91 |
Assessing the Roles of Striatin Orthologs in Fungal Morphogenesis, Sexual Development and PathogenicityWang, Chih-Li 2011 August 1900 (has links)
Striatin family proteins contain a caveolin binding domain, a coiled-coil motif, a calmodulin binding domain, and a WD-repeat domain. Homologs of striatin protein have been However, our knowledge of the function and the molecular mechanism of fungal striatin homologs is limited. Based on the conserved sequences of functional domains, I hypothesized that the fungal striatin orthologs also act as scaffolding proteins that are functionally conserved among fungal species and involved in multiple types of development in the diverse kingdom Mycota. I used reverse genetic strategies to study the function of the Aspergillus nidulans striatin ortholog (strA) and the Colletotrichum graminicola striatin ortholog (str1). In assays of sexual development, the strA deletion strain (ΔstrA) produces fewer ascospores with smaller cleistothecia, while the str1 deletion strain (Δstr1) is defective in perithecia development. The ΔstrA phenotypes indicate that StrA is associated with ascosporogenesis in cleistothecia. Both ΔstrA and Δstr1 are reduced in radial growth and in conidia production. The Δstr1 strain is also altered in its spiral growth pattern and morphology of conidia and hyphopodia, but it produces appressoria similar to wild type. The pairing of nitrate non-utilizing mutants demonstrates that Str1 is required for hyphal fusion. In pathogenicity, Δstr1 is less virulent in maize anthracnose leaf blight and stalk rot. The phenotypes of Δstr1 are complemented by the Fusarium verticillioides striatin ortholog (fsr1), indicating that Fsr1 and Str1 are functionally conserved. Over-expression of StrA reveals its positive role in conidiation and the sexual production. StrA::eGFP localizes mainly to the endoplasmic reticulum. After comparing the results from these two species and other studied fungal species, I suggest that fungal striatins are involved in five types of development including hyphal growth, hyphal fusion, conidiation, sexual development, and virulence, and propose a model of fungal striatin protein interactions to account for these diverse phenotypes.
|
92 |
Identifying target proteins of the CreB deubiquitination enzyme in the fungus Aspergillus nidulans.Kamlangdee, Niyom January 2008 (has links)
Carbon catabolite repression in A. nidulans is a regulatory system which allows the organism to utilize the most preferable carbon source by repressing the expression of genes encoding enzymes utilizing alternative carbon sources. A ubiquitination pathway was shown to be one of the key mechanisms which regulate carbon source utilization, when creB was found to encode a deubiquitinating enzyme. Strains containing mutations in creB show loss of repression for some metabolic pathways in carbon catabolite repressing conditions, and also grow very poorly on several sole carbon sources such as quinate and proline, suggesting CreB plays multiple roles in the cell. This work describes the analysis of the interaction of CreB with CreA, and with PrnB and QutD. Various epitope-tagged versions of CreA were expressed in A. nidulans, and an internally located HA-epitope tag was found to allow detection of CreA using Western analysis. A diploid strain was constructed between strains containing HA-tagged CreA and FLAG-tagged CreB. When CreB was immunoprecipitated, HA-tagged CreA was also precipitated in the diploid, indicating that CreA and CreB are present in a complex in vivo. To determine whether CreA is a ubiquitinated protein, a version of CreA that was tagged with both an HA epitope and a His-tag was expressed in A. nidulans, and protein extracts were precipitated with an UbiQapture™-Q matrix. Western analysis was used to show that CreA was present in the precipitate. These findings suggest that CreA is a ubiquitinated protein, and a target of the CreB deubiquitination enzyme. To determine whether the proline permease (PrnB) is a direct substrate of CreB, plasmids to express epitope-tagged versions of PrnB were constructed and introduced into the prnB mutant strain. No tagged protein could be detected by Western analysis, even when these constructs were over-expressed from the gpdA promoter. However, a construct to express an HA epitope tagged version of quinate permease (QutD) fully complemented the qutD mutant strain, and HA-tagged QutD could be easily detected in Western analysis when probed with the anti-HA monoclonal antibody. A diploid strain was made between a complementing transformant and a strain expressing a FLAG-tagged CreB construct. When QutDHA was immunoprecipitated, CreBFLAG was detected in the immunoprecipitate of the diploid. A proportion of QutDHA was also co-precipitated in the diploid when CreBFLAG was immunoprecipitated. Thus, CreB is present in a complex with QutD in vivo. Further results showed that the concentration of QutD in the cell is lower in a creB null mutant background than in the wild-type background, indicating that deubiquitination is required to prevent protein turnover. Northern analysis of mRNA showed that the failure of creB mutant strains to grow on quinate medium was not due to a failure of transcriptional induction of qutD, as the amount of mRNA was not lower in a creB1937 mutant background compared to the wild-type. Furthermore, experiments were undertaken that showed that QutD is a ubiquitinated protein. These findings suggest that quinate permease is regulated through deubiquitination involving the CreB deubiquitination protein in A. nidulans. In addition to the candidate protein approach asking whether CreA is a substrate of CreB, a proteomics approach was also used to identify proteins that interact with CreA. However, no clear interacting proteins were identified using this approach. / Thesis (Ph.D.) -- University of Adelaide, School of Molecular and Biomedical Science, 2008
|
93 |
The Zinc cluster transcription factor ZtfA is an activator of asexual development and secondary metabolism and regulates the oxidative stress response in the filamentous fungus Aspergillus nidulansThieme, Karl G. 14 June 2017 (has links)
No description available.
|
94 |
Aspergillus fumigatus F-box protein Fbx15 functions are dependent on its nuclear localisation signals and are partially conserved between A. fumigatus and A. nidulansAbelmann, Anja 16 March 2020 (has links)
No description available.
|
95 |
Nup2 and a Newly Discovered Nuclear Pore Complex Protein, NupA, Function at Mitotic Chromatin Controlled by the NIMA KinaseMarkossian, Sarine W. 27 July 2011 (has links)
No description available.
|
96 |
Purification of mitochondrial RNase P in A. nidulansJavadi Khomami, Pasha 01 1900 (has links)
Résumé
La ribonucléase P (RNase P) est une ribonucléoprotéine omniprésente dans tous les règnes
du vivant, elle est responsable de la maturation en 5’ des précurseurs des ARNs de transfert
(ARNts) et quelques autres petits ARNs. L’enzyme est composée d'une sous unité catalytique
d'ARN (ARN-P) et d'une ou de plusieurs protéines selon les espèces. Chez les eucaryotes,
l’activité de la RNase P cytoplasmique est distincte de celles des organelles (mitochondrie et
chloroplaste).
Chez la plupart des espèces, les ARN-P sont constituées de plusieurs éléments
structuraux secondaires critiques conservés au cours de l’évolution. En revanche, au niveau
de la structure, une réduction forte été observé dans la plupart des mtARN-Ps. Le nombre de
protéines composant la RNase P est extrêmement variable : une chez les bactéries, environ
quatre chez les archéobactéries, et dix chez la forme cytoplasmique des eucaryotes. Cet
aspect est peu connu pour les formes mitochondriales.
Dans la plupart des cas, l’identification de la mtRNase P est le résultat de longues
procédures de purification comprenant plusieurs étapes dans le but de réduire au minimum le
nombre de protéines requises pour l’activité (exemple de la levure et A. nidulans). Cela mène
régulièrement à la perte de l’activité et de l’intégrité des complexes ribonucléo-protéiques
natifs.
Dans ce travail, par l’utilisation de la technique de BN-PAGE, nous avons développé
une procédure d’enrichissement de l’activité RNase P mitochondriale native, donnant un
rendement raisonnable. Les fractions enrichies capables de cette activité enzymatique ont été
analysées par LC/MS/MS et les résultats montrent que l’holoenzyme de la RNase P de
chacune des fractions contient un nombre de protéines beaucoup plus grand que ce qui était
connue. Nous suggérons une liste de protéines (principalement hypothétiques) qui
accompagnent l’activité de la RNase P.
IV
De plus, la question de la localisation de la mtRNase P de A. nidulans a été étudiée,
selon nos résultats, la majorité de la mtRNase P est attachée á la membrane interne de la
mitochondrie. Sa solubilisation se fait par l’utilisation de différents types de détergent. Ces
derniers permettent l’obtention d’un spectre de complexes de la RNase P de différentes
tailles. / Abstract
RNase P is a ribonucleo-protein complex (an RNA enzyme or ribozyme) that cleaves 5’
leader sequences of precursor tRNAs and a few other small RNAs. It occurs in all three
domains of life, Bacteria, Archaea and Eukarya, with the latter containing distinct nuclear
and organellar (mitochondrial or plastid) activities. In most instances, the complex contains a
single, well-conserved RNA subunit that carries the active center of the enzyme. Yet,
compare to bacterial and nuclear P RNA, most mtP RNAs are structurally highly reduced.
The number of P proteins is highly variable: one in Bacteria, about four in Archaea, and ten
in the cytoplasmic form of Eukarya. Much less is known in the case of mitochondria.
MtRNase P is usually purified by using numerous separation steps that include
unphysiological conditions, leading to complexes having a minimum number of subunits
(e.g., in yeast and Aspergillus nidulans), that often loose their activity. Here, using BN
PAGE, we have developed an enrichment procedure for A. nidulans mtRNase P that avoids
some of the most disruptive conditions. The protein composition of active fractions was
identified with LC/MS/MS, indicating that the RNase P holoenzyme is much larger than
previously thought.
Finally, the question of mtRNase P localization within mitochondria was investigated,
by tracing its RNA subunit by RT PCR. We found that mtRNase P of A. nidulans is a
predominantly membrane-attached enzyme; it is in part solubilized by detergents such as
digitonin and Triton.
|
97 |
Specific ubiquitin-dependent protein degradation requires a trimeric CandA complex in Aspergillus nidulansKöhler, Anna Maria 28 May 2018 (has links)
No description available.
|
98 |
Interplay of the COP9 signalosome deneddylase and the UspA deubiquitinase to coordinate fungal development and secondary metabolismMeister, Cindy 06 June 2018 (has links)
No description available.
|
99 |
Purification of mitochondrial RNase P in A. nidulansJavadi Khomami, Pasha 01 1900 (has links)
Résumé
La ribonucléase P (RNase P) est une ribonucléoprotéine omniprésente dans tous les règnes
du vivant, elle est responsable de la maturation en 5’ des précurseurs des ARNs de transfert
(ARNts) et quelques autres petits ARNs. L’enzyme est composée d'une sous unité catalytique
d'ARN (ARN-P) et d'une ou de plusieurs protéines selon les espèces. Chez les eucaryotes,
l’activité de la RNase P cytoplasmique est distincte de celles des organelles (mitochondrie et
chloroplaste).
Chez la plupart des espèces, les ARN-P sont constituées de plusieurs éléments
structuraux secondaires critiques conservés au cours de l’évolution. En revanche, au niveau
de la structure, une réduction forte été observé dans la plupart des mtARN-Ps. Le nombre de
protéines composant la RNase P est extrêmement variable : une chez les bactéries, environ
quatre chez les archéobactéries, et dix chez la forme cytoplasmique des eucaryotes. Cet
aspect est peu connu pour les formes mitochondriales.
Dans la plupart des cas, l’identification de la mtRNase P est le résultat de longues
procédures de purification comprenant plusieurs étapes dans le but de réduire au minimum le
nombre de protéines requises pour l’activité (exemple de la levure et A. nidulans). Cela mène
régulièrement à la perte de l’activité et de l’intégrité des complexes ribonucléo-protéiques
natifs.
Dans ce travail, par l’utilisation de la technique de BN-PAGE, nous avons développé
une procédure d’enrichissement de l’activité RNase P mitochondriale native, donnant un
rendement raisonnable. Les fractions enrichies capables de cette activité enzymatique ont été
analysées par LC/MS/MS et les résultats montrent que l’holoenzyme de la RNase P de
chacune des fractions contient un nombre de protéines beaucoup plus grand que ce qui était
connue. Nous suggérons une liste de protéines (principalement hypothétiques) qui
accompagnent l’activité de la RNase P.
IV
De plus, la question de la localisation de la mtRNase P de A. nidulans a été étudiée,
selon nos résultats, la majorité de la mtRNase P est attachée á la membrane interne de la
mitochondrie. Sa solubilisation se fait par l’utilisation de différents types de détergent. Ces
derniers permettent l’obtention d’un spectre de complexes de la RNase P de différentes
tailles. / Abstract
RNase P is a ribonucleo-protein complex (an RNA enzyme or ribozyme) that cleaves 5’
leader sequences of precursor tRNAs and a few other small RNAs. It occurs in all three
domains of life, Bacteria, Archaea and Eukarya, with the latter containing distinct nuclear
and organellar (mitochondrial or plastid) activities. In most instances, the complex contains a
single, well-conserved RNA subunit that carries the active center of the enzyme. Yet,
compare to bacterial and nuclear P RNA, most mtP RNAs are structurally highly reduced.
The number of P proteins is highly variable: one in Bacteria, about four in Archaea, and ten
in the cytoplasmic form of Eukarya. Much less is known in the case of mitochondria.
MtRNase P is usually purified by using numerous separation steps that include
unphysiological conditions, leading to complexes having a minimum number of subunits
(e.g., in yeast and Aspergillus nidulans), that often loose their activity. Here, using BN
PAGE, we have developed an enrichment procedure for A. nidulans mtRNase P that avoids
some of the most disruptive conditions. The protein composition of active fractions was
identified with LC/MS/MS, indicating that the RNase P holoenzyme is much larger than
previously thought.
Finally, the question of mtRNase P localization within mitochondria was investigated,
by tracing its RNA subunit by RT PCR. We found that mtRNase P of A. nidulans is a
predominantly membrane-attached enzyme; it is in part solubilized by detergents such as
digitonin and Triton.
|
100 |
Role of methyltransferases in fungal development and secondary metabolite productionSarikaya Bayram, Özlem 17 January 2014 (has links)
Pilzentwicklung und Sekundärmetabolismus werden durch Einwirkung von
Umwelteinflüssen von Regulatorproteinen kontrolliert. Das VeA Protein repräsentiert die
velvet-Domänen-Familie der Pilzregulatoren. VeA passt die sexuelle Entwicklung und den
dazu gehörenden Sekundärmetabolismus von Aspergillus nidulans an die Lichtverhältnisse
an. VeA bindet im Dunkeln an VelB und bildet schließlich den trimeren VelB-VeA-LaeA
(velvet) Komplex. VeA dient als Brückenprotein für das velvet-Domänen-Protein VelB als
Regulator der Entwicklung und die Methyltransferase LaeA als Regulator des
Sekundärmetabolismus. VelB kann mit VosA einen zweiten licht-regulierten Komplex
bilden, der die asexuelle Entwicklung reprimiert. Auch VosA gehört zur Familie der Velvet-
Proteine. LaeA kontrolliert die Bildung der VelB-VosA und VelB-VeA-LaeA Komplexe
während der Entwicklung. laeA Nullmutationen können nicht mehr auf Licht reagieren, was
ihre Schlüsselrolle als Regulatoren der Entwicklung unterstreicht. Die Abwesenheit von LaeA
führt zur Bildung von wesentlich kleineren Fruchtkörpern. Grund hierfür ist das Fehlen
runder Hülle-Zellen, die den jungen Fruchtkörper ernähren und in seiner Entwicklung
unterstützen. LaeA spielt damit eine dynamische Rolle während der morphologischen und
biochemischen Entwicklung des Pilzes, indem die Expression, Interaktion und die
Modifikation der velvet Regulatoren kontrolliert werden. Im zweiten Teil der Arbeit wurde
die VeA-Plattform für Protein-Protein Interaktionen weiter untersucht. VeA interagierende
Proteine (Vips) identifiziert in einen „Yeast-two-hybrid“ System führten zu einem trimeren
Methyltransferase-Komplex, der Signaltransduktion mit epigenetischer Kontrolle verbindet.
Der neuartige Komplex enthält das Plasmamembran-assoziierte Trimer VapA-VipC-VapB.
Das Dimer VipC-VapB ist über das FYVE-ähnliche Zinkfinger Protein VapA an die
Plasmamembran gebunden und ermöglicht dem nuklearen VelB-VeA-LaeA Komplex die
Aktivierung der Transkription der sexuellen Entwicklung. Sobald die Abkopplung vom VapA
stattgefunden hat, wird VipC-VapB zum Kern transportiert. VipC-VapB interagiert
physikalisch mit VeA, vermindert dessen Transport zum Kern und die Stabilität. Folglich
wird der Anteil des VelB-VeA-LaeA Komplexes im Kern reduziert. Die nukleare VapB
Methyltransferase vermindert die Entstehung des fakultativen Chromatins indem es die
Histon 3 Lysin 9 Methylierung (H3K9 me3) vermindert. Dies begünstigt die Aktivierung der
frühen Regulatorgene flbA und flbC, die dann das asexuelle Programm im Licht vorantreiben.
Der VapA-VipC-VapB Methyltransferase-Weg vereinigt die Kontrolle des Kernimportes und
der Stabilität von Transkriptionsfaktoren mit der Modifikation von Histonen. Erst dieses
komplexe Zusammenspiel unterschiedlicher Mechanismen erlaubt eine angemessene Antwort
für die Differenzierung des Pilzes.
|
Page generated in 0.0753 seconds