cerebro, y se ha encontrado expresión de esta proteína en precursores neuronales y en neuronas maduras, principalmente en dendritas, y en células del linaje oligodendroglial. Para profundizar más en este aspecto se llevaron a cabo varios marcajes dobles de Sema4F con proteínas marcadoras de oligodendrocitos, observándose marca en el nervio óptico y otras regiones cerebrales, incluídas la materia blanca y vías de migración de oligodendrocitos. La localización de esta semaforina en el nervio óptico a edades embrionarias y su expresión en células precursoras de oligodendrocitos (OPCs), comprobada in vitro, nos llevó a sugerir que Sema4F funciona controlando la migración de OPCs. Una serie de experimentos con explantes de nervio óptico tratados con medio control o medio condicionado 4F nos permitió determinar que Sema4F actúa inhibiendo la migración de OPCs, sin afectar a su proliferación. Además, Sema4F induce la diferenciación de OPCs a oligodendrocitos maduros. Todos estos datos sugieren un posible papel de Sema4F en procesos de remielinización. Los efectos negativos de Sema4F sobre la migración de OPCs deben cursar con cambios en el citoesqueleto celular. La kinasa de adhesión focal (FAK) es un importante mediador de señales extracelulares (como factores tróficos, interacción de integrinas con proteínas de matriz extracelular, etc…) y el interior de las células. Actúa sobre el citoesqueleto de actina y de tubulina, influyendo en la generación de filopodios, lamelipodios y fibras de estrés. Tiene un papel crucial en migración, de modo que dedicimos estudiar si Sema4F ejerce sus efectos en OPCs a través FAK. Hemos visto que Sema4F es capaz de inducir la fosforilación en varios residuos tirosina de FAK en pocos minutos, y que ambas proteínas por separado ejercen efectos opuestos en la migración de oligodendrocitos. La vía de señalización de 4F, de la que se desconoce incluso el receptor, podría cursar mediante la modulación del estado de activación de FAK, aunque faltan experimentos definitivos. FAK presenta varias isoformas específicas del sistema nervioso central, originadas mediante procesos de splicing alternativo. En la presente tesis hemos determinado con gran especificidad la forma mayoritaria expresada en varias áreas cerebrales y en el desarrollo embrionario o el adulto, tanto en neuronas como en células de la glía. FAK responde a neurotrofinas y participa en procesos de ramificación neuronal, si bien su efecto final es controvertido. Otra proteína que responde a neurotrofinas, y actúa promoviendo la ramificación axonal, es la kinasa dependiente de cdc-42 activada 1 (Ack1). En esta tesis hemos determinado que ambas proteínas interaccionan en cerebro específicamente, de manera independiente de la isoforma de FAK presente. Mediante el uso de inhibidores hemos visto que la activación de FAK es necesaria para la fosforilación de Ack1 y viceversa. FAK es la responsable de la atracción ejercida por netrina-1, y hemos determinado que la ausencia de Ack1 elimina el efecto de esta molécula de señalización. Con técnicas de Espetrometría de Masas hemos identificado algunos posibles interactores de ambas proteínas. Además, hemos observado cambios en el estado de fosforilación de varios residuos de FAK y Ack1 en función del estado de desarrollo (ratones P5 Vs. Adultos) y del estado general de activación del cerebro (ratones inyectados con la droga epileptogénica PTZ Vs. Control). / This thesis presents several results related to important processes regarding neural circuit formation, i.e. migration and ramification of Central Nervous System (CNS) cells. First, we have determined the expression of transmembrane semaphorin 4F (Sema4F) in developing and adult mice brain. Expression of this protein is high in neuronal and oligodendrocyte precursor cells (OPCs), and in different areas including optic nerve (ON) and different migratory pathways. In vitro experiments confirmed Sema4F expression in OPCs. We investigated the role of this protein in functions important for OPC physiology, and found that Sema4F inhibits OPC migration from ON explants and induces their differentiation into mature progenitors. Negative effects of Sema4F in migration must involve cytoskeleton changes. Focal adhesion kinase (FAK) is an important integrator of different extracellular signals and modulates cytoskeleton dynamics to control generation of lamellipodia, fillopodia and stress fibers. In the present project we found that Sema4F is able to phosphorylate FAK, and that FAK enhances OPC migration. The exact implications of Sema4F-FAK relationship remain to be elucidated. FAK exists in different spliced isoforms, expressed preferentially in brain. In this project, we characterised the exact isoform expressed in different areas of the brain and by different cell types. Finally, FAK response to neurotrophins is well characterised. FAK also participates in ramification processes, with controversial final effects in neurons. Ack1 is a crucial transducer of neurotrophin-induced ramification. In this thesis we show that both proteins interact specifically in neurons. We have also found that the activation of FAK is necessary for Ack1 phosphorylation upon stimulation, and viceversa. FAK mediates netrin-1 attraction, and here we have determined that knocking-down Ack1 avoids netrin-1 effects in hippocampal explants. By Mass Spectrometry (MS) techniques, we have observed changes in the phosphorylation state of both proteins depending on the developmental stage of the brain (P5 mice) or its activation state (epileptic mice).
24

Rôle de l'acide rétinoïque dans la neurogenèse corticale chez la souris / Role of retinoic acid during mouse cortical neurogenesis

Haushalter, Carole 28 September 2016 (has links)
L’acide rétinoïque (AR), dérivé actif de la vitamine A (rétinol) circulante, est une petite molécule lipophile contrôlant divers aspects de la mise en place du système nerveux central des vertébrés. L'AR influence notamment le développement précoce du cerveau antérieur, où il contrôle la prolifération et la survie des cellules progénitrices dans l'épithélium neural prosencéphalique. Le développement neural est un processus qui s'articule en trois grandes étapes : la phase d'expansion latérale (E9,5-E10,5 chez la souris), la phase de neurogenèse (E11,5-stades périnataux) et la phase de gliogenèse (stades périnataux-adulte). Nous avons montré que l'AR produit par les méninges à partir de E13 influence la spécification et la migration neuronale au cours de la phase de neurogenèse. De plus, nos travaux suggèrent un rôle plus précoce de l'AR pour la formation et la prolifération des populations progénitrices et neuronales avant et au début de la phase de neurogenèse. Une combinaison de signaux intrinsèques et extrinsèques contrôle divers aspects du développement neural cortical. Nos travaux placent l'AR parmi ces facteurs modulateurs de la neurogenèse corticale. / Retinoic acid (RA), an active vitamin A (retinol) metabolite, is a small lipophilic molecule controlling numerous events during central nervous system development in vertebrates. RA is involved in early forebrain development by controlling cell proliferation and survival in the prosencephalic neuroepithelium. Neural development is a process progressing through three key steps: a phase of lateral expansion (E9.5-E10.5 in the mouse), a phase of neurogenesis (E11.5-perinatal stages) and a gliogenic phase (perinatal stages-adult). My work has shown that RA produced by the developing meninges from E13 influences neuronal specification and migration during the phase of neurogenesis. Moreover, our data suggest an earlier role of RA during the production and proliferation of progenitor and neuronal populations, before and at the onset of the neurogenic phase. A combination of extrinsic and intrinsic signals is required to orchestrate the various aspects of cortical development. RA is likely to be one of such extrinsic factors modulating cortical neurogenesis.
25

Etude du rôle de protéines apparentées aux cadhérines dans le développement des interneurones du cortex auditif / Study of the role of cadherin-related proteins in the development of auditory cortex interneurons

Libé-Philippot, Baptiste 16 June 2017 (has links)
L'éminence ganglionnaire médiale (MGE) produit la grande majorité des interneurones GABAergiques corticaux synthétisant la parvalbumine. Les neuroblastes issus de la MGE migrent sur une longue distance avant d'atteindre leur destination finale. A ce jour, on ne sait pas s'il existe des mécanismes moléculaires les guidant vers des régions corticales données. Je montre que deux protéines apparentées aux cadhérines, cdhr23 et cdhr15, ont un rôle déterminant dans le développement d'interneurones du cortex auditif et de manière spécifique. Chez la souris et le macaque, ces deux protéines sont co-synthétisées par des neuroblastes issus de la MGE pendant leur migration. Chez les souris déficientes pour Cdhr23 ou Cdhr15, les neuroblastes synthétisant cdhr15 ou cdhr23 s'accumulent dans le télencéphale basal, ne parviennent pas à pénétrer dans le néocortex et présentent in vitro des défauts de polarité cellulaire. Cdhr15 intervient dans la survie des précurseurs d'interneurones à parvalbumine pendant la première semaine postnatale. Les souris mutantes pour Cdhr23 ou Cdhr15 présentent à trois semaines un nombre réduit d'interneurones à parvalbumine dans leur cortex auditif mais pas dans les cortex avoisinants. Cette diminution est associée à une disposition aux crises audiogènes. Mes résultats indiquent que des précurseurs d'interneurones du cortex auditif sont équipés de protéines d'adhérence déterminantes pour leur migration et leur intégration dans le cortex auditif. Ils suggèrent l'existence d'un possible mécanisme moléculaire général fondé sur un " code d'adhérence " qui déterminerait les neuroblastes GABAergiques dès leur naissance à intégrer une aire corticale donnée. / The medial ganglionic eminence (MGE) gives rise to the majority of cortical GABAergic interneurons that synthetize parvalbumin. Neuroblasts born in the MGE undergo a long distance migration before reaching their final target. Up to now, it is unknown whether any molecular mechanism guides them to specific cortical regions. I show that two cadherin-related proteins, cdhr23 and cdhr15, have a critical role in the development of interneurons of the auditory cortex, specifically. In mice and macaque, the two proteins are co-synthetized in neuroblasts from the MGE during their migration. In mouse mutants for Cdhr23 or Cdhr15, neuroblasts synthetizing cdhr15 or cdhr23 accumulate in the basal telencephalon, fail to enter the neocortex and present in vitro cell polarity defects. Cdhr15 is involved in the survival of parvalbumin interneuron precursors during the first postnatal week. Mutant mice for Cdhr23 and Cdhr15 show at three weeks a reduced number of parvalbumin interneurons in the mouse auditory cortex but not the neighbouring ones. This decrease is associated with a susceptibility to audiogenic seizures. My results reveal that interneuron precursors of the auditory cortex are endowed by specific adhesion proteins critically involved in their migration and integration in the auditory cortex. They suggest a possible general molecular mechanism based on an "adhesion code” that would determine GABAergic neuroblasts from their birth to a specific cortical region.
26

Ganglion cell translocation across the retina and its importance forretinal lamination: Ganglion cell translocation across the retina and its importance for retinal lamination

Icha, Jaroslav 15 February 2017 (has links)
Correct layering (lamination) of neurons in the central nervous system (CNS) is critical for the tissue functionality. Neuronal lamination is established during development, when the majority of neurons have to move from their birthplace to the appropriate layer, where they function. Therefore, to grasp the logic of CNS development, it is essential to understand the kinetics and modes of the variety of neuronal translocation events. Most of our knowledge about neuronal translocation has been gained using fixed tissue or ex vivo imaging, which is not ideal for such a dynamic process heavily dependent on the surrounding environment. To avoid these limitations, I combined translucent zebrafish embryos with light sheet fluorescence microscopy, which together enabled gentle in toto imaging of neuronal translocation. I studied the translocation of retinal ganglion cells (RGCs) across the developing zebrafish retina. RGCs are the first neurons that differentiate in the vertebrate retina and are born in a proliferative zone at the retinal apical side. From here, they move basally, spanning the complete apico-basal length of the tissue. They are destined to occupy the most basal layer, where their axons form the optic nerve. Although it was described that RGCs move their soma while being attached to both apical and basal sides of the retina, the kinetics and cell biological mechanisms of somal translocation remained unknown. Extracting single cell behavior of RGCs from high-resolution movies of their translocation allowed for quantitative analysis of RGC movement. I revealed that RGCs cross the retina in less than two hours in a directionally persistent manner. The movement of RGC soma is a cell autonomously generated process, which requires intact microtubules and actin-dependent basal attachment of cells for speed and efficiency. Unexpectedly, interference with somal translocation leads to a shift towards a multipolar migratory mode, previously not observed for RGCs, in which they temporarily lose both apical and basal attachment and apico-basal polarity. The multipolar mode is overall slower and less directionally persistent, but still allows RGCs to reach the basal retina. However, when RGC translocation is inhibited completely, they differentiate ectopically in the center of the retina, which in turn triggers the formation of ectopic layers of later born neurons. These results highlight the importance of establishing the basal layer of ganglion cells for ensuing retinal lamination. Overall, I generated important advances in the understanding of neuronal translocation and lamination, which might be relevant for other parts of the CNS.
27

Caracterización genética y origen de las neuronas de la región claustroamigdalina en ratón.

Legaz Pérez, Isabel 31 July 2006 (has links)
El objetivo de esta Tesis ha sido profundizar en el estudio del desarrollo del complejo claustroamigdalino en ratón. Para ello hemos estudiado: 1) cuales de sus componentes derivan del palio lateral o ventral, en base a expresión diferencial de genes reguladores Dbx1, Lhx9, Lhx2, Lmo3, Lmo4, Cadherina 8 y Emx1 durante el desarrollo embrionario; 2) el desarrollo de las interneuronas del complejo claustroamigdalino que contienen proteínas ligadoras de calcio (incluyendo el desarrollo de sus circuitos locales); 3) el origen histogenético de dichas interneuronas, mediante cultivos organotípicos y el análisis del ratón transgénico Nkx2.1-Cre/Rosa26-GFP (Kessaris y col. 2006). Nuestros datos permiten distinguir los componentes paliales laterales o ventrales del complejo, que contienen múltiples subtipos de interneuronas con orígenes en distintas subdivisiones del subpalio. Esto abre las puertas a futuras investigaciones sobre la conectividad y función de cada subtipo de interneurona, y sobre su grado de implicación en los desórdenes neuropsiquiátricos. / The objective of this Doctoral Thesis was to deepen in the study of the development of the claustroamygdaloid complex in mouse. For that, we pursued to study: 1) which components derive from either the lateral or ventral pallium based on differential expression of regulatory genes (Dbx1, Lhx9, Lhx2, Lmo3, Lmo4, Cadherina 8 y Emx1) during embryonic development; 2) the development of interneurons of the claustroamygdaloid complex that contain calcium binding proteins (including the development of its local circuits); 3) the histogenetic origin of these interneurons, by means of organotypic cultures and analysis of the transgenic mouse Nkx2.1-Cre/Rosa26-GFP (Kessaris and col. 2006). Our data allowed the distinction between lateral and ventral pallial components of the complex, which contain multiple subtypes of interneurons with origins in different subpallial subdivisions. This opens new venues for future investigations on the connectivity and function of each interneuron subtype, and on their involvement in neuropsychiatric disorders.

Page generated in 0.12 seconds