21 |
Frequency preference and reliability of signal integrationSchreiber, Susanne 21 July 2004 (has links)
Die Eigenschaften einzelner Nervenzellen sind von grundlegender Bedeutung für die Verarbeitung von Informationen im Nervensystem. Neuronen antworten auf Eingangsreize durch Veränderung der elektrischen Spannung über die Zellmembran. Die Spannungsantwort wird dabei durch die Dynamik der Ionenkanäle in der Zellmembran bestimmt. In dieser Arbeit untersuche ich anhand von leitfähigkeits-basierten Modellneuronen den Einfluss von Ionenkanälen auf zwei Aspekte der Signalverarbeitung: die Frequenz-Selektivität sowie die Zuverlässigkeit und zeitliche Präzision von Aktionspotentialen. Zunächst werden die zell-intrinsischen Mechanismen identifiziert, welche the Frequenz-Selektivität und die Zuverlässigkeit bestimmen. Weiterhin wird untersucht, wie Ionenkanäle diese Mechanismen modulieren können, um die Integration von Signalen zu optimieren. Im ersten Teil der Arbeit wird demonstriert, dass der Mechanismus der unterschwelligen Resonanz, so wie er bisher für periodische Signale beobachtet wurde, auch auf nicht-periodische Signale anwendbar ist und sich ebenfalls in den Feuerraten niederschlägt. Im zweiten Teil wird gezeigt, dass zeitliche Präzision und Zuverlässigkeit von Aktionspotentialen mit der Stimulusfrequenz variieren und dass, in Abhängigkeit davon, ob das Stimulusmittel über- oder unterhalb der Feuerschwelle liegt, zwei Stimulusregime unterschieden werden müssen. In beiden Regimen existiert eine bevorzugte Stimulusfrequenz, welche durch die Gesamtleitfähigkeit und die Dynamik spezifischer Ionenkanäle moduliert werden kann. Im dritten Teil wird belegt, dass Ionenkanäle die Zuverlässigkeit auch direkt über eine Veränderung der Sensitivität einer Zelle gegenüber neuronalem Rauschen bestimmen können. Die Ergebnisse der Arbeit lassen auf eine wichtige Rolle der dynamischen Regulierung der Ionenkanäle für die Frequenz-Selektivität und die zeitliche Präzision und Zuverlässigkeit der Spannungsantworten schließen. / The properties of individual neurons are of fundamental importance for the processing of information in the nervous system. The generation of voltage responses to input signals, in particular, depends on the properties of ion channels in the cell membrane. Within this thesis, I employ conductance-based model neurons to investigate the effect of ionic conductances and their dynamics on two aspects of signal processing: frequency-selectivity and temporal precision and reliability of spikes. First, the cell-intrinsic mechanisms that determine frequency selectivity and spike timing reliability are identified on the basis of conductance-based model neurons. Second, it is analyzed how ionic conductances can serve to modulate these mechanisms in order to optimize signal integration. In the first part, the frequency selectivity of subthreshold response amplitudes previously observed for periodic stimuli is proven to extend to nonperiodic stimuli and to translate into firing rates. In the second part, it is demonstrated that spike timing reliability is frequency-selective and that two different stimulus regimes have to be distinguished, depending on whether the stimulus mean is below or above threshold. In both cases, resonance effects determine the most reliable stimulus frequency. It is shown that this frequency preference can be modulated by the peak conductance and dynamics of specific ion channels. In the third part, evidence is provided that ionic conductances determine spike timing reliability beyond changes in the preferred frequency. It is demonstrated that ionic conductances also exert a direct influence on the sensitivity of the timing of spikes to neuronal noise. The findings suggest an important role for dynamic neuromodulation of ion channels with regard to frequency selectivity and spike timing reliability.
|
22 |
Biophysical properties of AMPA receptor complexesRiva, Irene 11 May 2020 (has links)
Die exzitatorische Neurotransmission im gesamten Zentralnervensystem (ZNS) der Wirbeltiere wird weitgehend durch die α-Amino-3-hydroxy-5-methyl-4-isoxazolpropionsäure-Rezeptoren (AMPARs) vermittelt. AMPARs sind Glutamat-gesteuerte Ionenkanäle, die sich an der postsynaptischen Membran befinden, wo sie den Kern makromolekularer Komplexe mit einer Reihe von Hilfsproteinen bilden, die die Rezeptorfunktion konzertiert regulieren. Die bekanntesten dieser Proteine sind die transmembranen AMPA-Rezeptor-Regulierungsproteine (TARPs). TARPs zeigen eine verwirrende Reihe von Effekten auf den Handel, die synaptische Verankerung, die Gate-Kinetik und die Pharmakologie von AMPARs. Über die strukturellen Merkmale des AMPAR-TARP-Komplexes wurde zunehmendes Wissen gesammelt. Die molekularen Mechanismen, die der TARP-Modulation der AMPARs zugrunde liegen, sind jedoch noch nicht vollständig aufgeklärt. In der vorliegenden Studie wurden die AMPAR-TARP-Interaktionen mit Hilfe der Elektrophysiologie in 293 Zellen der menschlichen embryonalen Niere (HEK) untersucht. Die Rolle der extrazellulären TARP-Schleifen, Loop1 (L1) und Loop2 (L2), bei der Modulation der AMPAR-Ansteuerung wurde analysiert. Es wurde ein Modell für die TARP-Modulation vorgeschlagen, das auf vorhergesagten zustandsabhängigen Wechselwirkungen von TARP L1 und L2 mit dem AMPAR basiert. Da die nativen AMPARs im Gehirn hauptsächlich aus heterotetrameren Zusammensetzungen von vier verschiedenen Untereinheiten (GluA1-4) bestehen, wurden außerdem verschiedene Zusammensetzungen von AMPAR-Untereinheiten getestet. Es wurden sowohl gemeinsame als auch von den Untereinheiten abhängige Mechanismen der AMPAR-Modulation durch TARPs beobachtet. Zusammenfassend liefern diese Experimente den Nachweis, dass TARP L1 und L2 nicht an der Assoziation von AMPAR-TARP-Komplexen beteiligt sind und die Modulation der AMPAR-Ansteuerung durch TARPs vollständig erklären können. / Excitatory neurotransmission throughout the vertebrate central nervous system (CNS) is largely mediated by the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs). AMPARs are glutamate-gated ion channels located at the postsynaptic membrane, where they compose the hub of macromolecular complexes with a number of auxiliary proteins that concertedly regulate the receptor function. Among these proteins the most known ones are the transmembrane AMPA receptor regulatory proteins (TARPs). TARPs show a bewildering array of effects on the trafficking, synaptic anchoring, gating kinetics and pharmacology of AMPARs. Growing knowledge has been gathered about the structural features of the AMPAR-TARP complex. However, the molecular mechanisms underlying TARP modulation of AMPARs have not been fully revealed yet. Given that higher brain functions rely upon AMPAR activity and dysregulation of AMPARs has been associated to life-threatening CNS disorders, big efforts are being made to unravel the molecular machinery behind AMPAR regulation and to identify AMPAR auxiliary proteins as potential pharmacological targets. In the present study, AMPAR-TARP interactions were investigated using electrophysiology in human embryonic kidney (HEK) 293 cells. The role of TARP extracellular loops, Loop1 (L1) and Loop2 (L2), in the modulation of AMPAR gating was analysed. A model for TARP modulation has been proposed, based on predicted state-dependent interactions of TARP L1 and L2 with the AMPAR. Moreover, considering that native AMPARs in the brain mainly consist of heterotetrameric assemblies of four distinct subunits (GluA1-4), different AMPAR subunit compositions were tested. Common as well as subunit-dependent mechanisms of AMPAR modulation by TARPs have been observed. In summary, these experiments provided evidence that TARP L1 and L2 are not involved in association of AMPAR-TARP complexes and can entirely account for the modulation of AMPAR gating by TARPs.
|
23 |
Firing statistics in neurons as non-Markovian first passage time problemEngel, Tatiana 29 June 2007 (has links)
Der Charakter der Schwellwertdynamik vieler physikalischer, chemischer und biologischer Systeme hat sich in neueren Experimenten als im wesentlichen nicht Markowsch herausgestellt. In diesem Fall sind die "Ubergangsraten von der Zeit und den Anfangsbedingungen abh"angig und es stellen sich komplexe Wahrscheinlichkeitsverteilungen f"ur die erste Durchgangszeit ein. In dieser Arbeit werden verschiedene Aspekte nicht Markowscher Schwellwertprobleme und deren Anwendung bei der Beschreibung der Dynamik von Neuronen untersucht. In dieser Arbeit entwickeln wir einen analytischen Zugang zu nicht Markowschen Problemen, dem die Theorie der Schwellwert"uberschreitung zu Grunde liegt. Im Ergebnis erhalten wir mehrere analytische N"aherungen f"ur die Wahrscheinlichkeitsverteilung der ersten Durchgangszeit f"ur Zufallsprozesse mit differenzierbaren Trajektorien. Die Qualit"at und der G"ultigkeitsbereich der N"aherungen werden von uns sorgf"altig untersucht. Die abgeleiteten N"aherungen decken dabei den gesamten Bereich zwischen fast Markowschen und stark nicht Markowschen Problemen ab. Diese analytischen N"aherungen werden in Kombination mit numerischen Methoden genutzt, um Spikemuster in resonanten und nicht-resonanten Neuronen zu untersuchen. Im Besonderen haben wir uns dabei f"ur die Entstehung spontaner, durch zellinternes Rauschen hervorgerufener, Spikemuster in stellaten (resonanten) und pyramidalen (nicht-resonanten) Zellen des entorhinalen Kortex in Ratten interessiert. Diese zwei Neuronentypen zeigten deutliche Unterschiede in den Spikemustern, die den jeweiligen Unterschieden in den unterschwelligen Dynamiken zuzuordnen sind. Des weiteren wurden negative Korrelationen in den Spikesequenzen f"ur beide Neuronentypen gefunden. Um diese negativen Korrelationen angemessen zu beschreiben, haben wir einen nicht erneuerbaren Schwellenmechanismus in das Resonate-and-Fire Modell integriert. / Recent experiments revealed the non-Markovian character of the escape dynamics in many physical, chemical and biological systems on time scales prior to relaxation. The escape rates in the non-Markovian case are time-dependent and the escape times are dictated by the initial conditions. Complex, multipeak distributions of the first passage time are characteristic for the non-Markovian case. In this thesis we investigate various aspects of the non-Markovian first passage time problem and in particular its application to the dynamics of neurons. We elaborate an analytical approach to the non-Markovian first passage time problem, which is based on the theory of level-crossings, and obtain several analytical approximations for the first passage time density of a random process with differentiable trajectories. We compare the quality of these approximations and ascertain their regions of validity. Our approximations are applicable and provide accurate results for different types of dynamics, ranging from almost Markovian to strongly non-Markovian cases. These analytical approximations in combination with numerical methods are applied to investigate the spike patterns observed in resonant and nonresonant neurons. In particular, we focus on spontaneous (driven by intrinsic noise) spike patterns obtained in stellate (resonant) and pyramidal (nonresonant) cells in the entorhinal cortex in rat. These two types of neurons exhibit striking different spike patterns attributed to the differences in their subthreshold dynamics. We show that the resonate-and-fire model with experimentally estimated parameter values can quantitatively reproduce the interspike interval distributions measured in resonant as well as in nonresonant cells. We also found negative interspike interval correlations in both types of neurons. To capture these negative correlations, we introduce a novel nonrenewal threshold mechanism in the resonate-and-fire model.
|
24 |
Specificity and roles of chromatin organisation in mouse embryonic stem cells and dopaminergic neuronsHarabulă, Izabela-Cezara 09 February 2024 (has links)
Die dreidimensionale Organisation des Chromatins verändert sich während der Zelldifferenzierung als Reaktion auf die Umgebung und ist bei Krankheiten oftmals verändert. Das Zusammenspiel zwischen Chromatinzustand, Chromatinorganisation und Genexpression ist insbesondere bei Neuronen nach wie vor nur geringfügig erforscht.
In dieser Arbeit untersuchte ich die Organisation und den Zustand des Chromatins im Zusammenhang mit der Transkription in embryonalen Stammzellen (ESCs) und dopaminergen Neuronen (DNs) der Maus. Dazu habe ich die Organisation des Chromatins mittels Genome Architecture Mapping (GAM) bestimmt und zelltypspezifische Genexpressionsprofile zur Klassifizierungen von Promotoren, Enhancern und Super-Enhancern (SEs) erzeugt. Anschließend habe ich diese linearen Chromatinprofile mit den verschiedenen Stufen der Chromatinorganisation kombiniert und konnte so Unterschiede zwischen den 3D-Genomstrukturen von ESCs und DNs aufzeigen. Zudem konnte ich verstärkt Dreifach-Wechselwirkungen zwischen zelltypspezifischen SEs und/oder exprimierten Genen nachweisen, die bei DNs besonders oft neuronale Signalgene darstellen und oftmals bei neurologischen Störungen betroffen sind. Ich fand auch heraus, dass die Grenzen topologisch assoziierter Domänen (TADs) oft mit Genen zur zellulären Differenzierung zusammen fallen und zudem zelltyp-spezifische Eigenschaften aufweisen, was von Bedeutung für zukünftige funktionelle Untersuchungen solcher Grenzen sein dürfte. Schließlich konnte ich zeigen, dass Chromatinkompartimente zwischen ESCs und DNs in Abhängigkeit vom Chromatinzustands und der Chromatinexpression variieren und dass eine Gruppe transkriptionell aktiver DN Gene, die für die neuronale Aktivität wichtig sind, in B-Kompartimenten liegt.
Mit diesen neuen Erkenntnissen erweitert meine Arbeit das Verständnis der Chromatinorganisation bei der Regulierung der Genexpression in Maus ESCs und DNs. / The three-dimensional organization of chromatin changes during cell differentiation, in response to the environment, and is often altered in disease. The interplay between chromatin state, chromatin organization and gene expression remains poorly understood, particularly in neurons.
In this work, I examined the organization and state of chromatin associated with transcription in mouse embryonic stem cells (ESCs) and dopaminergic neurons (DNs). To do this, I determined the organization of chromatin using genome architecture mapping (GAM) and generated cell type-specific gene expression profiles to classify promoters, enhancers and super-enhancers (SEs). I then combined these linear chromatin profiles with the different levels of chromatin organization and was able to show differences between the 3D genome structures of ESCs and DNs. In addition, I was able to demonstrate increased triple interactions between cell type-specific SEs and/or expressed genes, which are often neuronal signalling genes in DNs and affected in neurological disorders. I also found that the boundaries of topologically associated domains (TADs) often coincide with cellular differentiation genes and also exhibit cell type-specific properties, which may be important for future functional studies of such boundaries. Finally, I was able to show that chromatin compartments between ESCs and DNs vary depending on chromatin state and chromatin expression, and that a group of transcriptionally active DN genes important for neuronal activity are located in B compartments.
With these new findings, my work expands the understanding of chromatin organization in regulating gene expression in mouse ESCs and DNs.
|
25 |
Untersuchung des Zusammenhangs zwischen SUMO2/3-Konjugaten und Zellstress in einem In-vitro-Modell / Researching the connection between SUMO2/3-conjugates and cell-stress in an in-vitro-modellEh, Julius Marcus Klaus 31 December 1100 (has links)
No description available.
|
26 |
Inferring Neuronal Dynamics from Calcium Imaging Data Using Biophysical Models and Bayesian InferenceRahmati, Vahid, Kirmse, Knut, Marković, Dimitrije, Holthoff, Knut, Kiebel, Stefan J. 08 June 2016 (has links) (PDF)
Calcium imaging has been used as a promising technique to monitor the dynamic activity of neuronal populations. However, the calcium trace is temporally smeared which restricts the extraction of quantities of interest such as spike trains of individual neurons. To address this issue, spike reconstruction algorithms have been introduced. One limitation of such reconstructions is that the underlying models are not informed about the biophysics of spike and burst generations. Such existing prior knowledge might be useful for constraining the possible solutions of spikes. Here we describe, in a novel Bayesian approach, how principled knowledge about neuronal dynamics can be employed to infer biophysical variables and parameters from fluorescence traces. By using both synthetic and in vitro recorded fluorescence traces, we demonstrate that the new approach is able to reconstruct different repetitive spiking and/or bursting patterns with accurate single spike resolution. Furthermore, we show that the high inference precision of the new approach is preserved even if the fluorescence trace is rather noisy or if the fluorescence transients show slow rise kinetics lasting several hundred milliseconds, and inhomogeneous rise and decay times. In addition, we discuss the use of the new approach for inferring parameter changes, e.g. due to a pharmacological intervention, as well as for inferring complex characteristics of immature neuronal circuits.
|
27 |
Identification and Functional Characterization of Novel Genes Involved in Primary Neurogenesis in Xenopus laevis / Characterization of Novel Genes Involved in Neurogenesis in XenopusSouopgui, Jacob 20 June 2002 (has links)
No description available.
|
28 |
Epac-mediated modulation of neurotransmitter release from cultured hippocampal neurons / Epac-vermittelte Modulation der Neurotransmitterfreisetzung bei neuronalen Zellkulturen des HippocampusGekel, Isabella 07 April 2008 (has links)
No description available.
|
29 |
Identification and characterisation of novel zebrafish brain development mutants obtained by large-scale forward mutagenesis screening / Mutagenese von Zebrafischen und Identifizierung und Charakterisierung von neuen Mutanten mit Defekten in der frühen GehirnentwicklungKlisa, Christiane 14 December 2003 (has links) (PDF)
Developmental biology adresses how cells are organised into functional structures and eventually into a whole organism. It is crucial to understand the molecular basis for processes in development, by studying the expression and function of relevant genes and their relationship to each other. A gene function can be studied be creating loss-of-function situations, in which the change in developmental processes is examined in the absense of a functional gene product, or in gain-of-function studies, where a gene product is either intrinsically overproduced or ectopically upregulated. One approach for a loss-of-function situation is the creation of specific mutants in single genes, and the zebrafish (Danio rerio) has proven to be an excellent model organism for this purpose. In this thesis, I report on two forward genetic screens performed to find new mutants affecting brain development, in particular mutants defective in development and function of the midbrain-hindbrain boundary (MHB), an organiser region that patterns the adjacent brain regions of the midbrain and the hindbrain. In the first screen, I could identify 10 specific mutants based on morphology and the analysis of the expression patterns of lim1 and fgf8, genes functioning as early neuronal markers and as a patterning gene, respectively. Three of these mutants lacked an MHB, and by complementation studies, I identified these mutants as being defective in the spg locus. The second screen produced 35 new mutants by screening morphologically and with antibodies against acetylated Tubulin, which marks all axonal scaffolds, and anti-Opsin, which is a marker for photoreceptors in the pineal gland. According to their phenotype, I distributed the mutant lines into 4 phenotypic subgroups, of which the brain morphology group with 18 mutant lines was studied most intensively. In the last part of my thesis, I characterise one of these brain morphology mutants, broken heart. This mutant is defective in axonal outgrowth and locomotion, and shows a striking reduction of serotonergic neurons in the epiphysis and in the raphe nuclei in the hindbrain, structures involved in serotonin and melatonin production. Studies in other model organisms suggested a role of factors from the floor plate and the MHB in induction of the serotonergic neurons in the hindbrain, and using broken heart, I show that Fgf molecules such as Fgf4 and Fgf8 can restore partially the loss of serotonergic neurons in the mutant. I conclude that forward genetic screens are an invaluable tool to generate a pool of mutations in specific genes, which can be used to dissect complex processes in development such as brain development.
|
30 |
Functions of TGF-β2 and GDNF in the Development of the Mouse Nervous System: Evidence from Double Mutant Mice / TGF-β2/GDNF Synergism in Mouse Nervous System Development / Bedeutung von TGF-β2/GDNF während der Entwicklung des Nervensystems der Maus: Beweise bei mutanten Mäusen / Bedeutung von TGF-β2/GDNF in der Entwicklung des Nervensystems der MausRahhal, Belal Mahmoud Mustafa Rahhal 31 October 2006 (has links)
No description available.
|
Page generated in 0.0319 seconds