• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • 1
  • Tagged with
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Contribution à l'étude du rôle de la Sélénoprotéine T dans la maladie de Parkinson

Boukhzar, Loubna 12 January 2017 (has links)
Les maladies neurodégénératives sont des pathologies progressives qui affectent le système nerveux, entraînant la mort des cellules nerveuses. Les plus connues et les plus fréquentes sont la maladie d’Alzheimer et la maladie de Parkinson, mais il en existe d’autres. Toutes ces maladies se caractérisent par la perte progressive de neurones dans des régions plus ou moins localisées du système nerveux, entraînant des complications cognitives, motrices ou perceptives. La maladie de Parkinson (MP) est causée par la dégénérescence de neurones dopaminergiques de la substance noire et de leurs terminaisons nerveuses qui normalement libèrent la dopamine dans le striatum. Les deux principaux facteurs de risque communs aux maladies neurodégénératives sont l’âge et le stress oxydant. Le stress oxydant joue un rôle central dans la physiopathologie de la MP, mais les mécanismes impliqués dans le contrôle de ce stress dans les cellules dopaminergiques ne sont pas totalement élucidés. De nombreuses études montrent que les sélénoprotéines jouent un rôle central dans le contrôle de l'homéostasie redox et la protection cellulaire, mais la contribution précise des membres de cette famille de protéines au cours des maladies neurodégénératives est encore peu connue. Des études antérieures de l’Unité ont permis de découvrir le rôle essentiel d’une nouvelle sélénoprotéine, la sélénoprotéine T (SelT) dans les processus de différenciation neuronale, mais le rôle de cette sélénoprotéine dans les processus neurodégénératifs n’était pas connu. Nous avons montré d'abord que la SelT dont l’invalidation génétique est létale pendant l'embryogenèse, exerce une puissante activité oxydoréductase de type thiorédoxine. Dans un modèle cellulaire de neurones dopaminergiques, représenté par les cellules de neuroblastome SH-SY5Y, la modification de l’expression de la SelT affecte le niveau du stress oxydant et la survie cellulaire. Le traitement de souris sauvages par des neurotoxines ciblant les neurones dopaminergiques telles que le 1-méthyl-4-phényl-1,2,3,6-tétrahydropyridine (MPTP) ou la roténone induit une expression massive de la SelT dans la voie nigro-striée, suggérant que la SelT pourrait protéger ces neurones dans les conditions de dégénérescence. En revanche, ce même traitement administré chez les souris invalidées pour la SelT dans le cerveau provoque un syndrome parkinsonien, avec apparition de symptômes moteurs confirmant donc que la présence de la SelT doit participer à la protection des neurones dopaminergiques dans des conditions mimant la MP. Les symptômes moteurs observés sont associés à un stress oxydant et une dégénérescence marquée des neurones dopaminergiques. De même, nous avons observé une diminution de la forme active de la tyrosine hydroxylase, ce qui se traduit par des taux de dopamine réduits dans le striatum des souris invalidées et traitées par les neurotoxines. Ces données montrent que la SelT est essentielle à la survie et à la fonctionnalité des neurones dopaminergiques in vitro et in vivo dans les conditions de neurodégénérescence mimant la MP. Enfin, chez les patients souffrant de la MP, nous avons observé une augmentation considérable de la SelT au niveau du caudate-putamen mais pas d’autres structures cérébrales. L’ensemble de ces résultats révèle l'activité d'une nouvelle enzyme de type thiorédoxine qui protège les neurones dopaminergiques contre le stress oxydant et empêche l’apparition précoce de symptômes moteurs sévères chez les modèles animaux de la MP. Nos données indiquent que des sélénoprotéines telles que la SelT dont les taux sont élevés chez des parkinsoniens, jouent un rôle crucial dans la protection des neurones dopaminergiques contre le stress oxydant et la mort cellulaire ouvrant ainsi la voie au développement de nouvelles stratégies de neuroprotection ciblant ces protéines dans la MP. / Neurodegenerative diseases are progressive pathologies that affect the nervous system, causing the death of nerve cells. The best known and most frequent are Alzheimer's and Parkinson's disease, but there are others. All these diseases are characterized by the progressive loss of neurons of the nervous system, leading to cognitive, motor or perceptual complications. Parkinson's disease (PD) is caused by the degeneration of dopaminergic neurons of the substantia nigra and their nerve endings that normally release dopamine into the striatum. The two main risk factors common to neurodegenerative diseases are age and oxidative stress. Oxidative stress plays a central role in the pathophysiology of PD, but the mechanisms involved in controlling this stress in dopaminergic cells are not fully elucidated. Many studies show that selenoproteins play a central role in the control of redox homeostasis and cell protection, but the precise contribution of members of this family of proteins during neurodegenerative diseases is still unknown. Previous studies performed in our laboratory have uncovered the essential role of a new selenoprotein, selenoprotein T (SelT) in the processes of neuronal differentiation, but the role of this selenoprotein in neuroprotection was not known. We first showed that SelT, whose gene knock-out is lethal during embryogenesis, exerts a potent thioredoxin-like oxidoreductase activity. In a cellular model of dopaminergic neurons, represented by SH-SY5Y neuroblastoma cells, modification of SelT expression affects the level of oxidative stress and cell survival. Treatment of wild-type mice by neurotoxins targeting dopaminergic neurons such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or rotenone induced massive expression of SelT in the nigro-striatal system, suggesting that SelT could protect these neurons under conditions of degeneration. On the other hand, this same treatment given in mice invalidated for SelT in the brain caused a parkinsonian syndrome with the appearance of motor symptoms, thus confirming that the presence of SelT must participate in the protection of dopaminergic neurons under conditions mimiking PD. The observed motor symptoms are associated with oxidative stress and marked degeneration of dopaminergic neurons. Similarly, we observed a decrease in the active form of tyrosine hydroxylase, resulting in reduced dopamine levels in the striatum of invalidated and neurotoxin-treated mice. These data show that SelT is essential for the survival and functionality of dopaminergic neurons in vitro and in vivo under the conditions of neurodegeneration mimicking PD. Finally, in patients with PD, we observed a considerable increase in SelT levels in the caudate-putamen but not in other cerebral structures. Together, these results uncovered the activity of a novel thioredoxin-like enzyme that protects dopaminergic neurons against oxidative stress and prevents the early onset of severe motor symptoms in animal models of PD. Our data indicate that selenoproteins such as SelT, whose levels are increased in PD play a crucial role in protecting dopaminergic neurons against oxidative stress and cell death, thus paving the way for the development of new neuroprotection strategies targeting these proteins in PD.
2

Synthèse, évaluation biologique et structurale d'analogues cyclopeptidiques de l'ω-agatoxine IVB : etude des canaux calciques CaV2.1 et des conséquences de leur déficience (canalopathies) / Synthesis, biological and structural evaluation of cyclopeptidic analogues of ω-agatoxin IVB : study of calcium channels CaV2.1 and the consequences of their déficiencies (channelopathies)

Pringos, Emilie 16 December 2010 (has links)
Ce manuscrit décrit la synthèse et l'évaluation biologique d'analogues de l'ω-agatoxine IVB dans le but de trouver de nouveaux outils pour l'étude de l'activité des canaux calciques. L'ω-agatoxine IVB est une neurotoxine peptidique isolée du venin d'araignée Agelenopsis aperta qui à ce jour est l'inhibiteur spécifique et sélectif des canaux calciques voltage-dépendants de type P/Q. Ces canaux sont impliqués dans la neurotransmission dépendante du Glutamate dans le système nerveux central. La synthèse de structures peptidiques simplifiées, en comparaison avec celle de la toxine native est décrite. La méthodologie de synthèse de différents analogues cycliques de cette neurotoxine est présentée. Les composés sont synthétisés par synthèse peptidique sur phase solide en stratégie Fmoc, avec une étude particulière sur les conditions de cyclisation et le choix des groupements protecteurs appropriés. Les modifications d es peptides naturels pour obtenir de nouveaux composés biologiquement actifs incluent l'insertion d'aminoacides non naturels et de liaisons pseudopeptidiques. Les analogues synthétisés ont été testés par des méthodes d'électrophysiologie (patch clamp) et d'imagerie calcium ; les activités biologiques des peptides sont corrélées à l'aide d'analyses structurales par RMN et modélisation moléculaire. / This manuscript describes the synthesis and biological valuation of w-agatoxin IVB mimetics with the intention of finding new tools for the study of calcium channels activity. w-Agatoxin IVB is a peptide neurotoxin isolated from the venom of spider Agelenopsis aperta which is a specific and selective inhibitor of P/Q-type voltage-dependent calcium channels. These channels are involved in Glutamate-dependent neurotransmission in the central nervous system. The synthesis of structurally simplified peptides, in comparison with native toxin is described. The methodology of synthesis of different cyclic analogues of this neurotoxin is presented. The compounds were synthesized by solid phase peptide chemistry and Fmoc strategy, with particular consideration for cyclization conditions and an insight into selection of protecting groups. The modifications of the natural peptide to get new biologically active compounds included the insertion of unnatura l amino acids and pseudopeptides bonds. The synthesized analogues were tested by methods of electrophysiology (patch clamp) and calcium imagery; the biological activities of peptides are compared with the aid of structural analyses by RMN and molecular modeling.
3

Neurotoxinogénèse et Passage des neurotoxines botuliques à travers la barrière intestinale / Neurotoxinogenesis and passage of botulinum neurotoxins through the intestinal barrier

Connan, Chloé 18 October 2013 (has links)
Les neurotoxines botuliques (BoNTs), produites par C. botulinum, sont responsables du botulisme humain et animal. Dans sa forme naturelle, le botulisme résulte le plus souvent d’une absorption des toxines botuliques à partir du tube digestif après ingestion d’aliments contaminés par la toxine et C. botulinum. L’intoxination peut être divisée en 4 grandes étapes : production de toxine par la bactérie, ingestion d’aliments contenant la toxine préformée, passage de la neurotoxine à travers la barrière intestinale et action protéolytique aux terminaisons nerveuses. La régulation de la production des toxines et le passage des neurotoxines botuliques à travers la barrière intestinale sont mal compris. BoNT s’associe à des protéines non toxiques (NAPs) pour former des complexes de différentes tailles. Les gènes codant les BoNTs et NAPs sont regroupés sur le locus botulique et leur expression est contrôlée positivement par le facteur sigma alternatif BoTR/A. La toxinogénèse chez C. botulinum est contrôlée par un réseau complexe de régulateurs incluant au moins 3 systèmes à deux composants (TCS), identifiés pas la méthode d’ARN antisens, qui régulent positivement la production de complexe botulique indépendamment de BoTR/A. D’autre part, l’entrée de BoNT/B dans la barrière intestinale a été suivie à l’aide du fragment HcB marqué en fluorescence dans une anse intestinale ligaturée de souris. Des analyses en microscopie à fluorescence, immunohistochimie et microscopie électronique ont permis de mettre en évidence que HcB transcytose à travers les entérocytes par une voie d’endocytose dépendante de la dynamine. HcB cible les terminaisons nerveuses acétylcholinergiques de la lamina propia des villosités et gagne les neurones acétylcholinergiques et sérotoninergiques de la sous-muqueuse et de la musculeuse en seulement 10 minutes. Une étude in vitro réalisée sur cellules intestinales (m-ICcl2) montre que l’entrée de HcB est dépendante de récepteurs gangliosidiques GD1b/GT1b présents à la surface des cellules mais pas de la synaptotagmine II qui est requise pour l’entrée de BoNT/B dans les cellules neuronales. / Botulinum neurotoxins (BoNTs), produced by C. botulinum, are responsible for animal and human botulism. In its natural form, botulism is mostly acquired after absorption of BoNTs in the digestive tract after ingestion of food contaminated with C. botulinum and its toxins. The intoxination can be divided in 4 major steps: toxin production, ingestion of food contaminated with BoNTs, passage of BoNTs through the intestinal barrier, and proteolytic activity on nerve endings. Regulation of toxin production and passage of BoNTs through the intestinal barrier are poorly understood. BoNT associates with non toxic protein (NAPs) to form complexes of various sizes. The BoNTs and NAPs genes are clustered in the botulinum locus and are positively regulated by an alternative sigma factor BotR/A. Toxinogenesis in C. botulinum is regulated by a complex regulatory network containing at least 3 two components systems (TCS), identified by antisens RNA strategy, which regulate the production of botulinum complex independently of BotR/A. On the other hand, BoNT/B entry was monitored with fluorescent HcB fragment in ligatureted mouse intestinal loop. Fluorescent imaging analysis, immunohistochemistry and electron microscopy, have evidence that HcB is transcytosed through enterocytes cells by an endocytosis dynamin dependant. HcB targets acetylcholinergic nerves localized in lamina propria of villi then reaches serotoninergic and acetylcholinergic nerve endings in the submucosa and musculosa within 10 minutes. In vitro experiments performed on intestinal cell line (m-ICcl2) shows that the endocytosis of HcB is dependent on the GD1b/GT1b gangliosidic receptors on the cell surface but not on the synaptotagmine II protein which is recquiered HcB entry in neuronal cells
4

Identification et Quantification des Sous-Types de la Neurotoxine Botulique de Type A par Spectrométrie de Masse / Identification and quantification of botulinim neurotoxin A subtypes by mass spectrometry

Morineaux, Valérie 02 July 2015 (has links)
Les toxines botuliques (BoNTs) sont les substances les plus toxiques connues. Elles sont responsables du botulisme, une maladie rare mais le plus souvent mortelle sans prise en charge médicale. Cependant, les applications médicales des BoNTs sont de plus en plus nombreuses du fait de leurs propriétés paralysantes. Leur toxicité par voie inhalée en fait un des 6 principaux agents du risque intentionnel. Les BoNTs, produites par Clostridium botulinum, se répartissent en 7 types sérologiques qui se déclinent en sous-types. Cette biodiversité rend difficile leur identification par les méthodes classiques utilisées pour les toxines protéiques (approches immunologiques). Jusqu’à présent, seule l’analyse génétique permettait de distinguer les différents sous-types entre eux. Dans ce travail a été développée une méthode d’analyse en LC-QqQ-MS/MS en mode MRM pour identifier les différents sous-types de la BoNT/A dans des matrices complexes à partir de peptides communs et spécifiques à ces sous-types. Un traitement d’échantillon par immunocapture sur billes magnétiques couplées à des anticorps anti-peptides a été développé pour isoler la toxine de l’échantillon avant analyse. Des surnageants de culture des sous-types A1 à A3, A5, A7 à A8 ont été utilisés pour valider la méthode. La limite de détection de la méthode est compatible avec les taux de toxine retrouvés habituellement dans les échantillons naturellement contaminés. Cette méthode de spectrométrie de masse a ensuite été utilisée pour quantifier les différents sous-types de la BoNT/A dans une matrice complexe (surnageants de culture de C. botulinum). Une technique de quantification, utilisant un isotope stable de la chaine légère de type A1, ([13C6]K et [13C6]R), a été retenu comme étalon interne. Les différents sous-types de BoNT/A ont été quantifiés dans les surnageants et la quantité de BoNT correspondante à une dose létale minimale de 100% a été déterminée pour chaque sous-type. / Botulinum neurotoxins (BoNTs) are the most poisonous substances known. They are responsible for human botulism, a rare but potentially fatal disease if not quickly treated. However, BoNTs were approved for the treatment of numerous medical applications due to their temporary paralysis effects. BoNTs are among the six agents with the highest risk of potential use as bio-weapons because of their high toxicity in aerosol form. BoNTs, produced by Clostridium botulinum, are divised into seven toxinotypes and each toxinotype contains several subtypes. This biodiversity makes more difficult their identification with classical methods by immunological ways. Until now, only molecular genetical methods could differenciate subtypes among them. The aim of this work was to develop a liquid chromatography tandem mass spectrometry (LC-MS/MS) in MRM mode to efficiently discrimate the distinct subtypes from specific and common peptides. Immunocapture sample preparation with antipeptides antibodies was used and allowed the isolation of the toxin from the sample. Subtyping was performed with crude supernatants (BoNT/A1 to /A3, /A5, /A7 and /A8) in order to validate the method. Limit of detection (LOD) of the proposed method is in the range of minimal toxin concentration found in naturally contamined samples. In a second part of this work, this mass spectrometry method was used to quantify the neurotoxin in complex matrices (supernatants of Clostridium botulinum cultures). Isotope labeled light chain (13C6]K et [13C6]R) from botulinum A1 neurotoxin was produced and used as internal standart. Subtypes were quantified in supernatants and the quantity of neurotoxin for one minimal lethal dose 100% was determined for each subtype
5

Regulation der Interaktion der präsynaptischen Vesikelproteine Synaptophysin und Synaptobrevin

Reisinger, Clemens 21 February 2006 (has links)
Die integralen Vesikelmembranproteine Synaptophysin und Synaptobrevin interagieren in adulten Neuronen. Zusätzlich bildet Synaptobrevin mit den Plasmamembranproteinen Syntaxin und synaptosome-associated protein 25kDa (SNAP25) den SNAP-Rezeptor (SNARE)-Proteinkomplex, der Voraussetzung für die Fusion zwischen synaptischen Vesikeln und präsynaptischer Membran ist. Mit Synaptophysin interagierendes Synaptobrevin bindet jedoch nicht an den SNARE-Proteinen. Es wird daher vermutet, dass der Synaptophysin/Synaptobrevin-Komplex eine Art Reservepool für Synaptobrevin bei erhöhter neuronaler Aktivität darstellt und die Verfügbarkeit von Synaptobrevin während der Exozytose reguliert. Mit verschiedenen Ansätzen wurde versucht, den auf dem Vesikel befindlichen Komplex genauer zu charakterisieren und in seiner Funktion näher zu beschreiben. Nach Stimulation mit exozytosevermittelnden Substanzen dissoziierte der Synaptophysin/ Synaptobrevin-Komplex, sowohl unter nativen Bedingungen als auch bei Blockierung des finalen Fusionsereignisses. Dieser Prozess war calciumabhängig, konnte jedoch nicht durch die direkte Wirkung von Calcium ausgelöst werden. Die Untersuchung des Komplexes mit Hilfe von clostridialen Neurotoxinen zeigte, dass Synaptobrevin bevorzugt in Bindung an Synaptophysin und als Dimer gespalten wurde. Die Spaltung des SNARE-Proteins SNAP25 hatte keinen Einfluss auf die Komplexbildung. Die Verringerung des Cholesterolgehaltes der Membran führte zur Abnahme der Interaktion von Synaptophysin und Synaptobrevin, umgekehrt zeigte sich ein Anstieg bei zusätzlicher Cholesterolapplikation. In weiteren Experimenten konnte der C-terminale Teil des Synaptobrevins als für die Bindung zu Synaptophysin entscheidende Abschnitt identifiziert werden. Weiterhin konnte die erfolgreiche Translokation von rekombinanten Konstrukten aus Botulinumtoxin D und einem angekoppelten funktionstüchtigen Protein ins Zytosol gezeigt werden. / The vesicle associated membrane proteins synaptophysin and synaptobrevin interact in ma-ture neurones. Additionally synaptobrevin forms a complex with the plasma membrane pro-teins syntaxin and synaptosome-associated protein 25kDa (SNAP25), better known as the SNAP-Receptor (SNARE) complex, which is a prerequisite for fusion of the presynaptic and vesicle membranes. These two protein complexes however are mutually exclusive. It is as-sumed that the synaptophysin/synaptobrevin complex resembles a reserve pool for synapto-brevin and regulates the availability of synaptobrevin for the fusion process in case of in-creased synaptic activity. Different approaches where chosen to characterize this protein complex and to examine its function in more detail. After excessive stimulation the synaptophysin/synaptobrevin complex dissociates, even when the final fusion process is blocked. This step was dependent on the presence of cal-cium, though it could not be triggered directly by calcium administration. When using clos-tridial neurotoxins, synaptobrevin was preferentially cleaved in its homodimeric form and in the complex with synaptophysin. Cleavage of SNAP25 had no effect on the complex forma-tion. Depletion of cholesterol content decreases the interaction of synaptophysin with synap-tobrevin, while cholesterol treatment increases interaction. Further experiments indicated that synaptophysin binds to the the carboxy-terminal transmembrane part of synaptobrevin. Fur-thermore it could be shown that proteins attached to botulinum toxin can be delivered to the cytosol of neuronal cells, being fully active.

Page generated in 0.0468 seconds