• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Interplay of dynamics and network topology in systems of excitable elements

Tomov, Petar Georgiev 22 March 2016 (has links)
Wir untersuchen globale dynamische Phänomene, die sich von dem Zusammenspiel zwischen Netzwerktopologie und Dynamik der einzelnen Elementen ergeben. Im ersten Teil untersuchen wir relativ kleine strukturierte Netzwerke mit überschaubarer Komplexität. Als geeigneter theoretischer Rahmen für erregbare Systeme verwenden wir das Kuramoto und Shinomoto Modell der sinusförmig-gekoppelten "aktiven Rotatoren" und studieren das Kollektivverhalten des Systems in Bezug auf Synchronisation. Wir besprechen die Einschränkungen, die durch die Netzwerktopologie auf dem Fluss im Phasenraum des Systems gestellt werden. Insbesondere interessieren wir uns für die Stabilitätseigenschaften von Fluss-invarianten Polydiagonalen und die Entwicklungen von Attraktoren in den Parameterräume solcher Systeme. Wir untersuchen zweidimensionale hexagonale Gitter mit periodischen Randbedingungen. Wir untersuchen allgemeine Bedingungen auf der Adjazenzmatrix von Netzwerken, die die Watanabe-Strogatz Reduktion ermöglichen, und diskutieren verschiedene Beispiele. Schließlich präsentieren wir eine generische Analyse der Bifurkationen, die auf der Untermannigfaltigkeit des Watanabe-Strogatz reduzierten Systems stattfinden. Im zweiten Teil der Arbeit untersuchen wir das globale dynamische Phänomen selbstanhaltender Aktivität (self-sustained activity / SSA) in neuronalen Netzwerken. Wir betrachten Netzwerke mit hierarchischer und modularer Topologie , umfassend Neuronen von verschiedenen kortikalen elektrophysiologischen Zellklassen. Wir zeigen, dass SSA Zustände mit ähnlich zu den experimentell beobachteten Eigenschaften existieren. Durch Analyse der Dynamik einzelner Neuronen sowie des Phasenraums des gesamten Systems erläutern wir die Rolle der Inhibierung. Darüber hinaus zeigen wir, dass beide Netzwerkarchitektur, in Bezug auf Modularität, sowie Mischung aus verschiedenen Neuronen, in Bezug auf die unterschiedlichen Zellklassen, einen Einfluss auf die Lebensdauer der SSA haben. / In this work we study global dynamical phenomena which emerge as a result of the interplay between network topology and single-node dynamics in systems of excitable elements. We first focus on relatively small structured networks with comprehensible complexity in terms of graph-symmetries. We discuss the constraints posed by the network topology on the dynamical flow in the phase space of the system and on the admissible synchronized states. In particular, we are interested in the stability properties of flow invariant polydiagonals and in the evolutions of attractors in the parameter spaces of such systems. As a suitable theoretical framework describing excitable elements we use the Kuramoto and Shinomoto model of sinusoidally coupled “active rotators”. We investigate plane hexagonal lattices of different size with periodic boundary conditions. We study general conditions posed on the adjacency matrix of the networks, enabling the Watanabe-Strogatz reduction, and discuss different examples. Finally, we present a generic analysis of bifurcations taking place on the submanifold associated with the Watanabe-Strogatz reduced system. In the second part of the work we investigate a global dynamical phenomenon in neuronal networks known as self-sustained activity (SSA). We consider networks of hierarchical and modular topology, comprising neurons of different cortical electrophysiological cell classes. In the investigated neural networks we show that SSA states with spiking characteristics, similar to the ones observed experimentally, can exist. By analyzing the dynamics of single neurons, as well as the phase space of the whole system, we explain the importance of inhibition for sustaining the global oscillatory activity of the network. Furthermore, we show that both network architecture, in terms of modularity level, as well as mixture of excitatory-inhibitory neurons, in terms of different cell classes, have influence on the lifetime of SSA.
2

Odor coding and memory traces in the antennal lobe of honeybee

Galan, Roberto Fernandez 17 December 2003 (has links)
In dieser Arbeit werden zwei wesentliche neue Ergebnisse vorgestellt. Das erste bezieht sich auf die olfaktorische Kodierung und das zweite auf das sensorische Gedaechtnis. Beide Phaenomene werden am Beispiel des Gehirns der Honigbiene untersucht. In Bezug auf die olfaktorische Kodierung zeige ich, dass die neuronale Dynamik waehrend der Stimulation im Antennallobus duftspezifische Trajektorien beschreibt, die in duftspezifischen Attraktoren enden. Das Zeitinterval, in dem diese Attraktoren erreicht werden, betraegt unabhaengig von der Identitaet und der Konzentration des Duftes ungefaehr 800 ms. Darueber hinaus zeige ich, dass Support-Vektor Maschinen, und insbesondere Perzeptronen, ein realistisches und biologisches Model der Wechselwirkung zwischen dem Antennallobus (dem kodierenden Netwerk) und dem Pilzkoerper (dem dekodierenden Netzwerk) darstellen. Dieses Model kann sowohl Reaktionszeiten von ca. 300 ms als auch die Invarianz der Duftwahrnehmung gegenueber der Duftkonzentration erklaeren. In Bezug auf das sensorische Gedaechtnis zeige ich, dass eine einzige Stimulation ohne Belohnung dem Hebbschen Postulat folgend Veraenderungen der paarweisen Korrelationen zwischen Glomeruli induziert. Ich zeige, dass diese Veranderungen der Korrelationen bei 2/3 der Bienen ausreichen, um den letzten Stimulus zu bestimmen. In der zweiten Minute nach der Stimulation ist eine erfolgreiche Bestimmung des Stimulus nur bei 1/3 der Bienen moeglich. Eine Hauptkomponentenanalyse der spontanen Aktivitaet laesst erkennen, dass das dominante Muster des Netzwerks waehrend der spontanen Aktivitaet nach, aber nicht vor der Stimulation das duftinduzierte Aktivitaetsmuster bei 2/3 der Bienen nachbildet. Man kann deshalb die duftinduzierten (Veraenderungen der) Korrelationen als Spuren eines Kurzzeitgedaechtnisses bzw. als Hebbsche "Reverberationen" betrachtet werden. / Two major novel results are reported in this work. The first concerns olfactory coding and the second concerns sensory memory. Both phenomena are investigated in the brain of the honeybee as a model system. Considering olfactory coding I demonstrate that the neural dynamics in the antennal lobe describe odor-specific trajectories during stimulation that converge to odor-specific attractors. The time interval to reach these attractors is, regardless of odor identity and concentration, approximately 800 ms. I show that support-vector machines and, in particular perceptrons provide a realistic and biological model of the interaction between the antennal lobe (coding network) and the mushroom body (decoding network). This model can also account for reaction-times of about 300 ms and for concentration invariance of odor perception. Regarding sensory memory I show that a single stimulation without reward induces changes of pairwise correlation between glomeruli in a Hebbian-like manner. I demonstrate that those changes of correlation suffice to retrieve the last stimulus presented in 2/3 of the bees studied. Succesful retrieval decays to 1/3 of the bees within the second minute after stimulation. In addition, a principal-component analysis of the spontaneous activity reveals that the dominant pattern of the network during the spontaneous activity after, but not before stimulation, reproduces the odor-induced activity pattern in 2/3 of the bees studied. One can therefore consider the odor-induced (changes of) correlation as traces of a short-term memory or as Hebbian reverberations.
3

Implications of neuronal excitability and morphology for spike-based information transmission

Hesse, Janina 29 November 2017 (has links)
Signalverarbeitung im Nervensystem hängt sowohl von der Netzwerkstruktur, als auch den zellulären Eigenschaften der Nervenzellen ab. In dieser Abhandlung werden zwei zelluläre Eigenschaften im Hinblick auf ihre funktionellen Anpassungsmöglichkeiten untersucht: Es wird gezeigt, dass neuronale Morphologie die Signalweiterleitung unter Berücksichtigung energetischer Beschränkungen verstärken kann, und dass selbst kleine Änderungen in biophysikalischen Parametern die Aktivierungsbifurkation in Nervenzellen, und damit deren Informationskodierung, wechseln können. Im ersten Teil dieser Abhandlung wird, unter Verwendung von mathematischen Modellen und Daten, die Hypothese aufgestellt, dass Energie-effiziente Signalweiterleitung als starker Evolutionsdruck für unterschiedliche Zellkörperlagen bei Nervenzellen wirkt. Um Energie zu sparen, kann die Signalweiterleitung vom Dendrit zum Axon verstärkt werden, indem relativ kleine Zellkörper zwischen Dendrit und Axon eingebaut werden, während relativ große Zellkörper besser ausgelagert werden. Im zweiten Teil wird gezeigt, dass biophysikalische Parameter, wie Temperatur, Membranwiderstand oder Kapazität, den Feuermechanismus des Neurons ändern, und damit gleichfalls Aktionspotential-basierte Informationsverarbeitung. Diese Arbeit identifiziert die sogenannte "saddle-node-loop" (Sattel-Knoten-Schlaufe) Bifurkation als den Übergang, der besonders drastische funktionale Auswirkungen hat. Neben der Änderung neuronaler Filtereigenschaften sowie der Ankopplung an Stimuli, führt die "saddle-node-loop" Bifurkation zu einer Erhöhung der Netzwerk-Synchronisation, was möglicherweise für das Auslösen von Anfällen durch Temperatur, wie bei Fieberkrämpfen, interessant sein könnte. / Signal processing in nervous systems is shaped by the connectome as well as the cellular properties of nerve cells. In this thesis, two cellular properties are investigated with respect to the functional adaptations they provide: It is shown that neuronal morphology can improve signal transmission under energetic constraints, and that even small changes in biophysical parameters can switch spike generation, and thus information encoding. In the first project of the thesis, mathematical modeling and data are deployed to suggest energy-efficient signaling as a major evolutionary pressure behind morphological adaptations of cell body location: In order to save energy, the electrical signal transmission from dendrite to axon can be enhanced if a relatively small cell body is located between dendrite and axon, while a relatively large cell body should be externalized. In the second project, it is shown that biophysical parameters, such as temperature, membrane leak or capacitance, can transform neuronal excitability (i.e., the spike onset bifurcation) and, with that, spike-based information processing. This thesis identifies the so-called saddle-node-loop bifurcation as the transition with particularly drastic functional implications. Besides altering neuronal filters and stimulus locking, the saddle-node-loop bifurcation leads to an increase in network synchronization, which may potentially be relevant for the initiation of seizures in response to increased temperature, such as during fever cramps.

Page generated in 0.079 seconds